Buffalo Bayou Community Plan Lit Tle Cyp Res S 1960 Upper Cypress Creek G a Watershed Rn E

Total Page:16

File Type:pdf, Size:1020Kb

Buffalo Bayou Community Plan Lit Tle Cyp Res S 1960 Upper Cypress Creek G a Watershed Rn E S p ri ng C re ek k Sp e ring re C C re 2920 e w k Will o 99 Buffalo Bayou Community Plan Lit tle Cyp res s 1960 Upper Cypress Creek G a Watershed rn e r Land protection, restoration, s shallow storage B Cypres ayo s C u ree k Greens Bayou Addicks Watershed G Retention, r e e creekside storage n s Addicks ReservoirWhite Oak Ba B Excavate y a o Ha y l o u ls B 75,000 acre feet ayo u C u a r p 99 e B n e t a e r r C Tunnel interceptors H s r u e B e to help reduce flooding 40-Foot n k t along Bualo Bayou in a g y Flood Tunnel 10,000 cfs B o a u y o u B u Barker Reservoir u o al y Excavate o B a 86,000 acre feet FLOOD PROTECTION PLAN COSTS ou Brays Bay Construct additional storage in the Cypress u Stream yo a 45 Reservoir boundary S B ¨¦§ Creek over�low/upper Addicks watershed $ 0.20 B i ms County Line Restore/offset Addicks storage capacity* $ 0.60 B ¤£90A Restore/offset Barker storage capacity* $ 0.90 B FEMA Flood Type )"288 Construct Buffalo Bayou Bypass Tunnel** $ 4.20 B * Provide storage to offset previously available volume Total Cost $ 6.00 B Floodway )"35 Mitigate/restore wetlands $ 0.10 B 100-year Floodplain ** on private property. Lower �lowline of reservoirs so that excavated areas drain by gravity to �lood tunnel. 500-year Floodplain 8 C l Connect 23-mile �lood tunnel from Addicks and Barker e County and State Cost Share (50%)� $ 3.00 B Reservoirs to Houston Ship Channel Turning Basin. a r Federal Cost Share (50%)� $ 3.00 B Assumes Congress authorizes 50-50 cost share. � C r11/18/2020eek BUFFALO BAYOU COMMUNITY PLAN Since Houston was founded on its banks, Buffalo Bayou watershed has been The Buffalo Bayou Community Plan is comprised of four components. The critical to the Texas Gulf Coast. After catastrophic flooding in 1929 and 1935, components of this plan are concepts that aim to accomplish the goals stated the U.S. Army Corps of Engineers (the Corps) produced a flood mitigation plan above but require additional study. for Buffalo Bayou in 1940, which included Barker and Addicks Reservoirs. The COMPONENT 1 other elements of the Corps’ 1940 plan were never built, leaving the Buffalo Bayou watershed prone to chronic flooding. To avoid flooding homes during a Harvey-size storm and complete its plan, the Corps must find a way to convey Construct a ±40-foot diameter tunnel capable of conveying ±10,000 cubic-feet andadditional businesses. flood waters from the reservoirs to Galveston Bay. Adding flood water per second of flood water from Barker and Addicks Reservoirs to the Houston storage upstream and within the reservoirs helps keep the water out of homes Ship Channel. Tunnel interceptors along IH 10 and Buffalo Bayou will significantly increase flood protection for Harvey-type events. A force main and toexpansion the project. at the City of Houston’s East Water Purification Plant can create a The Corps’ Interim Report for the Buffalo Bayou and Tributaries Resilience new water source and funding for the tunnel without adding any additional cost Study favors two solutions, Alternative 2, channelizing Buffalo Bayou, and Alternative 6, constructing a reservoir on the Katy Prairie. The community COMPONENT 2 opposes these alternatives. Community opposition to channelization of Buffalo Bayou has only grown since Terry Hershey and George H. W. Bush opposed it more than 60 years ago. A massive reservoir on the Katy Prairie would destroy Provide ±86,000 acre-feet of compensating storage within Barker Reservoir a critical ecosystem and face fierce community opposition. If the Corps seeks costs.to offset the loss of volume on private property. Using fill material to create effective flooding solutions and achieving community support, the Buffalo Bayou topography can add ecological and recreational value and reduce transportation Community Plan provides a road map that will achieve these dual purposes. The• Buffalo Bayou Community Plan is formulated with the following goals: COMPONENT 3 Contain and convey the storm events similar in magnitude to Hurricane • Harvey (2017). Provide ±75,000 acre-feet of compensating storage within Addicks Reservoir to offset the loss of volume on private property. Similar benefits and opportunities Contain flood waters within the boundaries of federally owned lands for • are available in Addicks Reservoir. Barker and Addicks Reservoirs. COMPONENT 4 Add conveyance downstream of Barker and Addicks Reservoirs without • channelizing Buffalo Bayou. Provide land protection and restoration, shallow storage areas in the upper Reduce flooding conditions in Buffalo Bayou watershed downstream of the watershed. • Cypress Creek watershed, and retention and creekside storage in upper Addicks reservoirs resulting from local rainfall. Minimize environmental impacts and enhance long term environmental • benefits. stakeholders. Have broad and prolonged community support from a diverse group of 11/18/2020.
Recommended publications
  • Upstream Addicks and Barker Dams
    In the United States Court of Federal Claims Sub-Master Docket No. 17-9001L (Filed: December 17, 2019) ********************************** ) IN RE UPSTREAM ADDICKS AND ) Post-trial decision; government-induced BARKER (TEXAS) FLOOD- ) flooding on private property; application of CONTROL RESERVOIRS ) factors identified in Arkansas Game & ) Fish; liability for a taking of a flowage ********************************** ) easement THIS DOCUMENT APPLIES TO: ) ) ALL UPSTREAM CASES ) ) ********************************** ) Daniel H. Charest and E. Lawrence Vincent, Burns Charest LLP, Dallas, Texas, Charles Irvine, Irvine & Conner PLLC, Houston, Texas, and Edwin Armistead Easterby, Williams Hart Boundas Easterby, LLP, Houston, Texas, Co-Lead Counsel for Upstream Plaintiffs. With them at trial were Vuk. S. Vujasinovic, VB Attorneys, PLLC, Houston Texas, Lawrence G. Dunbar, Dunbar Barder, P.L.L.C., Houston, Texas, Jack E. McGehee, McGehee, Chang, Barnes, Landgraf, Houston, Texas, Michael J. Dulaney, Sullins, Johnson, Rohrbach & Magers, Houston, Texas, Lydia A. Wright, Burns Charest LLP, Dallas, Texas, Mary Conner, Irvine & Conner, LLC, Houston, Texas, Kyril V. Talanov, Houston, Texas, and Hilary S. Greene, Houston, Texas. William Shapiro, Trial Attorney, Environmental & Natural Resources Division, United States Department of Justice, Sacramento, California, for defendant. With him at trial and on the briefs were Kristine S. Tardiff, Laura W. Duncan, Sarah Izfar, Jessica Held, Bradley L. Levine, David L. Dain, and Mayte SantaCruz, Trial Attorneys, Environmental
    [Show full text]
  • The Shape of Things to Come: Houston Storm Water Management Post-Harvey
    The Shape of Things to Come: Houston Storm Water Management Post-Harvey John S. Grounds, III, PhD, PE, CFM, D.WRE Vice President, Director of Water Resources November 26, 2018 The Shape of Things to Come: Houston Storm Water Management Post-Harvey Hurricane Harvey has proven to be an historic event on many fronts. While the scale and breadth of destruction from the record rainfall cannot be understated, Harvey demonstrated widespread failures of a system intended to protect the fourth most populous city in the country. Numerous public and private entities are looking ahead to rebuilding and fostering new development in the most “flood-proof” ways possible. Changes to the way data is gathered and used for floodplain mapping was underway prior to Harvey, specifically Atlas 14, which is a compendium of precipitation-frequency estimates by region. What will be the impact of these changes on Houston’s floodplains? How are the regulatory agencies changing design and analysis criteria and building codes? What are the resulting implications? What will adoption of these changes mean for jurisdictional bodies? Read on for a current assessment of possible changes, and how they could drastically change Houston’s landscape. “WHILE REDUCING RISK IS POSSIBLE, ELIMINATING RISK IS NOT.”: HOUSTON’S HISTORY WITH STORM WATER MANAGEMENT The Allen brothers landed in Houston in 1832 where White Oak Bayou meets Buffalo Bayou, on the northern edge of present day downtown. The first steam ship arrived in Houston from Galveston Bay in 1837. By 1840 an accumulation of sunken ships along that stretch of Buffalo Bayou made access to downtown so challenging that a $2,000 taxpayer-funded program began removing the wrecks.
    [Show full text]
  • Buffalo and Whiteoak Bayou Tmdl
    Total Maximum Daily Loads for Fecal Pathogens in Buffalo Bayou and Whiteoak Bayou Contract No. 582-6-70860 Work Order No. 582-6-70860-21 TECHNICAL SUPPORT DOCUMENT FOR BUFFALO AND WHITEOAK BAYOU TMDL Prepared by University of Houston CDM Principal Investigator Hanadi Rifai Prepared for Total Maximum Daily Load Program Texas Commission on Environmental Quality P.O. Box 13087, MC - 150 Austin, Texas 78711-3087 TCEQ Contact: Ronald Stein TMDL Team (MC-203) P.O. Box 13087, MC - 203 Austin, Texas 78711-3087 [email protected] MAY 2008 Contract #- -582-6-70860/ Work Order # 582-6-70860-21 –Technical Support Document TABLE OF CONTENTS LIST OF TABLES ……………………………………………………………..……………..….vi LIST OF FIGURES ………………………………………………………………..……… ... ….ix CHAPTER 1 : PROBLEM DEFINITION...................................................................................... 1 1.1 WATERSHED DESCRIPTION................................................................................. 1 1.2 ENDPOINT DESIGNATION.................................................................................... 5 1.3 CRITICAL CONDITION........................................................................................... 8 1.4 MARGIN OF SAFETY.............................................................................................. 8 CHAPTER 2 : SUMMARY OF EXISTING DATA...................................................................... 9 2.1 WATERSHED CHARACTERISTICS...................................................................... 9 2.1.1 LAND USE........................................................................................................
    [Show full text]
  • Buffalo Bayou and Tributaries Flood Control Project Addicks & Barker Dams & Reservoirs 101 Past, Present & Future
    1 BUFFALO BAYOU AND TRIBUTARIES FLOOD CONTROL PROJECT ADDICKS & BARKER DAMS & RESERVOIRS 101 PAST, PRESENT & FUTURE “The views, opinions and findings contained in this report are those of the authors(s) and should not be construed as an official Department of the Army position, policy or decision, unless so designated by other official documentation.” Location 2 Piney Point Gage Houston Average Annual Rainfall – 49.77 inches ADDICKS, BARKER AND BUFFALO BAYOU WATERSHEDS 3 Early Houston Floods 4 31 May-2 June 1929 and 7-10 December 1935 Buffalo Bayou & Tributaries 1940’s Original Plan 5 Ungated Conduits 6 at Addicks and Barker Dams Jan. 20, 1945 Houston 1950, 1992, 2016 7 GATING OF UNGATED CONDUITS 8 9 CHANGES AND THEIR IMPACTS Project Modifications • Deletion of South Canal = Results of Changes • Deletion of Cypress Creek Levee • Gating of the Structures • More Frequent Pools • Faster Rising Pools + Downstream Changes • Larger Pools • Increased Development • Decreased Releases • Longer Lasting Pools – + Upstream Changes • Increased Development • Increased Run-off • More Rapid Run-off Top Ten Pools – Addicks and Barker Reservoirs 10 ADDICKS DAM & RESERVOIR BARKER DAM & RESERVOIR SURFACE AREA CAPACITY IN % CAPACITY % CAPACITY OF SURFACE AREA CAPACITY IN % CAPACITY % CAPACITY OF DATE ELEV. (1) IN ACRES ACRE-FEET (2) MAX. POOL (3) GOL (4) DATE ELEV. (1) IN ACRES ACRE-FEET (2) MAX. POOL (3) GOL (4) 30 Aug '17 109.09 16,982 217,726 100.0+ 100.0 30 AUG '17 101.56 15,149 170,941 81.6 100.0 23 APR '16 102.65 12,834 123,067 61.1 96.5 25 APR '16
    [Show full text]
  • Recreational Use Attainability Analysis of Buffalo/White Oak Bayou
    PRELIMINARY RESULTS OF A RECREATIONAL USE ATTAINABILITY ANALYSIS OF THE BUFFALO BAYOU/WHITE OAK BAYOU STREAM SYSTEM IN HOUSTON, TEXAS BY Dr. Kirk Winemiller Dr. David Scott Dr. Scott Shafer John Baker Bibiana Correa Po-Hsin Lai TEXAS A & M UNIVERSITY COLLEGE STATION, TEXAS August 2008 TABLE OF CONTENTS Page Acknowledgements 5 Introduction 6 Historic Information 7 Description of the Study Area 13 Methods 14 Results 19 Summary 40 Recommendations 43 References 44 Appendix 1: On-Site Observations of Recreation Uses along Buffalo Bayou 46 Appendix 2: Environmental Assessment Methodology Definitions 53 2 LIST OF TABLES Table 1. Description of surveyed streams in Buffalo Bayou/White Oak Bayou Stream System. Measurements were conducted during the summer of 2008. Stream type represents the dominant condition in the stream. Table 2. Stream Flow measurements in Buffalo Bayou/White Oak Bayou Stream System. Measurements were conducted during the summer of 2008 on eleven cross sections. Table 3. Maximum depth and mean of physicochemical water characteristics of Buffalo Bayou/White Oak Bayou Stream System. Values are presented from upstream to down stream and were calculated from measurements conducted during the summer of 2008, excluding obvious outliers. Abbreviations: VMD = Secchi disk was still visible at maximum depth. Table 4. Location, general surroundings, and point sources present at 85 sampled stations in the Buffalo Bayou/White Oak Bayou Stream System. Table 5. Stream channel and corridor assessment per sampled station in the Buffalo Bayou/White Oak Bayou Stream System. Table 6. Human activity registered in Buffalo Bayou/White Oak Bayou Stream System during the summer of 2008.
    [Show full text]
  • Drainage/Spring Creek Watershed Project
    Proposal Prepared for: The Woodlands Township Drainage/Spring Creek Watershed Project (C-2017-0481) November 2017 Professional Engineering Services The Woodlands Township Drainage/Spring Creek Watershed Project C-2017-0481 TABLE OF CONTENTS 1 HISTORY OF THE FIRM .......................................................................................................................................................... 4 2 PROJECT MANAGEMENT TEAM & ORGANIZATIONAL CHART ............................................................................... 5 3 EXPERIENCE .............................................................................................................................................................................. 7 4 RESUMES ................................................................................................................................................................................... 13 5 PROJECT MANAGEMENT METHODOLOGY / APPROACH ......................................................................................... 13 5.1 Project Approach ........................................................................................................................................................................ 13 5.2 Project Management Methodology ........................................................................................................................................... 14 6 EXAMPLES OF SIMILAR PROJECTS ................................................................................................................................
    [Show full text]
  • Cypress Creek Watershed: Analysis of Flooding & Storage Options
    CYPRESS CREEK WATERSHED: ANALYSIS OF FLOODING & STORAGE OPTIONS SSPEED Center - Rice University Texas Southern University May 2019 May 2019 Contributors Larry Dunbar, Rice University SSPEED Center Matt Garcia, Rice University SSPEED Center Andrew Juan, Rice University SSPEED Center Phil Bedient, Rice University SSPEED Center Definitions and Abbreviations AEP Annual Exceedance Probability - the probability of a storm event exceeding a particular flood level in one year. LID Low Impact Development 1 Cypress Creek Watershed: Analysis of Flooding & Storage Options GREATER HOUSTON FLOOD MITIGATION CONSORTIUM Since the devastating blow of Hurricane Harvey in the greater Houston region,local jurisdictions have taken a hard look at their flood preparedness, from regulations to structural projects, and regional level projects to site specific solutions. However, significant vulnerabilities remain. The Greater Houston Flood Mitigation Consortium convened after Hurricane Harvey to advance greater Houston’s resiliency and to ensure that all communities benefit from flood mitigation efforts. This independent collaborative of expert researchers and community advocates is committed to compiling, analyzing and sharing a rich array of data about flooding risk and mitigation opportunities; and translating this data into information to engage the public and help guide and support decision- makers at all levels as they direct the Houston region’s redevelopment. Consortium members are affiliated with local, regional and statewide universities, research centers and community organizations with deep expertise in hydrology, climate science, engineering, coastal resiliency, energy, community development and urban planning. Houston-based Huitt-Zollars, a planning, engineering and architectural firm, manages the consortium. The consortium is focusing its work on Harris County’s 22 watersheds, several of which extend to surrounding counties.
    [Show full text]
  • Harris County, Texas and Incorporated Areas VOLUME 1 of 12
    Harris County, Texas and Incorporated Areas VOLUME 1 of 12 COMMUNITY NAME COMMUNITY NO. COMMUNITY NAME COMMUNITY NO. Baytown, City of 485456 Nassau Bay, City of 485491 Bellaire, City of 480289 Pasadena, City of 480307 Bunker Hill Village, City of 1 480290 Pearland, City of 480077 Deer Park, City of 480291 Piney Point Village, City of 480308 El Lago, City of 485466 Seabrook, City of 485507 Galena Park, City of 480293 Shoreacres, City of 485510 Hedwig Village, City of1 480294 South Houston, City of 480311 Hilshire Village, City of 480295 Southside Place, City of 480312 Houston, City of 480296 Spring Valley Village, City of 480313 Humble, City of 480297 Stafford, City of 480233 Hunter’s Creek Village, City of 480298 Taylor Lake Village, City of 485513 Jacinto City, City of 480299 Tomball, City of 480315 Jersey Village, City of 480300 Webster, City of 485516 La Porte, City of 485487 West University Place, City of 480318 Missouri City, City of 480304 Harris County Unincorporated Areas 480287 Morgans Point, City of 480305 1 No Special Flood Hazard Areas identified REVISED: November 15, 2019 FLOOD INSURANCE STUDY NUMBER 48201CV001G NOTICE TO FLOOD INSURANCE STUDY USERS Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study may not contain all data available within the repository. It is advisable to contact the community repository for any additional data. Part or all of this Flood Insurance Study may be revised and republished at any time. In addition, part of this Flood Insurance Study may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the Flood Insurance Study.
    [Show full text]
  • Buffalo Bayou East Master Plan Brings the Community’S Vision for Its Waterfront to Life
    Authentic Connected Inclusive Resilient A VISION FOR BUFFALO BAYOU EAST BUFFALO BAYOU PARTNERSHIP MICHAEL VAN VALKENBURGH ASSOCIATES Landscape Architecture HR&A ADVISORS Economic Development HUITT-ZOLLARS Engineering and Transportation LIMNOTECH Hydrology UTILE Urban Design and Architecture The Buffalo Bayou East Master Plan brings the community’s vision for its waterfront to life. Like other cities such as New York, Boston and St. Louis While most of Buffalo Bayou Partnership’s green space where Frederick Law Olmstead designed park systems, development has occurred west of Downtown, for more Houston hired Cambridge, Massachusetts landscape than a decade the organization has been acquiring architect Arthur Coleman Comey in 1912 to provide property and building a nascent trail system along the a plan that would guide the city’s growth. In his plan, waterway’s East Sector. The Buffalo Bayou East Master Houston: Tentative Plans for Its Development, Comey Plan brings the community’s vision for its waterfront asserted: “The backbone of a park system for Houston to life. Informed by significant outreach and engagement, will naturally be its creek valleys, which readily lend the plan envisions integrating new parks and trails, themselves to ‘parking’ … All the bayous should dynamic recreational and cultural destinations, and be ‘parked’ except where utilized for commerce.” connections to surrounding neighborhoods. Building upon Comey’s vision, Buffalo Bayou Partnership’s This plan is an important step forward for the future of (BBP) 2002 Buffalo Bayou and Beyond Master Plan Houston’s historic bayou—a project that will take decades and envisioned a network of green spaces along the Bayou require creative partnerships to unfold.
    [Show full text]
  • Public Law 107-337 107Th Congress an Act to Authorize the Secretary of the Interior to Study the Suitability and Feasibility Dec
    PUBLIC LAW 107-337—DEC. 16, 2002 116 STAT. 2883 Public Law 107-337 107th Congress An Act To authorize the Secretary of the Interior to study the suitability and feasibility Dec. 16, 2002 of establishing the Buffalo Bayou National Heritage Area in west Houston, Texas. [H.R. 1776] Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, Buffalo Bayou National SECTION 1. SHORT TITLE. Heritage Area Study Act. This Act may be cited as the "Buffalo Bayou National Heritage Area Study Act". SEC. 2. NATIONAL PARK SERVICE STUDY REGARDING BUFFALO BAYOU, TEXAS. (a) FINDINGS.—^The Congress finds the following: (1) The area beginning at Shepherd Drive in west Houston, Texas, and extending to the Turning Basin, commonly referred to as the "Buffalo Bayou", made a unique contribution to the cultural, political, and industrial development of the United States. (2) The Buffalo Bayou is distinctive as the first spine of modern industrial development in Texas and one of the first ailong the Gulf of Mexico coast. (3) The Buffalo Bayou played a significant role in the struggle for Texas independence. (4) The Buffalo Bayou developed a prosperous and produc­ tive shipping industry that survives today. (5) The Buffalo Bayou led in the development of Texas' petrochemical industry that made Houston the center of the early oil boom in America. (6) The Buffalo Bayou developed a sophisticated shipping system, leading to the formation of the modem day Houston Ship Channel. (7) The Buffalo Bayou developed a significant industrial base, and served as the focal point for the new city of Houston.
    [Show full text]
  • How's the Water?
    This story was made with Esri's Story Map Cascade. Read it on the web at http://arcg.is/1OKTKW. How’s the Water? 2018 Houston-Galveston Area Council Basin Highlights Report Watershed Characterizations for the Houston Ship Channel/Buffalo Bayou Tidal, Chocolate Bayou Tidal, and Chocolate Bayou Above Tidal Clean water is essential. Just as clean water is essential for life itself, it is also essential for the quality of our lives. Water is all around us. It flows through rural areas, our neighborhoods, and our cities. These waterways come in all shapes and sizes, from small drainage ditches and meandering creeks to seemingly lazy bayous and major rivers. All of them connect to one of the most productive estuaries in the nation, Galveston Bay, and ultimately the Gulf of Mexico. We walk and picnic near them, splash, swim, fish, and sail on them. Keeping them clean must be a priority for all of us. These waters help fuel a strong economy, bringing in billions of dollars a year and providing tens of thousands of jobs in commercial and recreational fishing and tourism. The 2018 Basin Highlights Report provides an overview of water quality and data trends in the Houston- Galveston region’s surface waters. Houston Ship Channel This report characterizes the Houston Ship Channel/Buffalo Bayou Tidal (Segment 1007), Chocolate Bayou Tidal (Segment 1107), and Chocolate Bayou Above Tidal (Segment 1108) watersheds to identify • Specific water quality issues and trends. • Sources of point and nonpoint pollution. • Current strategies and plans to reduce pollution within these watersheds. • Current and potential stakeholders working within these watersheds Since 1991, the Texas Clean Rivers Program (link: https://www.tceq.texas.gov/waterquality/clean-rivers) (CRP) has provided a framework for addressing water quality issues through an all-inclusive watershed approach.
    [Show full text]
  • Effects on Water Quality Due to Flood-Water Detention by Barker and Addicks Reservoirs, Houston, Texas
    EFFECTS ON WATER QUALITY DUE TO FLOOD-WATER DETENTION BY BARKER AND ADDICKS RESERVOIRS, HOUSTON, TEXAS By Fred Liscum, R. L. Goss, and E. M. Paul U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 86-4356 Prepared in cooperation with the U.S. ARMY CORPS OF ENGINEERS Austin, Texas 1987 DEPARTMENT OF THE INTERIOR DONALD PAUL HODEL, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director For additional information Copies of this report can be write to: purchased from: District Chief Books and Open-File Reports Section U.S. Geological Survey Western Distribution Branch 649 Federal Building U.S. Geological Survey 300 E. Eighth Street Box 25425, Federal Center Austin, TX 78701 Denver, CO 80225 II CONTENTS Page Abstract 1 Introduction 3 Description of study area 3 Purpose and scope 5 Study approach 5 Data collection 5 Data analysis 8 Description of water quality 16 Field measurements, biochemical oxygen demand, and bacteria 21 Physical and aesthetic properties 25 Major inorganic constituents and related properties 27 Nutrients and total organic carbon 30 Trace el ements 32 Pesticides and polychlorinated biphenyls 33 Effects on water quality due to flood-water detention 36 Variation of discharge-weighted average values for selected hydro!ogic events 37 Summary of events 37 Event of May 1-22, 1981 40 Barker Reservoir system 40 Addicks Reservoi r system 41 Summary 41 Statistical analysis of discharge-weighted average values 41 Variation of means, max i mums, and mini mums for selected constituents and properties 45 Summary and conclusions 51 References cited 57 Appendix A - Field measurements, biochemical oxygen demand, and bacteria 58 Appendix B - Physical and aesthetic properties 67 Appendix C - Major inorganic constituents and related properties 72 Appendix D - Nutrients and total organic carbon 82 Appendix E - Trace elements 88 Appendix F - Pesticides and polychlorinated biphenyls 89 III ILLUSTRATIONS Page Figure 1.
    [Show full text]