Topics in the Foundations of General Relativity and Newtonian Gravitation Theory

Total Page:16

File Type:pdf, Size:1020Kb

Topics in the Foundations of General Relativity and Newtonian Gravitation Theory Topics in the Foundations of General Relativity and Newtonian Gravitation Theory −1 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page i chicago lectures in physics Robert M. Wald, series editor Henry J. Frisch, Gene R. Mazenko, and Sidney R. Nagel Other Chicago Lectures in Physics titles available from the University of Chicago Press Currents and Mesons, by J. J. Sakurai (1969) Mathematical Physics, by Robert Geroch (1984) Useful Optics, by Walter T. Welford (1991) Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics,by Robert M. Wald (1994) Geometrical Vectors, by Gabriel Weinreich (1998) Electrodynamics, by Fulvio Melia (2001) Perspectives in Computation, by Robert Geroch (2009) −1 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page ii Topics in the Foundations of General Relativity and Newtonian Gravitation Theory David B. Malament the university of chicago press • chicago and london −1 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page iii David B. Malament is professor in the Department of Logic and Philosophy of Science at the University of California, Irvine. He is the editor of Reading Natural Philosophy: Essays in the History and Philosophy of Science and Mathematics. The University of Chicago Press, Chicago 60637 The University of Chicago Press, Ltd., London © 2012 by The University of Chicago All rights reserved. Published 2012. Printed in the United States of America 21201918171615141312 12345 ISBN-13: 978-0-226-50245-8 (cloth) ISBN-10: 0-226-50245-7 (cloth) Library of Congress Cataloging-in-Publication Data Malament, David B. Topics in the foundations of general relativity and Newtonian gravitation theory / David Malament. p. cm. Includes bibliographical references and index. ISBN-13: 978-0-226-50245-8 (hardcover : alkaline paper) ISBN-10: 0-226-50245-7 (hardcover : alkaline paper) 1. Relativity (Physics) 2. Gravitation. I. Title. QC173.55.M353 2012 531'.14–dc23 2011035412 ∞ This paper meets the requirements of ANSI/NISO Z39.48-1992 (Permanence of Paper). −1 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page iv To Pen −1 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page v −1 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page vi Contents Preface ix 1. Differential Geometry 1 1.1 Manifolds 1 1.2 Tangent Vectors 7 1.3 Vector Fields, Integral Curves, and Flows 17 1.4 Tensors and Tensor Fields on Manifolds 24 1.5 The Action of Smooth Maps on Tensor Fields 35 1.6 Lie Derivatives 42 1.7 Derivative Operators and Geodesics 49 1.8 Curvature 68 1.9 Metrics 74 1.10 Hypersurfaces 94 1.11 Volume Elements 112 2. Classical Relativity Theory 119 2.1 Relativistic Spacetimes 119 2.2 Temporal Orientation and “Causal Connectibility” 128 2.3 Proper Time 136 2.4 Space/Time Decomposition at a Point and Particle Dynamics 140 2.5 The Energy-Momentum Field Tab 143 2.6 Electromagnetic Fields 152 2.7 Einstein’s Equation 159 2.8 Fluid Flow 167 2.9 Killing Fields and Conserved Quantities 175 2.10 The Initial Value Formulation 181 2.11 Friedmann Spacetimes 183 −1 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page vii viii / contents 3. Special Topics 195 3.1 Gödel Spacetime 195 3.2 Two Criteria of Orbital (Non-)Rotation 219 3.3 A No-Go Theorem about Orbital (Non-)Rotation 237 4. Newtonian Gravitation Theory 248 4.1 Classical Spacetimes 249 4.2 Geometrized Newtonian Theory—First Version 266 4.3 Interpreting the Curvature Conditions 279 4.4 A Solution to an Old Problem about Newtonian Cosmology 288 4.5 Geometrized Newtonian Theory—Second Version 296 Solutions to Problems 309 Bibliography 343 Index 347 −1 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page viii Preface This manuscript began life as a set of lecture notes for a two-quarter (twenty- week) course on the foundations of general relativity that I taught at the Uni- versity of Chicago many years ago. I have repeated the course quite a few times since then, both there and at the University of California, Irvine, and have over the years steadily revised the notes and added new material. Maybe now the notes can stand on their own. The course was never intended to be a systematic survey of general relativity. There are many standard topics that I do not discuss—e.g., the Schwarzschild solution and the “classic tests” of general relativity. (And I have always recom- mended that students who have not already taken a more standard course in the subject do some additional reading on their own.) My goals instead have been to (i) present the basic logical-mathematical structure of the theory with some care, and (ii) consider additional special topics that seem to me, at least, of particular interest. The topics have varied from year to year, and not all have found their way into these notes. I will mention in advance three that did. The first is “geometrized Newtonian gravitation theory,” also known as “Newton-Cartan theory.” It is now well known that one can, after the fact, reformulate Newtonian gravitation theory so that it exhibits many of the qualitative features that were once thought to be uniquely characteristic of gen- eral relativity. On reformulation, Newtonian theory too provides an account of four-dimensional spacetime structure in which (i) gravity emerges as a manifestation of spacetime curvature, and (ii) spacetime structure itself is “dynamical” in the sense that it participates in the unfolding of physics rather than being a fixed backdrop against which it unfolds. It has always seemed to me helpful to consider general relativity and this geometrized reformula- tion of Newtonian theory side by side. For one thing, one derives a sense of where Einstein’s equation “comes from.” When one reformulates the empty- −1 space field equation of Newtonian gravitation theory (i.e., Laplace’s equation 0 +1 ix “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page ix x / preface ∇2φ = 0, where φ is the gravitational potential), one arrives at a constraint on = the curvature of spacetime, namely Rab 0. The latter is, of course, just what we otherwise know as (the empty-space version of ) Einstein’s equation. And, reciprocally, this comparison of the two theories side by side provides a certain insight into Newtonian physics. For example, it yields a satisfying solution (or dissolution) to an old problem about Newtonian cosmology. Newtonian theory in a standard textbook formulation seems to provide no sensible prescription for what the gravitational field should be like in the presence of a uniform mass-distribution filling all of space. (See section 4.4.) But the problem is really just an artifact of the formulation, and it disappears when one passes to the geometrized version of the theory. The basic idea of geometrized Newtonian gravitation theory is simple enough. But there are complications, and I deal with some of them in the present expanded form of the lecture notes. In particular, I present two dif- ferent versions of the theory—what I call the “Trautman version” and the “Künzle-Ehlers version”—and consider their relation to one another. I also discuss in some detail the geometric significance of various conditions on a the Riemann curvature field R bcd that enter into the formulation of these versions. A second special topic that I consider is the concept of “rotation.” It turns out to be a rather delicate and interesting question, at least in some cases, just what it means to say that a body is or is not rotating within the framework of general relativity. Moreover, the reasons for this—at least the ones I have in mind—do not have much to do with traditional controversy over “absolute vs. relative (or Machian)” conceptions of motion. Rather, they concern particular geometric complexities that arise when one allows for the possibility of space- time curvature. The relevant distinction for my purposes is not that between attributions of “relative” and “absolute” rotation, but rather that between attri- butions of rotation that can and cannot be analyzed in terms of motion (in the limit) at a point. It is the latter—ones that make essential reference to extended regions of spacetime—that can be problematic. The problem has two parts. First, one can easily think of different criteria for when an extended body is rotating. (I discuss two examples in section 3.2.) These criteria agree if the background spacetime structure is sufficiently simple—e.g., if one is working in Minkowski spacetime. But they do not agree in general. So, at the very least, attributions of rotation in general relativity can be ambiguous. A body can be rotating in one perfectly natural sense but not rotating in another, equally natural, sense. Second, circumstances can −1 arise in which the different criteria—all of them—lead to determinations of 0 +1 “530-47773_Ch00_2P.tex” — 1/23/2012 — 17:18 — page x preface / xi rotation and non-rotation that seem wildly counterintuitive. (See section 3.3.) The upshot of this discussion is not that we cannot continue to talk about rotation in the context of general relativity. Not at all. Rather, we simply have to appreciate that it is a subtle and ambiguous notion that does not, in all cases, fully answer to our classical intuitions. A third special topic that I consider is Gödel spacetime. It is not a live can- didate for describing our universe, but it is of interest because of what it tells us about the possibilities allowed by general relativity. It represents a possi- ble universe with remarkable properties.
Recommended publications
  • Simultaneity As an Invariant Equivalence Relation
    Simultaneity as an Invariant Equivalence Relation Marco Mamone-Capria Dipartimento di Matematica – via Vanvitelli, 1 – 06123 Perugia - Italy E-mail: [email protected] June 27, 2018 Abstract This paper deals with the concept of simultaneity in classical and relativistic physics as construed in terms of group-invariant equivalence relations. A full examination of Newton, Galilei and Poincar´einvariant equivalence relations in R4 is presented, which provides alternative proofs, additions and occasionally corrections of results in the literature, including Malament’s theorem and some of its variants. It is argued that the interpretation of simultaneity as an invariant equivalence relation, although interesting for its own sake, does not cut in the debate concerning the conventionality of simultaneity in special relativity. Keywords: special relativity, simultaneity, invariant equivalence relations, Malament’s theorem. Contents 1 Introduction 2 2 Invariant equivalence relations 2 2.1 Basicdefinitionsandnotation . .. .. 3 2.2 Lattices of equivalence relations on a set . 3 2.3 Transitive and nontransitive actions . 5 2.4 Semi-directproducts ............................. 5 arXiv:1202.6578v3 [math-ph] 26 Jul 2012 3 Simultaneity and invariant equivalent relations 6 3.1 Newton-invariant simultaneity . 7 3.2 Galilei-invariant simultaneity . 9 3.3 Poincar´e-invariant simultaneity . 10 3.4 Causality and simultaneity . 12 3.5 Theisotropysubgroupofanotionofrest . 14 3.6 The isotropy subgroup of a timelike straightline . 15 4 Discussion 17 1 5 Appendix 19 1 Introduction In his electrodynamical paper of 1905 Einstein stated that “all our statements in which time plays a role are always statements about simultaneous events” ([2], p. 893), which implies that the time ordering of events presupposes the existence of a simultaneity relation between events.
    [Show full text]
  • The Rebirth of Cosmology: from the Static to the Expanding Universe
    Physics Before and After Einstein 129 M. Mamone Capria (Ed.) IOS Press, 2005 © 2005 The authors Chapter 6 The Rebirth of Cosmology: From the Static to the Expanding Universe Marco Mamone Capria Among the reasons for the entrance of Einstein’s relativity into the scientific folklore of his and our age one of the most important has been his fresh and bold approach to the cosmological problem, and the mysterious, if not paradoxical concept of the universe as a three-dimensional sphere. Einstein is often credited with having led cosmology from philosophy to science: according to this view, he made it possible to discuss in the pro- gressive way typical of science what had been up to his time not less “a field of endless struggles” than metaphysics in Kant’s phrase. It is interesting to remember in this connection that the German philosopher, in his Critique of Pure Reason, had famously argued that cosmology was beyond the scope of science (in the widest sense), being fraught with unsolvable contradictions, inherent in the very way our reason functions. Of course not everybody had been impressed by this argument, and several nineteenth-century scientists had tried to work out a viable image of the universe and its ultimate destiny, using Newtonian mechanics and the principles of thermodynamics. However, this approach did not give unambiguous answers either; for instance, the first principle of thermodynamics was invoked to deny that the universe could have been born at a certain moment in the past, and the second principle to deny that its past could be infinite.
    [Show full text]
  • The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science.
    [Show full text]
  • 1 Clifford Algebraic Computational Fluid Dynamics
    Clifford Algebraic Computational Fluid Dynamics: A New Class of Experiments. Dr. William Michael Kallfelz 1 Lecturer, Department of Philosophy & Religion, Mississippi State University The Philosophy of Scientific Experimentation: A Challenge to Philosophy of Science-Center for Philosophy of Science, University of Pittsburgh October 15-16, 2010. October 24, 2010 Abstract Though some influentially critical objections have been raised during the ‘classical’ pre- computational simulation philosophy of science (PCSPS) tradition, suggesting a more nuanced methodological category for experiments 2, it safe to say such critical objections have greatly proliferated in philosophical studies dedicated to the role played by computational simulations in science. For instance, Eric Winsberg (1999-2003) suggests that computer simulations are methodologically unique in the development of a theory’s models 3 suggesting new epistemic notions of application. This is also echoed in Jeffrey Ramsey’s (1995) notions of “transformation reduction,”—i.e., a notion of reduction of a more highly constructive variety. 4 Computer simulations create a broadly continuous arena spanned by normative and descriptive aspects of theory-articulation, as entailed by the notion of transformation reductions occupying a continuous region demarcated by Ernest Nagel’s (1974) logical-explanatory “domain-combining reduction” on the one hand, and Thomas Nickels’ (1973) heuristic “domain- preserving reduction,” on the other. I extend Winsberg’s and Ramsey’s points here, by arguing that in the field of computational fluid dynamics (CFD) as well as in other branches of applied physics, the computer plays a constitutively experimental role—supplanting in many cases the more traditional experimental methods such as flow- visualization, etc. In this case, however CFD algorithms act as substitutes, not supplements (as the notions “simulation” suggests) when it comes to experimental practices.
    [Show full text]
  • Curriculum Vitæ Hans Halvorson
    Curriculum Vitæ Hans Halvorson Department of Philosophy Princeton University Princeton, NJ 08544 http://www.princeton.edu/~hhalvors Permanent positions 2016{ Stuart Professor of Philosophy 2012{ associated faculty, mathematics 2010{ full professor, philosophy 2005{10 associate professor, philosophy 2001{05 assistant professor, philosophy, Princeton University Secondary affiliations 2021{ visiting professor, University of Copenhagen and the Niels Bohr Archive 2008{09 visiting researcher, Mathematical Institute, Utrecht 2006 visiting fellow, Perimeter Institute for Theoretical Physics 2002{ associate fellow, Pittsburgh Center for the Philosophy of Science Education 2001 PhD philosophy, Pittsburgh 1999 visiting student researcher, Oxford 1998 MA mathematics, Pittsburgh 1997 MA philosophy, Pittsburgh 1995 BA philosophy, with honors, Calvin College Work in progress HH. \Carnap's formal philosophy of science" in Rudolf Carnap Handbuch, Metzler Vorlag. HH and JB Manchak. \What hole argument?" philpapers:HALWHA-4 T. Barrett and HH. \Theories are not partially ordered" philpapers:BARTAN HH. \There is no invariant four-dimensional stuff" philpapers:HALTIN-3 HH. \Momentum and context" philpapers:HALMAC-2 Books HH. How Logic Works. Princeton University Press (2020) HH. The Logic in Philosophy of Science. Cambridge University Press (2019) A. Briggs, HH, and A. Steane. It Keeps Me Seeking: The Invitation from Science, Philosophy and Religion. Oxford University Press (2018) HH, editor. Deep Beauty: Understanding the Quantum World through Mathematical Innovation. Cambridge University Press (2011) J. Butterfield and HH, editors. Quantum Entanglements: Selected Papers of Rob Clifton. Oxford University Press (2004) HH. Locality, Localization, and the Particle Concept: Topics in the Foundations of Quantum Field Theory. PhD Thesis, University of Pittsburgh (2001) Articles and book chapters HH.
    [Show full text]
  • MATTERS of GRAVITY, a Newsletter for the Gravity Community, Number 3
    MATTERS OF GRAVITY Number 3 Spring 1994 Table of Contents Editorial ................................................... ................... 2 Correspondents ................................................... ............ 2 Gravity news: Open Letter to gravitational physicists, Beverly Berger ........................ 3 A Missouri relativist in King Gustav’s Court, Clifford Will .................... 6 Gary Horowitz wins the Xanthopoulos award, Abhay Ashtekar ................ 9 Research briefs: Gamma-ray bursts and their possible cosmological implications, Peter Meszaros 12 Current activity and results in laboratory gravity, Riley Newman ............. 15 Update on representations of quantum gravity, Donald Marolf ................ 19 Ligo project report: December 1993, Rochus E. Vogt ......................... 23 Dark matter or new gravity?, Richard Hammond ............................. 25 Conference Reports: Gravitational waves from coalescing compact binaries, Curt Cutler ........... 28 Mach’s principle: from Newton’s bucket to quantum gravity, Dieter Brill ..... 31 Cornelius Lanczos international centenary conference, David Brown .......... 33 Third Midwest relativity conference, David Garfinkle ......................... 36 arXiv:gr-qc/9402002v1 1 Feb 1994 Editor: Jorge Pullin Center for Gravitational Physics and Geometry The Pennsylvania State University University Park, PA 16802-6300 Fax: (814)863-9608 Phone (814)863-9597 Internet: [email protected] 1 Editorial Well, this newsletter is growing into its third year and third number with a lot of strength. In fact, maybe too much strength. Twelve articles and 37 (!) pages. In this number, apart from the ”traditional” research briefs and conference reports we also bring some news for the community, therefore starting to fulfill the original promise of bringing the gravity/relativity community closer together. As usual I am open to suggestions, criticisms and proposals for articles for the next issue, due September 1st. Many thanks to the authors and the correspondents who made this issue possible.
    [Show full text]
  • Arxiv:Gr-Qc/0304042V1 9 Apr 2003
    Do black holes radiate? Adam D Helfer Department of Mathematics, Mathematical Sciences Building, University of Missouri, Columbia, Missouri 65211, U.S.A. Abstract. The prediction that black holes radiate due to quantum effects is often considered one of the most secure in quantum field theory in curved space–time. Yet this prediction rests on two dubious assumptions: that ordinary physics may be applied to vacuum fluctuations at energy scales increasing exponentially without bound; and that quantum–gravitational effects may be neglected. Various suggestions have been put forward to address these issues: that they might be explained away by lessons from sonic black hole models; that the prediction is indeed successfully reproduced by quantum gravity; that the success of the link provided by the prediction between black holes and thermodynamics justifies the prediction. This paper explains the nature of the difficulties, and reviews the proposals that have been put forward to deal with them. None of the proposals put forward can so far be considered to be really successful, and simple dimensional arguments show that quantum–gravitational effects might well alter the evaporation process outlined by Hawking. arXiv:gr-qc/0304042v1 9 Apr 2003 Thus a definitive theoretical treatment will require an understanding of quantum gravity in at least some regimes. Until then, no compelling theoretical case for or against radiation by black holes is likely to be made. The possibility that non–radiating “mini” black holes exist should be taken seriously; such holes could be part of the dark matter in the Universe. Attempts to place observational limits on the number of “mini” black holes (independent of the assumption that they radiate) would be most welcome.
    [Show full text]
  • Classical Spacetime Structure
    Classical Spacetime Structure James Owen Weatherall Department of Logic and Philosophy of Science University of California, Irvine Abstract I discuss several issues related to \classical" spacetime structure. I review Galilean, Newto- nian, and Leibnizian spacetimes, and briefly describe more recent developments. The target audience is undergraduates and early graduate students in philosophy; the presentation avoids mathematical formalism as much as possible. 1. Introduction One often associates spacetime|a four-dimensional geometrical structure representing both space and time|with relativity theory, developed by Einstein and others in the early part of the twentieth century.1 But soon after relativity theory appeared, several authors, such as Hermann Weyl (1952 [1918]), Elie´ Cartan (1923, 1924), and Kurt Friedrichs (1927), began to study how the spatio-temporal structure presupposed by classical, i.e., Newtonian, physics could be re-cast using the methods of four-dimensional geometry developed in the context of relativity. These reformulations of classical physics were initially of interest for the insight they offered into the structure of relativity theory.2 But this changed in 1967, when Howard Stein proposed that the notion of a \classical" spacetime could provide important insight arXiv:1707.05887v1 [physics.hist-ph] 18 Jul 2017 Email address: [email protected] (James Owen Weatherall) 1The idea of \spacetime" was actually introduced by Minkowski (2013 [1911]), several years after Einstein first introduced relativity theory. 2And indeed, they remain of interest for this reason: see, for instance, Friedman (1983), Malament (1986a,b, 2012), Earman (1989b), Fletcher (2014), Barrett (2015), Weatherall (2011a,b, 2014, 2017d,c), and Dewar and Weatherall (2017) for philosophical discussions of the relationship between relativity theory and Newtonian physics that make heavy use of this formalism.
    [Show full text]
  • PHIL 146 Winter 11 Syllabus
    Philosophy of Physics 146 This quarter the course will focus on the philosophical foundations of spacetime physics, both classical and relativistic. This topic is an exceptionally rich one, for it has attracted some of the all-time greatest thinkers in philosophy and physics, e.g., Descartes, Galileo, Newton, Leibniz, Kant, Reichenbach, Einstein, Gödel, and others. We'll focus on a diverse array of deep questions, e.g.: are physical geometry and topology conventional in some sense? how do we know the physical geometry of space? does relativity prove that time does not flow? that time travel is possible? what does E=mc2 really mean? does quantum non- locality threaten relativity? Tackling these questions will help one better understand both the physics of spacetime and the philosophy of science. Instructor Professor Craig Callender http://philosophy.ucsd.edu/faculty/ccallender/ Office: HSS 8077; Office hrs: Tues 2-3 Contact: [email protected]; 24911 Coordinates WLH 2206, TuTh 3:30-4:50 Final Exam 3-20-12, Fri 3-6 Prerequisites Most or all of the math/physics needed will be presented in class, assuming only a small bit of calculus. Every effort will be made to present the technicalia as cleanly and simply as possible. Students with non-technical backgrounds have succeeded in this course; but if you are math-o-phobic, this is not the course for you. Reading I have ordered two books for the course: • Geroch, General Relativity from A to B. • Huggett, Space: From Zeno to Einstein And we will also use many articles in journals. These will be found on jstor.org, reserves.ucsd.edu, and elsewhere on the internet.
    [Show full text]
  • Meeting Program
    22nd Midwest Relativity Meeting September 28-29, 2012 Chicago, IL http://kicp-workshops.uchicago.edu/Relativity2012/ MEETING PROGRAM http://kicp.uchicago.edu/ http://www.uchicago.edu/ The 22nd Midwest Relativity Meeting will be held Friday and Saturday, September 28 and 29, 2012 at the University of Chicago. The format of the meeting will follow previous regional meetings, where all participants may present a talk of approximately 10-15 minutes, depending on the total number of talks. We intend for the meeting to cover a broad range of topics in gravitation physics, including classical and quantum gravity, numerical relativity, relativistic astrophysics, cosmology, gravitational waves, and experimental gravity. As this is a regional meeting, many of the participants will be from the greater United States Midwest and Canada, but researchers and students from other geographic areas are also welcome. Students are strongly encouraged to give presentations. The Blue Apple Award, sponsored by the APS Topical Group in Gravitation, will be awarded for the best student presentation. We gratefully acknowledge the generous support provided by the Kavli Institute for Cosmological Physics (KICP) at the University of Chicago. Organizing Committe Daniel Holz Robert Wald University of Chicago University of Chicago 22nd Midwest Relativity Meeting September 28-29, 2012 @ Chicago, IL MEETING PROGRAM September 28-29, 2012 @ Kersten Physics Teaching Center (KPTC), Room 106 Friday - September 28, 2012 8:15 AM - 8:55 AM COFFEE & PASTRIES 8:55 AM - 9:00 AM WELCOME
    [Show full text]
  • List of Participants
    Exploring Theories of Modified Gravity October 12-14, 2015 KICP workshop, 2015 Chicago, IL http://kicp-workshops.uchicago.edu/2015-mg/ LIST OF PARTICIPANTS http://kicp.uchicago.edu/ http://www.nsf.gov/ http://www.uchicago.edu/ The Kavli Institute for Cosmological Physics (KICP) at the University of Chicago is hosting a workshop this fall on theories of modified gravity. The purpose of workshop is to discuss recent progress and interesting directions in theoretical research into modified gravity. Topics of particular focus include: massive gravity, Horndeski, beyond Horndeski, and other derivatively coupled theories, screening and new physics in the gravitational sector, and possible observational probes of the above. The meeting will be relatively small, informal, and interactive workshop for the focused topics. Organizing Committee Scott Dodelson Wayne Hu Austin Joyce Fermilab, University of Chicago University of Chicago University of Chicago Hayato Motohashi Lian-Tao Wang University of Chicago University of Chicago Exploring Theories of Modified Gravity October 12-14, 2015 @ Chicago, IL 1. Tessa M Baker UPenn / University of Oxford 2. John Boguta University of Illinois Chicago 3. Claudia de Rham Case Western Reserve University 4. Cedric Deffayet CNRS 5. Scott Dodelson Fermilab, University of Chicago 6. Matteo R Fasiello Stanford 7. Maya Fishbach University of Chicago 8. Gregory Gabadadze New York University 9. Salman Habib Argonne National Laboratory 10. Kurt Hinterbichler Perimeter Institute for Theoretical Physics 11. Daniel Holz KICP 12. Wayne Hu University of Chicago 13. Lam Hui Columbia University 14. Elise Jennings Fermilab 15. Austin Joyce University of Chicago 16. Nemanja Kaloper University of California, Davis 17. Rampei Kimura New York University 18.
    [Show full text]
  • The Motion of a Body in Newtonian Theories1
    The Motion of a Body in Newtonian Theories1 James Owen Weatherall2 Logic and Philosophy of Science University of California, Irvine Abstract A theorem due to Bob Geroch and Pong Soo Jang [\Motion of a Body in General Relativity." Journal of Mathematical Physics 16(1), (1975)] provides the sense in which the geodesic principle has the status of a theorem in General Relativity (GR). Here we show that a similar theorem holds in the context of geometrized Newtonian gravitation (often called Newton-Cartan theory). It follows that in Newtonian gravitation, as in GR, inertial motion can be derived from other central principles of the theory. 1 Introduction The geodesic principle in General Relativity (GR) states that free massive test point particles traverse timelike geodesics. It has long been believed that, given the other central postulates of GR, the geodesic principle can be proved as a theorem. In our view, though previous attempts3 were highly suggestive, the sense in which the geodesic principle is a theorem of GR was finally clarified by Geroch and Jang (1975).4 They proved the following (the statement of which is indebted to Malament (2010, Prop. 2.5.2)): Theorem 1.1 (Geroch and Jang, 1975) Let (M; gab) be a relativistic spacetime, with M orientable. Let γ : I ! M be a smooth, imbedded curve. Suppose that given any open subset O of M containing γ[I], there exists a smooth symmetric field T ab with the following properties. 1. T ab satisfies the strict dominant energy condition, i.e. given any future-directed time- ab ab like covectors ξa, ηa at any point in M, either T = 0 or T ξaηb > 0; ab ab 2.
    [Show full text]