A Natural Origin-Of-Life: Every Hypothetical Step Appears
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
1 "Principles of Phylogenetics: Ecology
"PRINCIPLES OF PHYLOGENETICS: ECOLOGY AND EVOLUTION" Integrative Biology 200 Spring 2016 University of California, Berkeley D.D. Ackerly March 7, 2016. Phylogenetics and Adaptation What is to be explained? • What is the evolutionary history of trait x that we see in a lineage (homology) or multiple lineages (homoplasy) - adaptations as states • Is natural selection the primary evolutionary process leading to the ‘fit’ of organisms to their environment? • Why are some traits more prevalent (occur in more species): number of origins vs. trait- dependent diversification rates (speciation – extinction) Some high points in the history of the adaptation debate: 1950s • Modern Synthesis of Genetics (Dobzhansky), Paleontology (Simpson) and Systematics (Mayr, Grant) 1960s • Rise of evolutionary ecology – synthesis of ecology with strong adaptationism via optimality theory, with little to no history; leads to Sociobiology in the 70s • Appearance of cladistics (Hennig) 1972 • Eldredge and Gould – punctuated equilibrium – argue that Modern Synthesis can’t explain pervasive observation of stasis in fossil record; Gould focuses on development and constraint as explanations, Eldredge more on ecology and importance of migration to minimize selective pressure 1979 • Gould and Lewontin – Spandrels – general critique of adaptationist program and call for rigorous hypothesis testing of alternatives for the ‘fit’ between organism and environment 1980’s • Debate on whether macroevolution can be explained by microevolutionary processes • Comparative methods -
Testing Darwin's Hypothesis About The
vol. 193, no. 2 the american naturalist february 2019 Natural History Note Testing Darwin’s Hypothesis about the Wonderful Venus Flytrap: Marginal Spikes Form a “Horrid q1 Prison” for Moderate-Sized Insect Prey Alexander L. Davis,1 Matthew H. Babb,1 Matthew C. Lowe,1 Adam T. Yeh,1 Brandon T. Lee,1 and Christopher H. Martin1,2,* 1. Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599; 2. Department of Integrative Biology and Museum of Vertebrate Zoology, University of California, Berkeley, California 94720 Submitted May 8, 2018; Accepted September 24, 2018; Electronically published Month XX, 2018 Dryad data: https://dx.doi.org/10.5061/dryad.h8401kn. abstract: Botanical carnivory is a novel feeding strategy associated providing new ecological opportunities (Wainwright et al. with numerous physiological and morphological adaptations. How- 2012; Maia et al. 2013; Martin and Wainwright 2013; Stroud ever, the benefits of these novel carnivorous traits are rarely tested. and Losos 2016). Despite the importance of these traits, our We used field observations, lab experiments, and a seminatural ex- understanding of the adaptive value of novel structures is of- periment to test prey capture function of the marginal spikes on snap ten assumed and rarely directly tested. Frequently, this is be- traps of the Venus flytrap (Dionaea muscipula). Our field and labora- cause it is difficult or impossible to manipulate the trait with- fi tory results suggested inef cient capture success: fewer than one in four out impairing organismal function in an unintended way; prey encounters led to prey capture. Removing the marginal spikes de- creased the rate of prey capture success for moderate-sized cricket prey however, many carnivorous plant traits do not present this by 90%, but this effect disappeared for larger prey. -
Exapting Exaptation
Spotlight Exapting exaptation 1 2 3 3 Greger Larson , Philip A. Stephens , Jamshid J. Tehrani , and Robert H. Layton 1 Durham Evolution and Ancient DNA, Department of Archaeology, Durham University, South Road, Durham, DH1 3LE, UK 2 School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE, UK 3 Department of Anthropology, Durham University, South Road, Durham, DH1 3LE, UK The term exaptation was introduced to encourage biol- As a result, all adaptations can also be said to be exapta- ogists to consider alternatives to adaptation to explain tions, thus rendering the term redundant [4]. the origins of traits. Here, we discuss why exaptation has proved more successful in technological than biological Technology and the exaptation of exaptation contexts, and propose a revised definition of exaptation Despite failing to catch on in evolutionary biology, exapta- applicable to both genetic and cultural evolution. tion has been adopted with considerable success in studies of the history of technology [5]. Technological innovations frequently involve the use of a process or artefact in a new The rise and fall of biological exaptation context [6]. A classic example is microwave radiation, Last year marked a decade since the death of Stephen Jay which was originally used in the radar magnetron to Gould, and 30 years since the publication of one of his most intercept and reflect off target objects, and was subse- provocative challenges to orthodox evolutionary theory quently exapted as a means to heat food. Similarly, tech- [1,2]. Concerned about a perceived lack of rigour, Gould, nologies that were initially developed as part of NASA’s together with Elizabeth Vrba, introduced a vocabulary space research program were later exploited for new com- intended to undermine the primacy of adaptation for mercial uses. -
Evolution # 6 Tempoandmode
Bio 1B Lecture Outline (please print and bring along) Fall, 2008 B.D. Mishler, Dept. of Integrative Biology 2-6810, [email protected] Evolution lecture #6 -- Tempo and Mode in Macroevolution -- Nov. 14th, 2008 Reading: pp. 521-531 (ch. 25) 8th ed. pp. 480-488 (ch. 24) 7th ed. • Summary of topics • Define and contrast adaptation and exaptation • Give examples of how adaptive radiations lead to diversity within an evolutionary lineage • Give examples of how convergent evolution shows the action of selection on organisms that are not closely related but have a shared way of life • Contrast punctuated equilibria and gradualism • Describe the features of developmental changes that can lead to evolution ("evo-devo") • Define macroevolution • Adaptation Adaptation: Based on the observation that organism matches environment closely. Darwin & many Darwinians thought that all structures must be adaptive for something. But, this has come under severe challenge in recent years. Not all structures and functions are adaptive. Some matches between organism and environment are accidental, or the causality is reverse (i.e., the structure came first, function much later). • By definition, an adaptation in a formal sense requires fulfillment of four different tests: Engineering. Structure must indeed function in hypothesized sense. Heritability. Differences between organisms must be passed on to offspring. Natural Selection. Difference in fitness must occur because of differences in the hypothesized adaptation. Phylogeny. Hypothesized adaptive state must have evolved in the context of the hypothesized cause. Think in terms of problem (e.g., environmental change) and solution (adaptation). Requires correct phylogenetic polarity (i.e., correct sequence of events on a cladogram). -
Phd Projects at the Institute of Origins
PhD projects at the Institute of Origins. A list of possible PhD projects at the Institute of Origins appear in the following pages. If you have any questions regarding any projects please contact the individual supervisors. Also if you have other suggestions for a project please contact us as well. The chemical composition of star forming regions near and far .................................... 3 ! Modelling the solubilities of organic solids in hydrocarbon liquids: application to the geology and astrobiology of Titan. .................................................................................... 4! Modeling turbulent flows in solar quiescent prominences ...............................................5! The zoo of exo-planets..................................................................................................8! Understanding the formation of heavy negative ions at Titan and Enceladus................9! Mapping anthropogenic versus natural sources of atmospheric CO2 ............................11! Probing Large Scale Structure with High Energy Neutrinos.........................................13! Future Moon Missions and High Energy Neutrinos ......................................................15! Measuring Cosmic Particles and the Upper Atmosphere with LOFAR.........................17! Mimicking planetary environments for assessing the survivability of bacterial organisms within an artificial environmental chamber. A combined planetary atmosphere and microbiological study for exploring panspermia................................ -
Carl Sagan 1934–1996
Carl Sagan 1934–1996 A Biographical Memoir by David Morrison ©2014 National Academy of Sciences. Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. CARL SAGAN November 9, 1934–December 20, 1996 Awarded 1994 NAS Pubic Welfare Medal Carl Edward Sagan was a founder of the modern disci- plines of planetary science and exobiology (which studies the potential habitability of extraterrestrial environments for living things), and he was a brilliant educator who was able to inspire public interest in science. A visionary and a committed defender of rational scientific thinking, he transcended the usual categories of academia to become one of the world’s best-known scientists and a true celebrity. NASA Photo Courtesy of Sagan was propelled in his careers by a wealth of talent, By David Morrison a large share of good luck, and an intensely focused drive to succeed. His lifelong quests were to understand our plane- tary system, to search for life beyond Earth, and to communicate the thrill of scientific discovery to others. As an advisor to the National Aeronautics and Space Administration (NASA) and a member of the science teams for the Mariner, Viking, Voyager, and Galileo missions, he was a major player in the scientific exploration of the solar system. He was also a highly popular teacher, but his influence reached far beyond the classroom through his vivid popular writing and his mastery of the medium of television. The early years Born in 1934, Sagan grew up in a workingclass Jewish neighborhood of Brooklyn, New York, and attended public schools there and in Rahway, New Jersey. -
Exaptation, Grammaticalization, and Reanalysis
Heiko Narrog Tohoku University Exaptation, Grammaticalization, and Reanalysis Abstract The goal of this paper is to argue that exaptation, as introduced into the study of language change by Lass (1990, 1997), in specific functional domains, is a limited alternative to grammaticalization. Exaptation, similarly to grammaticalization, leads to the formation of grammatical elements. Like grammaticalization, exaptation is based on the mechanism of reanalysis. It decisively differs from grammaticalization, however, as it implies change in the opposite direction, namely from material absorbed in the lexicon back to grammatical material. Two sets of data are presented as evidence for the replicability of this process. One involves the occurrence of exaptation across languages in a specific semantic domain, namely, the evolution of morphological causatives out of lexical verb patterns. The other data pertain to recurrent processes of exaptation in one language, namely in Japanese, where exaptation figures in the development of various morphological categories. In all cases of exaptation, reanalysis is crucially involved. This serves to show that reanalysis may be more fundamental to grammatical change than both grammaticalization and exaptation. Furthermore, it allows for change both with the usual directionality of grammaticalization and against it. 1. Introduction Even detractors of grammaticalization theory do not seriously challenge the fact that in the majority of cases the morphosyntactic and semantic development of grammatical material follows the paths outlined in the standard literature on grammaticalization. The two following California Linguistic Notes Volume XXXII No. 1 Winter, 2007 2 issues, however, potentially pose a critical challenge to the validity of the theory. First, there is the question of the theoretical status of grammaticalization as a coherent and unique concept. -
Exaptation-A Missing Term in the Science of Form Author(S): Stephen Jay Gould and Elisabeth S
Paleontological Society Exaptation-A Missing Term in the Science of Form Author(s): Stephen Jay Gould and Elisabeth S. Vrba Reviewed work(s): Source: Paleobiology, Vol. 8, No. 1 (Winter, 1982), pp. 4-15 Published by: Paleontological Society Stable URL: http://www.jstor.org/stable/2400563 . Accessed: 27/08/2012 17:43 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Paleontological Society is collaborating with JSTOR to digitize, preserve and extend access to Paleobiology. http://www.jstor.org Paleobiology,8(1), 1982, pp. 4-15 Exaptation-a missing term in the science of form StephenJay Gould and Elisabeth S. Vrba* Abstract.-Adaptationhas been definedand recognizedby two differentcriteria: historical genesis (fea- turesbuilt by naturalselection for their present role) and currentutility (features now enhancingfitness no matterhow theyarose). Biologistshave oftenfailed to recognizethe potentialconfusion between these differentdefinitions because we have tendedto view naturalselection as so dominantamong evolutionary mechanismsthat historical process and currentproduct become one. Yet if manyfeatures of organisms are non-adapted,but available foruseful cooptation in descendants,then an importantconcept has no name in our lexicon (and unnamed ideas generallyremain unconsidered):features that now enhance fitnessbut were not built by naturalselection for their current role. -
Exaptation, Adaptation, and Evolutionary Psychology
Exaptation, Adaptation, and Evolutionary Psychology Armin Schulz Department of Philosophy, Logic, and Scientific Method London School of Economics and Political Science Houghton St London WC2A 2AE UK [email protected] (0044) 753-105-3158 Abstract One of the most well known methodological criticisms of evolutionary psychology is Gould’s claim that the program pays too much attention to adaptations, and not enough to exaptations. Almost as well known is the standard rebuttal of that criticism: namely, that the study of exaptations in fact depends on the study of adaptations. However, as I try to show in this paper, it is premature to think that this is where this debate ends. First, the notion of exaptation that is commonly used in this debate is different from the one that Gould and Vrba originally defined. Noting this is particularly important, since, second, the standard reply to Gould’s criticism only works if the criticism is framed in terms of the former notion of exaptation, and not the latter. However, third, this ultimately does not change the outcome of the debate much, as evolutionary psychologists can respond to the revamped criticism of their program by claiming that the original notion of exaptation is theoretically and empirically uninteresting. By discussing these issues further, I also seek to determine, more generally, which ways of approaching the adaptationism debate in evolutionary biology are useful, and which not. Exaptation, Adaptation, and Evolutionary Psychology Exaptation, Adaptation, and Evolutionary Psychology I. Introduction From a methodological point of view, one of the most well known accusations of evolutionary psychology – the research program emphasising the importance of appealing to evolutionary considerations in the study of the mind – is the claim that it is overly “adaptationist” (for versions of this accusation, see e.g. -
An Evolving Astrobiology Glossary
Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. An Evolving Astrobiology Glossary K. J. Meech1 and W. W. Dolci2 1Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 2NASA Astrobiology Institute, NASA Ames Research Center, MS 247-6, Moffett Field, CA 94035 Abstract. One of the resources that evolved from the Bioastronomy 2007 meeting was an online interdisciplinary glossary of terms that might not be uni- versally familiar to researchers in all sub-disciplines feeding into astrobiology. In order to facilitate comprehension of the presentations during the meeting, a database driven web tool for online glossary definitions was developed and participants were invited to contribute prior to the meeting. The glossary was downloaded and included in the conference registration materials for use at the meeting. The glossary web tool is has now been delivered to the NASA Astro- biology Institute so that it can continue to grow as an evolving resource for the astrobiology community. 1. Introduction Interdisciplinary research does not come about simply by facilitating occasions for scientists of various disciplines to come together at meetings, or work in close proximity. Interdisciplinarity is achieved when the total of the research expe- rience is greater than the sum of its parts, when new research insights evolve because of questions that are driven by new perspectives. Interdisciplinary re- search foci often attack broad, paradigm-changing questions that can only be answered with the combined approaches from a number of disciplines. -
Isoprene Rule Revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, Hormones and Life: Isoprene Rule Revisited
242 2 Journal of S G Hillier and R Lathe Isoprene rule revisited 242:2 R9–R22 Endocrinology REVIEW Terpenes, hormones and life: isoprene rule revisited Stephen G Hillier1 and Richard Lathe2 1Medical Research Council Centre for Reproductive Health, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh, UK 2Division of Infection and Pathway Medicine, University of Edinburgh Medical School, Edinburgh, UK Correspondence should be addressed to S G Hillier or R Lathe: [email protected] or [email protected] Abstract The year 2019 marks the 80th anniversary of the 1939 Nobel Prize in Chemistry awarded Key Words to Leopold Ruzicka (1887–1976) for work on higher terpene molecular structures, including f isoprene the first chemical synthesis of male sex hormones. Arguably his crowning achievement f terpene was the ‘biogenetic isoprene rule’, which helped to unravel the complexities of terpenoid f steroid biosynthesis. The rule declares terpenoids to be enzymatically cyclized products of f evolution substrate alkene chains containing a characteristic number of linear, head-to-tail f great oxidation event condensed, C5 isoprene units. The number of repeat isoprene units dictates the type of f Ruzicka terpene produced (i.e., 2, monoterpene; 3, sesquiterpene; 4, diterpene, etc.). In the case of triterpenes, six C5 isoprene units combine into C30 squalene, which is cyclized into one of the signature carbon skeletons from which myriad downstream triterpenoid structures are derived, including sterols and steroids. Ruzicka also had a keen interest in the origin of life, but the pivotal role of terpenoids has generally been overshadowed by nucleobases, amino acids, and sugars. -
The Depths of Virus Exaptation Eugene V
The depths of virus exaptation Eugene V. Koonin, Mart Krupovic To cite this version: Eugene V. Koonin, Mart Krupovic. The depths of virus exaptation. Current Opinion in Virology, Elsevier, 2018, Viral evolution, 31, pp.1-8. 10.1016/j.coviro.2018.07.011. pasteur-01977329 HAL Id: pasteur-01977329 https://hal-pasteur.archives-ouvertes.fr/pasteur-01977329 Submitted on 10 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 The depths of virus exaptation 2 1 2 3 Eugene V.Koonin and Mart Krupovic 4 1 National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 2 Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France 5 6 7 *For correspondence; e-mail: [email protected]; [email protected] 1 8 9 10 Abstract 11 12 Viruses are ubiquitous parasites of cellular life forms and the most abundant biological entities 13 on earth. The relationships between viruses and their hosts involve the continuous arms race but 14 are by no account limited to it.