Mapping Disciplinary Relationships in Astrobiology: 2001-2012

Total Page:16

File Type:pdf, Size:1020Kb

Mapping Disciplinary Relationships in Astrobiology: 2001-2012 Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship 2014 Mapping disciplinary relationships in Astrobiology: 2001-2012 Jason W. Cornell Western Washington University Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geography Commons Recommended Citation Cornell, Jason W., "Mapping disciplinary relationships in Astrobiology: 2001-2012" (2014). WWU Graduate School Collection. 387. https://cedar.wwu.edu/wwuet/387 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Mapping Disciplinary Relationships in Astrobiology: 2001 - 2012 By Jason W. Cornell Accepted in Partial Completion Of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Gigi Berardi Dr. Linda Billings Dr. David Rossiter ! ! MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. I represent and warrant this is my original work, and does not infringe or violate any rights of others. I warrant that I have obtained written permission from the owner of any third party copyrighted material included in these files. I acknowledge that I retain ownership rights to the copyright of this work, including but not limited to the right to use all or part of this work in future works, such as articles or books. Library users are granted permission for individual, research, and non- commercial reproduction of this work for educational purposes only. Any further digital posting of this document requires specific permission from the author. Any copying or publication of this thesis for commercial purposes, or for financial gain, is not allowed without my written permission. Jason W. Cornell November 2014 ! ! Mapping Disciplinary Relationships in Astrobiology: 2001 - 2012 A Thesis Presented to The Faculty of Western Washington University In Partial Fulfillment Of the Requirements for the Degree Master of Science By Jason W. Cornell November 2014 ! Abstract ! Astrobiology is an emerging field that addresses three fundamental questions: 1) How does “life,” defined as a “self-sustaining chemical system capable of Darwinian evolution,” (Mullen, 2013, p.1) in the Universe begin and evolve? 2) Does life exist elsewhere in the Universe? & 3) What is the future of life on Earth? With such intriguing questions, all rooted in human concerns, success in answering these questions depends upon the integration of diverse scientific disciplines, including the social sciences as well as the humanities. In this thesis, I state that integration can only happen through interdisciplinary knowledge production, defined as the process of answering a question, solving a problem, or addressing a subject involving several unrelated academic disciplines in a way that forces them to cross subject boundaries in order to create new knowledge and theory (Klein & Newell, 1998). Thus, this thesis addresses the following question – What are the barriers to the social sciences and humanities having a clear presence in Astrobiology research? And what are future prospects for acceptability and funding for interdisciplinary research in Astrobiology, especially from the National Aeronautics and Space Administration (NASA), which is the largest source of funding for Astrobiology (NRC, 2008)? In this thesis I review abstracts and categorize disciplinary identities iv ! of research articles published in Astrobiology, the oldest journal dedicated solely to Astrobiology, from 2001 to 2012. I then create annual spatial maps of Astrobiology research articles using bibliometrics, which are methods used to quantitatively analyze and create maps of academic literature origins. Specifically, I determine 1) the number of disciplines involved in specific Astrobiology articles, as well as 2) the extent to which a research article cites diverse disciplines. From this information, maps showing the predominance of disciplines as well as the distribution of citations, known as disciplinary diversity, are created. By looking at the organization of research, questions are raised about how disciplinary structures came about and what relationships exist among research disciplines. These questions are then analyzed through psychological and sociological ideas used to describe interdisciplinary research relationships. The results suggest that research shows little embeddedness (i.e. connection with) among multiple disciplines, likely due to entrenched disciplinary culture and privileging, in which researchers have a tendency to value and collaborate only with similar disciplines. This study concludes by offering a number of recommendations regarding promoting effective integration of the social science and humanities into Astrobiology. v ! ABSTRACT IV INTRODUCTION 1 ASTROBIOLOGY, INTERDISCIPLINARY RESEARCH, AND SOCIETY 1 KNOWLEDGE PRODUCTION AND INTERDISCIPLINARY RESEARCH 7 WHAT IS RESEARCH? 8 WHAT IS KNOWLEDGE PRODUCTION? 10 WHAT IS THE NATURE OF ACADEMIC JOURNALS? 15 WHAT ARE DISCIPLINES? 17 DISCIPLINARITY, MULTIDISCIPLINARITY, AND INTERDISCIPLINARITY 21 THEORETICAL FOUNDATIONS OF INTERDISCIPLINARY RESEARCH 26 THEORIES FROM PSYCHOLOGY 27 THEORIES FROM SOCIOLOGY 29 CONCLUSIONS 32 WHAT IS ASTROBIOLOGY 33 HISTORY AND THE CHANGING DEFINITION OF ASTROBIOLOGY 33 ASTROBIOLOGY IN PRACTICE: INVOLVEMENT IN NASA SPACE MISSIONS 38 NASA ASTROBIOLOGY INSTITUTE 41 ROADMAPS AND THE CHANGE IN ASTROBIOLOGY 43 SOCIAL SCIENCES AND HUMANITIES IN ASTROBIOLOGY 49 SPATIAL REPRESENTATION OF ASTROBIOLOGY KNOWLEDGE PRODUCTION 52 BACKGROUND AND PURPOSE 52 ASTROBIOLOGY JOURNALS 52 HOW TO MEASURE RESEARCHER INTERDISCIPLINARITY 57 CALCULATION MATRIX 60 METHODOLOGY AND RESULTS 66 STEP BY STEP PROCEDURES 68 ANALYSIS AND DISCUSSION OF RESULTS 92 PATTERNS AND RELATIONSHIPS OF DISCIPLINARY DISTRIBUTION 92 ANALYSIS OF SPATIAL PROJECTIONS BY YEAR 93 CONSISTENT PATTERNS ACROSS ALL MAPS 97 PSYCHOLOGICAL AND SOCIOLOGICAL THEORY RELATED TO IDR 99 METHODOLOGY LIMITATIONS 101 REVIEW OF FINDINGS AND SUGGESTIONS MOVING FORWARD 103 DISCIPLINARY CULTURE 103 PRIVILEGING 104 HOW TO OVERCOME THESE BARRIERS 105 NASA’S INVOLVEMENT OPPORTUNITY 106 LIMITATIONS OF THIS THESIS 112 vi ! FUTURE RESEARCH 112 EPILOGUE 114 BIBLIOGRAPHY 120 APPENDIX A - 2001 ASTROBIOLOGY ARTICLES 132 APPENDIX B - 2002 ASTROBIOLOGY ARTICLES 135 APPENDIX C - 2003 ASTROBIOLOGY ARTICLES 139 APPENDIX D - 2004 ASTROBIOLOGY ARTICLES 146 APPENDIX E - 2005 ASTROBIOLOGY ARTICLES 149 APPENDIX F - 2006 ASTROBIOLOGY ARTICLES 154 APPENDIX G - 2007 ASTROBIOLOGY ARTICLES 159 APPENDIX H - 2008 ASTROBIOLOGY ARTICLES 165 APPENDIX I - 2009 ASTROBIOLOGY ARTICLES 175 APPENDIX J - 2010 ASTROBIOLOGY ARTICLES 184 APPENDIX K - 2011 ASTROBIOLOGY ARTICLES 192 APPENDIX L - 2012 ASTROBIOLOGY ARTICLES 201 ! ! ! ! ! ! ! ! ! ! ! ! ! ! vii ! TABLES TABLE 1 – MODE 1 VS. MODE 2 KNOWLEDGE PRODUCTION ................................................... 13 TABLE 2 – NASA SPACE MISSIONS AND THEIR ASTROBIOLOGY COMPONENTS .......................... 40 TABLE 3 – SUMMARY OF NAI ROADMAPS ............................................................................. 45 TABLE 4 – ASTROBIOLOGY JOURNAL IMPACT FACTORS .......................................................... 55 TABLE 5 - SUBJECT CATEGORY CALCULATIONS ..................................................................... 62 TABLE 6 – INTEGRATION MATRIX .......................................................................................... 63 TABLE 7 – ASTROBIOLOGY ARTICLES AND SUBJECT CATEGORIES ............................................. 71 TABLE 8 – MACRO-DISCIPLINES AND SUB-DISCIPLINES IN ASTROBIOLOGY ................................. 75 FIGURES FIGURE 1 - FLOWCHART OF KNOWLEDGE PRODUCTION .......................................................... 12 FIGURE 2 – DISCIPLINARITY, MULTIDISCIPLINARITY & INTERDISCIPLINARITY ................................. 26 FIGURE 3 – THEORIES COMMONLY USED TO DESCRIBE INTERDISCIPLINARY RESEARCH .................. 27 FIGURE 4 – INTEGRATION VS. SPECIALIZATION CORRELATION .................................................. 65 FIGURE 5 – DISCIPLINARY RELATIONSHIPS ............................................................................. 67 FIGURE 6 – ORIGINAL OUTPUT FOR 2001 ASTROBIOLOGY ARTICLES ......................................... 73 FIGURE 7 – THE MAP OF SCIENCE 2007 ............................................................................... 78 FIGURE 8 – 2001 ASTROBIOLOGY SUBJECT CATEGORIES ON WEB OF SCIENCE ......................... 81 FIGURE 9 – CORE STRUCTURE OF ASTROBIOLOGY 2001 .......................................................... 81 FIGURE 10 – 2002 ASTROBIOLOGY SUBJECT CATEGORIES ON WEB OF SCIENCE ....................... 82 FIGURE 11 – CORE STRUCTURE OF ASTROBIOLOGY 2002 ........................................................ 82 FIGURE 12 – 2003 ASTROBIOLOGY SUBJECT CATEGORIES ON WEB OF SCIENCE ....................... 83 FIGURE 13 - CORE STRUCTURE OF ASTROBIOLOGY 2003 .......................................................
Recommended publications
  • Modelling Panspermia in the TRAPPIST-1 System
    October 13, 2017 Modelling panspermia in the TRAPPIST-1 system James A. Blake1,2*, David J. Armstrong1,2, Dimitri Veras1,2 Abstract The recent ground-breaking discovery of seven temperate planets within the TRAPPIST-1 system has been hailed as a milestone in the development of exoplanetary science. Centred on an ultra-cool dwarf star, the planets all orbit within a sixth of the distance from Mercury to the Sun. This remarkably compact nature makes the system an ideal testbed for the modelling of rapid lithopanspermia, the idea that micro-organisms can be distributed throughout the Universe via fragments of rock ejected during a meteoric impact event. We perform N-body simulations to investigate the timescale and success-rate of lithopanspermia within TRAPPIST-1. In each simulation, test particles are ejected from one of the three planets thought to lie within the so-called ‘habitable zone’ of the star into a range of allowed orbits, constrained by the ejection velocity and coplanarity of the case in question. The irradiance received by the test particles is tracked throughout the simulation, allowing the overall radiant exposure to be calculated for each one at the close of its journey. A simultaneous in-depth review of space microbiological literature has enabled inferences to be made regarding the potential survivability of lithopanspermia in compact exoplanetary systems. 1Department of Physics, University of Warwick, Coventry, CV4 7AL 2Centre for Exoplanets and Habitability, University of Warwick, Coventry, CV4 7AL *Corresponding author: [email protected] Contents Universe, and can propagate from one location to another. This interpretation owes itself predominantly to the works of William 1 Introduction1 Thompson (Lord Kelvin) and Hermann von Helmholtz in the 1.1 Mechanisms for panspermia...............2 latter half of the 19th Century.
    [Show full text]
  • A Teacher's Guide
    A Teacher’s Guide for LIFE on Earth – and Beyond: An Astrobiologist’s Quest About the Book: Astrobiologists have searched Earth’s most extreme environments in their quest to understand what factors are necessary to sustain life. Dr. Chris McKay’s scientific journey has taken him from the freezing cold of Antarctica’s Dry Valleys to the rocky wasteland of the Atacama Desert in Chile to the permafrost-covered tundra of Siberia. By studying environments on Earth that resemble those on Mars and elsewhere in the solar system, Dr. McKay hopes that his experiments will help answer the ultimate question: is there life beyond Earth? About the Author: Pamela Turner has written for kids and young adults, mostly about science and nature. She also has a strong interest in multicultural literature because she’s lived in and worked in Kenya, South Africa, Japan, the Philippines, and the Marshall Islands. Hardback ISBN 978-1580891332 Honors and Awards: School Library Journal starred review, Booklist starred review, Bank Street College of Education Best Books List, AAAS/Subaru Science Writing Prize Prize finalist, Booklist Top Ten Sci-Tech Books for Youth, NSTA Outstanding Science Trade Book, Booklist Editors’ Choice, CCBC Choice. Booklist Starred Review: "Astrobiologists look outward from the Earth seeking evidence of life elsewhere in the Universe. But, as this fascinating book shows, they also travel to places on Earth where extreme conditions may be similar to those on distant worlds... Turner's absorbing account gives enough detail to create vivid impressions of McKay's explorations and enough background information to show what his amazing findings imply.
    [Show full text]
  • Bibliography
    Bibliography Books and reports Blandford, R.D. (Chair) New Worlds, New Horizons in Astronomy and Astrophysics Committee for a Decadal Survey of Astronomy and Astrophysics, National Research Council, 2010 Bondi, Hermann. et al Pioneering in Outer Space Heinemann Educational Books, 1971 Clarke, Arthur C. The Exploration of Space Temple Press, London, 1951 Department of Energy/NASA Satellite Power Systems Concept Development and Evaluation Program. DoE/NASA, October 1978 http://www.nss.org/settlement/ssp/library/1978DOESPS-ReferenceSystemReport.pdf Satellite Power Systems (SPS) Space Transportation Cost Analysis and Evaluation. DoE/NASA, November 1980 http://www.nss.org/settlement/ssp/library/1980DOESPS- SpaceTransportationCostAnalysis.pdf Dick, Steven J. (editor) Remembering the Space Age: Proceedings of the 50th Anniversary Conference. NASA SP-2008-4703, 2008 http://history.nasa.gov/Remembering_Space_Age_A.pdf © Springer International Publishing AG 2017 235 M. van Pelt, Dream Missions, Springer Praxis Books, DOI 10.1007/978-3-319-53941-6 236 Bibliography Dyson, George Project Orion: The True Story of the Atomic Spaceship Henry Holt & Company, Inc., USA, 2002 Ehricke, Krafft A. Solar Transportation In Space Age in Fiscal Year 2001, Proceedings of the Fourth AAS Goddard Memorial Symposium American Astronautical Society, 1966 Friedman, Louis. Human Spaceflight, from Mars to the Stars The University of Arizona Press, 2015 Gatland, Kenneth W. & Bono, Philip Frontiers of Space Blandford Press, UK, 1969 Hansen, James R. Chapter 9, Skipping “The Next Logical Step” in Spaceflight Revolution; NASA Langley Research Center from Sputnik to Apollo NASA History Series SP-4308, USA, 1994 http://history.nasa.gov/SP-4308/ch9.htm Koelle, Heinz-Hermann. Nova and Beyond, a Review of Heavy Lift Launch Vehicle Concepts in the Post-Saturn Class Technical University Berlin, Germany, 2001 Konecci, Eugene B.
    [Show full text]
  • Bayesian Analysis of the Astrobiological Implications of Life's
    Bayesian analysis of the astrobiological implications of life's early emergence on Earth David S. Spiegel ∗ y, Edwin L. Turner y z ∗Institute for Advanced Study, Princeton, NJ 08540,yDept. of Astrophysical Sciences, Princeton Univ., Princeton, NJ 08544, USA, and zInstitute for the Physics and Mathematics of the Universe, The Univ. of Tokyo, Kashiwa 227-8568, Japan Submitted to Proceedings of the National Academy of Sciences of the United States of America Life arose on Earth sometime in the first few hundred million years Any inferences about the probability of life arising (given after the young planet had cooled to the point that it could support the conditions present on the early Earth) must be informed water-based organisms on its surface. The early emergence of life by how long it took for the first living creatures to evolve. By on Earth has been taken as evidence that the probability of abiogen- definition, improbable events generally happen infrequently. esis is high, if starting from young-Earth-like conditions. We revisit It follows that the duration between events provides a metric this argument quantitatively in a Bayesian statistical framework. By (however imperfect) of the probability or rate of the events. constructing a simple model of the probability of abiogenesis, we calculate a Bayesian estimate of its posterior probability, given the The time-span between when Earth achieved pre-biotic condi- data that life emerged fairly early in Earth's history and that, billions tions suitable for abiogenesis plus generally habitable climatic of years later, curious creatures noted this fact and considered its conditions [5, 6, 7] and when life first arose, therefore, seems implications.
    [Show full text]
  • Cometary Panspermia a Radical Theory of Life’S Cosmic Origin and Evolution …And Over 450 Articles, ~ 60 in Nature
    35 books: Cosmic origins of life 1976-2020 Physical Sciences︱ Chandra Wickramasinghe Cometary panspermia A radical theory of life’s cosmic origin and evolution …And over 450 articles, ~ 60 in Nature he combined efforts of generations supporting panspermia continues to Prof Wickramasinghe argues that the seeds of all life (bacteria and viruses) Panspermia has been around may have arrived on Earth from space, and may indeed still be raining down some 100 years since the term of experts in multiple fields, accumulate (Wickramasinghe et al., 2018, to affect life on Earth today, a concept known as cometary panspermia. ‘primordial soup’, referring to Tincluding evolutionary biology, 2019; Steele et al., 2018). the primitive ocean of organic paleontology and geology, have painted material not-yet-assembled a fairly good, if far-from-complete, picture COMETARY PANSPERMIA – cultural conceptions of life dating back galactic wanderers are normal features have argued that these could not into living organisms, was first of how the first life on Earth progressed A SOLUTION? to the ideas of Aristotle, and that this of the cosmos. Comets are known to have been lofted from the Earth to a coined. The question of how from simple organisms to what we can The word ‘panspermia’ comes from the may be the source of some of the have significant water content as well height of 400km by any known process. life’s molecular building blocks see today. However, there is a crucial ancient Greek roots ‘sperma’ meaning more hostile resistance the idea of as organics, and their cores, kept warm Bacteria have also been found high in spontaneously assembled gap in mainstream understanding - seed, and ‘pan’, meaning all.
    [Show full text]
  • The 29Th Annual Meeting the 29Th Annual Meeting of the Society Took Place on April 17Th, 2016 Program and Abstracts Program
    The 29th annual meeting The 29th annual meeting of the society took place on April 17th, 2016 Program and Abstracts Program: Program of the 29th annual meeting Time Lecturer Lecture Title 8:45- Refreshments & Gathering 9:05 Session 1 -Astrobiology (Doron Lancet, Chair; Amri Wandel, Organizer) 9:05- Gonen Ashkenasy Opening Remarks 9:15 (BGU) 9:15- Ravit Helled Methane-Rich Planets and the Characterization of Exoplanets 9:45 (TAU) 9:45- Sohan Jheeta (NoR Formation of Glycolaldehyde (HOCH2CHO) from Pure 10:10 HGT, LUCA) Methanol in Astrophysical Ice Analogues 10:10- Joseph Is Liquid Water Essential for Life? A Reassessment 10:35 Gale (HUJI) 10:35- Coffee break 11:00 Session 2 - Evolution (Addy Pross, Chair) 11:00- Robert Pascal Identifying the Kinetic, Thermodynamic and Chemical 11:40 (CNRS Conditions for Stability and Complexity in Living Systems Montpellier) 11:40- Omer Markovitch Predicting Proto-Species Emergence in Complex Networks 12:05 (Newcastle) 12:05- Amir Aharoni Engineering a Species Barrier in Yeast 12:30 (BGU) 12:30- Jayanta Nanda Spontaneous Evolution of β-Sheet Forming Self Replicating 12:55 (BGU) Peptides 12:55- Lunch 14:05 Session 3 - Origins of Order and Complexity (Gonen Ashkenasy, Chair; Tal Mor, Organizer) 14:05- Prof. Zvi HaCohen, Greetings 14:15 Rector (BGU) 14:15- Doron Composomics: a Common Biotic Thread 14:45 Lancet (WIS) 14:45- Avshalom Elitzur Living State Physics: Does Life's Uniqueness Elude Scientific 15:10 (IYAR) Definition? 15:10- Tal Mor Origins of Translation: Speculations about the First and the 15:35
    [Show full text]
  • 2017 Journal Impact Factor (JCR)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/317604703 2017 Journal Impact Factor (JCR) Technical Report · June 2017 CITATIONS READS 0 12,350 1 author: Pawel Domagala Pomeranian Medical University in Szczecin 34 PUBLICATIONS 326 CITATIONS SEE PROFILE All content following this page was uploaded by Pawel Domagala on 20 June 2017. The user has requested enhancement of the downloaded file. 1 , I , , 1 1 • • I , I • I : 1 t ( } THOMSON REUTERS - Journal Data Filtered By: Selected JCR Year: 2016 Selected Editions: SCIE,SSCI Selected Category Scheme: WoS Rank Full Journal Title Journal Impact Factor 1 CA-A CANCER JOURNAL FOR CLINICIANS 187.040 2 NEW ENGLAND JOURNAL OF MEDICINE 72.406 3 NATURE REVIEWS DRUG DISCOVERY 57.000 4 CHEMICAL REVIEWS 47.928 5 LANCET 47.831 6 NATURE REVIEWS MOLECULAR CELL BIOLOGY 46.602 7 JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION 44.405 8 NATURE BIOTECHNOLOGY 41.667 9 NATURE REVIEWS GENETICS 40.282 10 NATURE 40.137 11 NATURE REVIEWS IMMUNOLOGY 39.932 12 NATURE MATERIALS 39.737 13 Nature Nanotechnology 38.986 14 CHEMICAL SOCIETY REVIEWS 38.618 15 Nature Photonics 37.852 16 SCIENCE 37.205 17 NATURE REVIEWS CANCER 37.147 18 REVIEWS OF MODERN PHYSICS 36.917 19 LANCET ONCOLOGY 33.900 20 PROGRESS IN MATERIALS SCIENCE 31.140 21 Annual Review of Astronomy and Astrophysics 30.733 22 CELL 30.410 23 NATURE MEDICINE 29.886 24 Energy & Environmental Science 29.518 25 Living Reviews in Relativity 29.300 26 MATERIALS SCIENCE & ENGINEERING R-REPORTS 29.280 27 NATURE
    [Show full text]
  • Biologically Enhanced Energy and Carbon Cycling on Titan?
    1 Biologically Enhanced Energy and Carbon Cycling on Titan? Dirk Schulze-Makuch1 and David H. Grinspoon2 1 Dept. of Geological Sciences, Washington State Universty, Pullman, WA 99164, 2Dept. of Space Studies, Southwest Research Institute, Boulder, Colorado With the Cassini-Huygens Mission in orbit around Saturn, the large moon Titan, with its reducing atmosphere, rich organic chemistry, and heterogeneous surface, moves into the astrobiological spotlight. Environmental conditions on Titan and Earth were similar in many respects 4 billion years ago, the approximate time when life originated on Earth. Life may have originated on Titan during its warmer early history and then developed adaptation strategies to cope with the increasingly cold conditions. If organisms originated and persisted, metabolic strategies could exist that would provide sufficient energy for life to persist, even today. Metabolic reactions might include the catalytic hydrogenation of photochemically produced acetylene, or involve the recombination of radicals created in the atmosphere by UV radiation. Metabolic activity may even contribute to the apparent youth, smoothness, and high activity of Titan’s surface via biothermal energy. Environmental conditions are generally thought to be conducive for life if it can be shown that (a) polymeric chemistry, (b) an energy source, and (c) a liquid solvent are present in appreciable quantities (1). Polymeric chemistry has not been confirmed yet for Titan but is most likely present given the complex carbon chemistry in Titan’s atmosphere and on its surface. Abundant energy sources are present at least in the form of UV radiation and photochemistry, and probably endogenic geological activity. Water as a liquid solvent may be limited, but liquid mixtures of water and ammonia are likely(2), and the recent Cassini radar images suggesting the presence of a young surface and ongoing cryovolcanism (3, 4) point towards near-surface liquid reservoirs.
    [Show full text]
  • A Comparative Analysis of the Cobb-Douglas Habitability Score (CDHS) with the Earth Similarity Index (ESI)
    A Comparative Analysis of the Cobb-Douglas Habitability Score (CDHS) with the Earth Similarity Index (ESI) Surbhi Agrawal1, Suryoday Basak1, Snehanshu Saha1, Kakoli Bora2 and Jayant Murthy3 I. Introduction and Methods is 1.27 EU, the radius is R = M 0.5 ≡ 1.12 EU1. Accordingly, the escape velocity was calculated by V = p2GM/R ≡ 1.065 (EU), and the density by A sequence of recent explorations by Saha et al. [4] e the usual D = 3M/4πR3 ≡ 0.904 (EU) formula. expanding previous work by Bora et al. [1] on using The manuscript, [4] consists of three related Machine Learning algorithm to construct and test analyses: (i) computation and comparison of ESI planetary habitability functions with exoplanet data and CDHS habitability scores for Proxima-b and raises important questions. The 2018 paper analyzed the Trappist-1 system, (ii) some considerations the elasticity of their Cobb-Douglas Habitability on the computational methods for computing the Score (CDHS) and compared its performance with CDHS score, and (iii) a machine learning exercise other machine learning algorithms. They demon- to estimate temperature-based habitability classes. strated the robustness of their methods to identify The analysis is carefully conducted in each case, potentially habitable planets from exoplanet dataset. and the depth of the contribution to the literature Given our little knowledge on exoplanets and habit- helped unfold the differences and approaches to ability, these results and methods provide one impor- CDHS and ESI. tant step toward automatically identifying objects of interest from large datasets by future ground and Several important characteristics were introduced space observatories.
    [Show full text]
  • First Life in Primordial-Planet Oceans: the Biological Big Bang Gibson/Wickramasinghe/Schild First Life in Primordial-Planet Oceans: the Biological Big Bang
    Journal of Cosmology First life in primordial-planet oceans: the biological big bang Gibson/Wickramasinghe/Schild First life in primordial-planet oceans: the biological big bang Carl H. Gibson 1,2 1 University of California San Diego, La Jolla, CA 92093-0411, USA [email protected], http://sdcc3.ucsd.edu/~ir118 N. Chandra Wickramasinghe3,4 3Cardiff Centre for Astrobiology, 24 Llwynypia Road, Lisvane, Cardiff CF14 0SY [email protected] Rudolph E. Schild5,6 5 Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6 [email protected] Abstract: A scenario is presented for the formation of first life in the universe based on hydro- gravitational-dynamics (HGD) cosmology. From HGD, the dark matter of galaxies is H-He gas dominated planets (primordial-fog-particle PFPs) in million solar mass clumps (protoglobularstar- cluster PGCs), which formed at the plasma to gas transition temperature 3000 K. Stars result from mergers of these hot-gas-planets. Over-accretion causes stars to explode as supernovae that scatter life-chemicals (C, N, O, P, S, Ca, Fe etc.) to other planets in PGC clumps and beyond. These chemicals were first collected gravitationally by merging PFPs to form H-saturated, high-pressure, dense oceans of critical-temperature 647 K water over iron-nickel cores at ~ 2 Myr. Stardust fertil- izes the formation of first life in a cosmic hot-ocean soup kitchen comprised of all planets and their moons in meteoric communication, > 10100 kg in total. Ocean freezing at 273 K slows this biologi- cal big bang at ~ 8 Myr. HGD cosmology confirms that the evolving seeds of life are scattered on intergalactic scales by Hoyle-Wickramasinghe cometary panspermia.
    [Show full text]
  • From the Moon to the Moons: Encedalus, Ganymede and Europa
    Journal of Cosmology, 2010, Vol 5, pages xxx In PRESS Cosmology, January 13, 2010 From the Moon to the Moons: Encedalus, Ganymede and Europa. The Search for Life and Reliable Biomarkers J. Chela-Flores, Ph.D., The Abdus Salam ICTP, Strada Costiera 11, 34014 Trieste, Italia, and Instituto de Estudios Avanzados, IDEA, Caracas 1015A, República Bolivariana de Venezuela Abstract The recent renewal of interest in exploring the Moon has led to further novel possibilities for the exploration of the Solar System. It is in the outer Solar System where the biggest challenges await our efforts, both in the development of instrumentation and in the clarification of the biosignatures that should be clear indications of life, as opposed to non-life signals. We argue that in the present-day larger scope of cosmology we can undertake one of the most important missions of the space sciences within our own solar system, namely the search for and discovery of a second genesis. This may be accomplished by landing on Europa's surface. We conclude that the implementation of penetrators in future exploration of the outer solar system is worthy of all the financial and technical support that will be needed, both at the national, as well as at the international level. Keywords: Astrobiology, instrumentation, exploration of the solar system, Europa, Enceladus, Biosignatures 1. Introduction It seems appropriate for a journal devoted to cosmology to encompass the field of astrobiology and to move beyond the "anthropic principle" of quantum physics, the standard astroparticle physics and astrophysics that dominate the field of classical cosmology.
    [Show full text]
  • Does the Rapid Appearance of Life on Earth Suggest That Life Is Common in the Universe?
    ASTROBIOLOGY Volume 2, Number 3, 2002 © Mary Ann Liebert, Inc. Does the Rapid Appearance of Life on Earth Suggest that Life Is Common in the Universe? CHARLES H. LINEWEAVER 1,2 and TAMARA M. DAVIS 1 ABSTRACT It is sometimes assumed that the rapidity of biogenesis on Earth suggests that life is common in the Universe. Here we critically examine the assumptions inherent in this if-life-evolved- rapidly-life-must-be-common argument. We use the observational constraints on the rapid- ity of biogenesis on Earth to infer the probability of biogenesis on terrestrial planets with the same unknown probability of biogenesis as the Earth. We find that on such planets, older than ,1 Gyr, the probability of biogenesis is .13% at the 95% confidence level. This quan- tifies an important term in the Drake Equation but does not necessarily mean that life is com- mon in the Universe. Key Words: Biogenesis—Drake Equation. Astrobiology 2, 293–304. THE BIOGENESIS LOTTERY duction–oxidation pairs are common (Nealson and Conrad, 1999). UCHOFCURRENTASTROBIOLOGICALRESEARCH Mis focused on learning more about the early It is difficult to translate this circumstantial ev- evolution of the Earth and about the origin of life. idence into an estimate of how common life is in We may be able to extrapolate and generalize our the Universe. Without definitive detections of ex- knowledge of how life formed here to how it traterrestrial life we can say very little about how might have formed elsewhere. Indirect evidence common it is or even whether it exists. Our exis- suggesting that life may be common in the Uni- tence on Earth can tell us little about how com- verse includes: mon life is in the Universe or about the proba- bility of biogenesis on a terrestrial planet because, Sun-like stars are common.
    [Show full text]