Pdf/Mostashari

Total Page:16

File Type:pdf, Size:1020Kb

Pdf/Mostashari A Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 1197–1362 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Founding Editor Dennis Alexander, Addlestone Surrey, United Kingdom Ban Allos, Nashville, Tennessee, USA Joseph E. McDade, Rome, Georgia, USA Michael Apicella, Iowa City, Iowa, USA Managing Senior Editor Barry J. Beaty, Ft. Collins, Colorado, USA Polyxeni Potter, Atlanta, Georgia, USA Martin J. Blaser, New York, New York, USA David Brandling-Bennet, Washington, D.C., USA Associate Editors Donald S. Burke, Baltimore, Maryland, USA Charles B. Beard, Ft. Collins, Colorado, USA Charles H. Calisher, Ft. Collins, Colorado, USA David Bell, Atlanta, Georgia, USA Arturo Casadevall, New York, New York, USA Thomas Cleary, Houston, Texas, USA Patrice Courvalin, Paris, France Anne DeGroot, Providence, Rhode Island, USA Stephanie James, Bethesda, Maryland, USA Vincent Deubel, Providence, Rhode Island, USA Brian W.J. Mahy, Atlanta, Georgia, USA Ed Eitzen, Washington, D.C., USA Takeshi Kurata, Tokyo, Japan Duane J. Gubler, Ft. Collins, Colorado, USA Scott Halstead, Arlington, Virginia, USA Martin I. Meltzer, Atlanta, Georgia, USA David L. Heymann, Geneva, Switzerland David Morens, Washington, D.C., USA Sakae Inouye, Tokyo, Japan Tanja Popovic, Atlanta, Georgia, USA Charles King, Cleveland, Ohio, USA Keith Klugman, Atlanta, Georgia, USA Patricia M. Quinlisk, Des Moines, Iowa, USA S.K. Lam, Kuala Lumpur, Malaysia Gabriel Rabinovich, Buenos Aires, Argentina Bruce R. Levin, Atlanta, Georgia, USA Didier Raoult, Marseilles, France Myron Levine, Baltimore, Maryland, USA Stuart Levy, Boston, Massachusetts, USA Pierre Rollin, Atlanta, Georgia, USA John S. MacKenzie, Brisbane, Australia Mario Raviglione, Geneva, Switzerland Tom Marrie, Edmonton, Alberta, Canada Copy Editors John E. McGowan, Jr., Atlanta, Georgia, USA Stephen S. Morse, New York, New York, USA Carol Snarey, Anne Mather, Cathy Young, Philip P. Mortimer, London, United Kingdom Mary Anne Castranio Fred A. Murphy, Davis, California, USA Production Barbara E. Murray, Houston, Texas, USA Reginald Tucker, Ann Kitchen P. Keith Murray, Ames, Iowa, USA Stephen Ostroff, Atlanta, Georgia, USA Editorial Assistant Rosanna W. Peeling, Geneva, Switzerland Carolyn Collins David H. Persing, Seattle, Washington, USA Gianfranco Pezzino, Topeka, Kansas, USA www.cdc.gov/eid Richard Platt, Boston, Massachusetts, USA Emerging Infectious Diseases Leslie Real, Atlanta, Georgia, USA Emerging Infectious Diseases is published monthly by the David Relman, Palo Alto, California, USA National Center for Infectious Diseases, Centers for Disease Nancy Rosenstein, Atlanta, Georgia, USA Control and Prevention (CDC), 1600 Clifton Road, Mailstop D61, Connie Schmaljohn, Frederick, Maryland, USA Atlanta, GA 30333, USA. Telephone 404-371-5329, Tom Schwan, Hamilton, Montana, USA fax 404-371-5449, email [email protected]. Ira Schwartz, Valhalla, New York, USA Tom Shinnick, Atlanta, Georgia, USA The opinions expressed by authors contributing to this journal Robert Shope, Galveston, Texas, USA do not necessarily reflect the opinions of the Centers for Disease Control and Prevention or the institutions with which the authors Bonnie Smoak, Bethesda, Maryland, USA are affiliated. Rosemary Soave, New York, New York, USA P. Frederick Sparling, Chapel Hill, North Carolina, USA All material published in Emerging Infectious Diseases is in Jan Svoboda, Prague, Czech Republic the public domain and may be used and reprinted without special Bala Swaminathan, Atlanta, Georgia, USA permission; proper citation, however, is required. Robert Swanepoel, Johannesburg, South Africa Phillip Tarr, Seattle, Washington, USA Use of trade names is for identification only and does not imply endorsement by the Public Health Service or by the U.S. Timothy Tucker, Cape Town, South Africa Department of Health and Human Services. Elaine Tuomanen, Memphis, Tennessee, USA David Walker, Galveston, Texas, USA ∞ Emerging Infectious Diseases is printed on acid-free paper that meets Mary E. Wilson, Cambridge, Massachusetts, USA the requirements of ANSI/NISO 239.48-1992 (Permanence of Paper) Emerging Infectious Diseases • Vol. 9, No. 10, October 2003 A Peer-Reviewed Journal Tracking and Analyzing Disease Trends Vol.9, No.10, October 2003 Characterization of Waterborne Outbreak–associated Campylobacter jejuni, Walkerton, Ontario . .1232 C.G. Clark et al. Cultural Contexts of Ebola in Northern Uganda . .1242 B.S. Hewlett and R.P. Amola 1918 Influenza Pandemic Caused by Highly Conserved Viruses with Two Receptor-Binding Variants . .1249 A.H. Reid et al. On the Cover: Jacques-Louis David (1748-1825). Cephamycin Resistance in Clinical Isolates Coronation of Empress Josephine by Napoleon I at Notre Dame de and Laboratory-derived Strains of Paris, 2 December 1804 (1806-1807) Escherichia coli, Nova Scotia, Canada . .1254 Oil on canvas, 6.1 m x 9.31 m. Photo: Peter Willi B. Clarke et al. Réunion des Musées Nationaux/Art Resource, NY. Chateaux de Versailles et de Trianon, Versailles, France Mass Antibiotic Treatment for Group A About the Cover, pg. 1361 Streptococcus Outbreaks in Two Long-Term Care Facilities . .1260 A. Smith et al. Perspective Anthelmintic Baiting of Foxes against Urban Syndromic Surveillance and Contamination with Echinococcus multilocularis . .1266 Bioterrorism-related Epidemics . .1197 D. Hegglin et al. J.W. Buehler et al. Cephalosporin-resistant Escherichia coli Research among Summer Camp Attendees with Salmonellosis . .1273 Illness in Intensive Care Staff after G. Prats et al. Brief Exposure to Severe Acute Respiratory Syndrome . .1205 Multijurisdictional Approach to D.C. Scales et al. Biosurveillance, Kansas City . .1281 M.A. Hoffman et al. Superantigens and Streptococcal Toxic Shock Syndrome . .1211 Environmental Risk and Meningitis T. Proft et al. Epidemics in Africa . .1287 A.M. Molesworth et al. Hazards of Healthy Living: Bottled Water and Salad Vegetables as Risk Factors for Campylobacter Infection . .1219 Dispatches M.R. Evans et al. Severe Acute Respiratory Syndrome: Lessons from Singapore . .1294 Escherichia coli O157 Exposure in K. Singh et al. Wyoming and Seattle: Serologic Evidence of Rural Risk . .1226 All material published in Emerging Infectious Diseases is in the public J.P. Haack et al. domain and may be used and reprinted without special permission; proper citation, however, is appreciated. A Peer-Reviewed Journal Tracking and Analyzing Disease Trends Vol.9, No.10, October 2003 West Nile Virus Transmission in Chlamydia trachomatis Infections in Resident Birds, Dominican Republic . .1299 Female Soldiers, Israel . .1344 O. Komar et al. E.S. Bamberger et al. West Nile Virus Encephalitis and Letters Myocarditis in Wolf and Dog . .1303 C.A. Lichtensteiger et al. Clostridium tertium in Necrotizing Fascitis and Gangrene . .1347 Weissella confusa Infection in P. Ray et al. Primate (Cercopithecus mona) . .1307 A.I. Vela et al. Dengue Hemorrhagic Fever, Uttaradit, Thailand . .1348 J. Patumanond et al. Mycobacterium tuberculosis Beijing Genotype, the Netherlands . .1310 Antimicrobial Drug–resistant Salmonella M.W. Borgdorff et al. Typhimurium (Reply to Helms) . .1350 J. Dahl Saliva and Meningococcal Transmission . .1314 H.J. Orr et al. Antimicrobial Drug–resistant Salmonella Typhimurium (Reply to Dahl) . .1350 Small Colony Variants of Staphylococcus M. Helms aureus and Pacemaker-related Infection . .1316 H. Seifert et al. Serogroup A Neisseria meningitidis Outside Meningitis Belt in Southwest Cameroon . .1351 West Nile Virus Detection in American Crows . .1319 P. Cunin et al. S.A. Yaremych et al. West Nile Virus Meningitis in Patient Severe Histoplasmosis in Travelers to Nicaragua . .1322 with Common Variable Immunodeficiency . .1353 M. Weinberg et al. A.M. Alonto et al. Mayaro Virus in Wild Mammals, French Guiana . .1326 Isolation of Enterobacter sakazakii from B. de Thoisy et al. Midgut of Stomoxys calcitrans . .1355 J.V. Hamilton et al. The European Commission’s Task Force on Bioterrorism . .1330 A. Tegnell et al. Book Review Exotic Viral Diseases: A Global Guide . .1357 Wild-type Measles Virus in Brain Tissue of M. Bell Children with Subacute Sclerosing Panencephalitis, Argentina . .1333 P.R. Barrero et al. News & Notes Conference Summary Cat or Dog Ownership and Seroprevalence of Drug-resistant Streptococcus pneumoniae Ehrlichiosis, Q Fever, and Cat-Scratch Disease . .1337 and Methicillin-resistant Staphylococcus M. Skerget et al. aureus Surveillance . .1358 L.A. Hawley et al. Flying Squirrel–associated Typhus, United States . .1341 About the Cover . .1360 M.G. Reynolds et al. P. Potter PERSPECTIVE Syndromic Surveillance and Bioterrorism-related Epidemics James W. Buehler,* Ruth L. Berkelman,* David M. Hartley,† and Clarence J. Peters‡ To facilitate rapid detection of a future bioterrorist Establishing a diagnosis is critical to the public health attack, an increasing number of public health departments response to a bioterrorism-related epidemic, since the are investing in new surveillance systems that target the diagnosis will guide the use of vaccinations, medications, early manifestations of bioterrorism-related disease. and other interventions. Absent a bioterrorism attack, pre- Whether this approach is likely to detect an epidemic soon- dicting whether syndromic surveillance will trigger an er than reporting by alert clinicians remains unknown. The detection of a bioterrorism-related epidemic will depend on investigation that yields a diagnosis before clinicians make population characteristics,
Recommended publications
  • Uncommon Pathogens Causing Hospital-Acquired Infections in Postoperative Cardiac Surgical Patients
    Published online: 2020-03-06 THIEME Review Article 89 Uncommon Pathogens Causing Hospital-Acquired Infections in Postoperative Cardiac Surgical Patients Manoj Kumar Sahu1 Netto George2 Neha Rastogi2 Chalatti Bipin1 Sarvesh Pal Singh1 1Department of Cardiothoracic and Vascular Surgery, CN Centre, All Address for correspondence Manoj K Sahu, MD, DNB, Department India Institute of Medical Sciences, Ansari Nagar, New Delhi, India of Cardiothoracic and Vascular Surgery, CTVS office, 7th floor, CN 2Infectious Disease, Department of Medicine, All India Institute of Centre, All India Institute of Medical Sciences, New Delhi-110029, Medical Sciences, Ansari Nagar, New Delhi, India India (e-mail: [email protected]). J Card Crit Care 2020;3:89–96 Abstract Bacterial infections are common causes of sepsis in the intensive care units. However, usually a finite number of Gram-negative bacteria cause sepsis (mostly according to the hospital flora). Some organisms such as Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus are relatively common. Others such as Stenotrophomonas maltophilia, Chryseobacterium indologenes, Shewanella putrefaciens, Ralstonia pickettii, Providencia, Morganella species, Nocardia, Elizabethkingia, Proteus, and Burkholderia are rare but of immense importance to public health, in view of the high mortality rates these are associated with. Being aware of these organisms, as the cause of hospital-acquired infections, helps in the prevention, Keywords treatment, and control of sepsis in the high-risk cardiac surgical patients including in ► uncommon pathogens heart transplants. Therefore, a basic understanding of when to suspect these organ- ► hospital-acquired isms is important for clinical diagnosis and initiating therapeutic options. This review infection discusses some rarely appearing pathogens in our intensive care unit with respect to ► cardiac surgical the spectrum of infections, and various antibiotics that were effective in managing intensive care unit these bacteria.
    [Show full text]
  • 2021 ECCMID | 00656 in Vitro Activities of Ceftazidime-Avibactam and Comparator Agents Against Enterobacterales
    IHMA In Vitro Activities of Ceftazidime-avibactam and Comparator Agents against Enterobacterales and 2122 Palmer Drive 00656 Schaumburg, IL 60173 USA Pseudomonas aeruginosa from Israel Collected Through the ATLAS Global Surveillance Program 2013-2019 www.ihma.com M. Hackel1, M. Wise1, G. Stone2, D. Sahm1 1IHMA, Inc., Schaumburg IL, USA, 2Pfizer Inc., Groton, CT USA Introduction Results Results Summary Avibactam (AVI) is a non-β- Table 1 Distribution of 2,956 Enterobacterales from Israel by species Table 2. In vitro activity of ceftazidime-avibactam and comparators agents Figure 2. Ceftazidime and ceftazidime-avibactam MIC distribution against 29 . Ceftazidime-avibactam exhibited a potent lactam, β-lactamase inhibitor against Enterobacterales and P. aeruginosa from Israel, 2013-2019 non-MBL carbapenem-nonsusceptible (CRE) Enterobacterales from Israel, antimicrobial activity higher than all Organism N % of Total mg/L that can restore the activity of Organism Group (N) %S 2013-2019 comparator agents against all Citrobacter amalonaticus 2 0.1% MIC90 MIC50 Range ceftazidime (CAZ) against Enterobacterales (2956) 20 Enterobacterales from Israel (MIC90, 0.5 Citrobacter braakii 5 0.2% Ceftazidime-avibactam 99.8 0.5 0.12 ≤0.015 - > 128 Ceftazidime Ceftazidime-avibactam organisms that possess Class 18 mg/L; 99.8% susceptible). Citrobacter freundii 96 3.2% Ceftazidime 70.1 64 0.25 ≤0.015 - > 128 A, C, and some Class D β- Cefepime 71.8 > 16 ≤0.12 ≤0.12 - > 16 16 . Susceptibility to ceftazidime-avibactam lactmase enzymes. This study Citrobacter gillenii 1 <0.1% Meropenem 98.8 0.12 ≤0.06 ≤0.06 - > 8 increased to 100% for the Enterobacterales Amikacin 95.4 8 2 ≤0.25 - > 32 14 examined the in vitro activity Citrobacter koseri 123 4.2% when MBL-positive isolates were removed Colistin (n=2544)* 82.2 > 8 0.5 ≤0.06 - > 8 12 of CAZ-AVI and comparators Citrobacter murliniae 1 <0.1% Piperacillin-tazobactam 80.4 32 2 ≤0.12 - > 64 from analysis.
    [Show full text]
  • 경추 척수 손상 환자에서 발생한 Providencia Rettgeri 패혈증 1예 조현정·임승진·천승연·박권오·이상호·박종원·이진서·엄중식 한림대학교 의과대학 내과학교실
    Case Report Infection & DOI: 10.3947/ic.2010.42.6.428 Chemotherapy Infect Chemother 2010;42(6):428-430 경추 척수 손상 환자에서 발생한 Providencia rettgeri 패혈증 1예 조현정·임승진·천승연·박권오·이상호·박종원·이진서·엄중식 한림대학교 의과대학 내과학교실 A Case of Providencia rettgeri Sepsis in a Patient with Hyun-Jung Cho, Seung-Jin Lim, Seung-Yeon Chun, Cervical Cord Injury Kwon-Oh Park, Sang-Ho Lee, Jong-Won Park, Jin- Seo Lee, and Joong-Sik Eom Providencia rettgeri is a member of Enterobacteriacea that is known to cause Department of Internal Medicine, Hallym Univer- urinary tract infection (UTI), septicemia, and wound infections, especially in sity College of Medi cine, Seoul, Korea immunocompromised patients and in those with indwelling urinary catheters. We experienced a case of UTI sepsis by Providencia rettgeri in a patient with spinal cord injury. The patient had only high fever without urinary symptoms or signs after high dose intravenous methylprednisolone. The laboratory results showed leukocytosis (21,900/μL, segmented neutrophils 91.1%) and pyuria. Cefepime was given empirically and it was switched to oral trimethoprim-sulfamethoxazole because P. rettgeri was identified from blood and urine culture which was susceptible to TMP-SMX. The patient was improved clinically but P. rettgeri was not eradicated microbiologically. To the best of our knowledge, this is the first case report on sepsis caused by Providencia rettgeri in Korea. Key Words: Providencia rettgeri, Sepsis, Urinary tract infection Introduction The genus Providencia is a member of the Enterobacteriaceae family which commonly dwells in soil, water, and sewage [1, 2]. Providencia rettgeri is one of five Providencia species that is known to cause various infections, especially the Copyright © 2010 by The Korean Society of Infectious Diseases | Korean urinary tract infection (UTI) [3].
    [Show full text]
  • The LOUISIANA ANTIBIOGRAM Louisiana Antibiotic Resistance 2014
    The LOUISIANA ANTIBIOGRAM Louisiana Antibiotic Trends in Antibiotic Resistance Resistance 2014 in Louisiana 2008 Zahidul Islam MBBS, MPH, Raoult C Ratard MD MPH Contributors to this report: Lauren Kleamenakis MPH, Anup Subedee MD MPH and Raoult Ratard MD MPH. This report covers bacteria causing severe human infections and the antibiotics used to treat those infections. Resistance to other antimicrobials (antivirals, antifungals and anti-parasitic drugs) are not included for lack of systematic reporting and collection of comprehensive data. Contents 1-Introduction ............................................................................................................................................... 3 1.1-Bacterial resistance to antibiotics is a major threat to human health .................................................. 3 1.2-Tracking resistance patterns is a major action in the fight against antibiotic resistance ..................... 3 2-Methods ..................................................................................................................................................... 3 2.1-Active surveillance .............................................................................................................................. 3 2.2-Antibiogram collection ....................................................................................................................... 3 2.3-Analysis ..............................................................................................................................................
    [Show full text]
  • Bacteria Associated with Larvae and Adults of the Asian Longhorned Beetle (Coleoptera: Cerambycidae)1
    Bacteria Associated with Larvae and Adults of the Asian Longhorned Beetle (Coleoptera: Cerambycidae)1 John D. Podgwaite2, Vincent D' Amico3, Roger T. Zerillo, and Heidi Schoenfeldt USDA Forest Service, Northern Research Station, Hamden CT 06514 USA J. Entomol. Sci. 48(2): 128·138 (April2013) Abstract Bacteria representing several genera were isolated from integument and alimentary tracts of live Asian longhorned beetle, Anaplophora glabripennis (Motschulsky), larvae and adults. Insects examined were from infested tree branches collected from sites in New York and Illinois. Staphylococcus sciuri (Kloos) was the most common isolate associated with adults, from 13 of 19 examined, whereas members of the Enterobacteriaceae dominated the isolations from larvae. Leclercia adecarboxylata (Leclerc), a putative pathogen of Colorado potato beetle, Leptinotarsa decemlineata (Say), was found in 12 of 371arvae examined. Several opportunistic human pathogens, including S. xylosus (Schleifer and Kloos), S. intermedius (Hajek), S. hominis (Kloos and Schleifer), Pantoea agglomerans (Ewing and Fife), Serratia proteamaculans (Paine and Stansfield) and Klebsiella oxytoca (Fiugge) also were isolated from both larvae and adults. One isolate, found in 1 adult and several larvae, was identified as Tsukamurella inchonensis (Yassin) also an opportunistic human pathogen and possibly of Korean origin .. We have no evi­ dence that any of the microorganisms isolated are pathogenic for the Asian longhorned beetle. Key Words Asian longhorned beetle, Anaplophora glabripennis, bacteria The Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) a pest native to China and Korea, often has been found associated with wood- packing ma­ terial arriving in ports of entry to the United States. The pest has many hardwood hosts, particularly maples (Acer spp.), and currently is established in isolated popula­ tions in at least 3 states- New York, NJ and Massachusetts (USDA-APHIS 201 0).
    [Show full text]
  • Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea—A Systematic Review of the Literature
    microorganisms Review Diversity and Composition of the Skin, Blood and Gut Microbiome in Rosacea—A Systematic Review of the Literature Klaudia Tutka, Magdalena Zychowska˙ and Adam Reich * Department of Dermatology, Institute of Medical Sciences, Medical College of Rzeszow University, 35-055 Rzeszow, Poland; [email protected] (K.T.); [email protected] (M.Z.)˙ * Correspondence: [email protected]; Tel.: +48-605076722 Received: 30 August 2020; Accepted: 6 November 2020; Published: 8 November 2020 Abstract: Rosacea is a chronic inflammatory skin disorder of a not fully understood pathophysiology. Microbial factors, although not precisely characterized, are speculated to contribute to the development of the condition. The aim of the current review was to summarize the rosacea-associated alterations in the skin, blood, and gut microbiome, investigated using culture-independent, metagenomic techniques. A systematic review of the PubMed, Web of Science, and Scopus databases was performed, according to PRISMA (preferred reporting items for systematic review and meta-analyses) guidelines. Nine out of 185 papers were eligible for analysis. Skin microbiome was investigated in six studies, and in a total number of 115 rosacea patients. Blood microbiome was the subject of one piece of research, conducted in 10 patients with rosacea, and gut microbiome was studied in two papers, and in a total of 23 rosacea subjects. Although all of the studies showed significant alterations in the composition of the skin, blood, or gut microbiome in rosacea, the results were highly inconsistent, or even, in some cases, contradictory. Major limitations included the low number of participants, and different study populations (mainly Asians). Further studies are needed in order to reliably analyze the composition of microbiota in rosacea, and the potential application of microbiome modifications for the treatment of this dermatosis.
    [Show full text]
  • Burkdiff: a Real-Time PCR Allelic Discrimination Assay for Burkholderia Pseudomallei and B
    BurkDiff: A Real-Time PCR Allelic Discrimination Assay for Burkholderia Pseudomallei and B. mallei Jolene R. Bowers1*, David M. Engelthaler1, Jennifer L. Ginther2, Talima Pearson2, Sharon J. Peacock3, Apichai Tuanyok2, David M. Wagner2, Bart J. Currie4, Paul S. Keim1,2 1 Translational Genomics Research Institute, Flagstaff, Arizona, United States of America, 2 Northern Arizona University, Flagstaff, Arizona, United States of America, 3 Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand, 4 Menzies School of Health Research, Darwin, Australia Abstract A real-time PCR assay, BurkDiff, was designed to target a unique conserved region in the B. pseudomallei and B. mallei genomes containing a SNP that differentiates the two species. Sensitivity and specificity were assessed by screening BurkDiff across 469 isolates of B. pseudomallei, 49 isolates of B. mallei, and 390 isolates of clinically relevant non-target species. Concordance of results with traditional speciation methods and no cross-reactivity to non-target species show BurkDiff is a robust, highly validated assay for the detection and differentiation of B. pseudomallei and B. mallei. Citation: Bowers JR, Engelthaler DM, Ginther JL, Pearson T, Peacock SJ, et al. (2010) BurkDiff: A Real-Time PCR Allelic Discrimination Assay for Burkholderia Pseudomallei and B. mallei. PLoS ONE 5(11): e15413. doi:10.1371/journal.pone.0015413 Editor: Frank R. DeLeo, National Institutes of Health, United States of America Received July 26, 2010; Accepted September 12, 2010; Published November 12, 2010 Copyright: ß 2010 Bowers et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • New Drugs – Part Ii Jacqueline King, Pharm.D
    7/7/2016 ANTIBIOTICS AND ANTIFUNGALS 2016 ANNUAL MEETING NEW DRUGS – PART II JACQUELINE KING, PHARM.D. TARA MCNULTY, CPHT, RPHT PHARMACY OPERATIONS SUPERVISOR PROJECT MANAGER UFHEALTH CANCER CENTER WELLCARE HEALTH PLANS, INC [email protected] [email protected] http://s3.amazonaws.com/readers/2010/05/28/bacteria_1.jpg 2016 ANNUAL MEETING DISCLOSURE BACTERIA • Jacqueline King, Pharm.D. • I do not have a vested interest in or affiliation with any corporate organization offering financial support or grant monies for this continuing education activity, or any affiliation with an organization whose philosophy could potentially bias my presentation • Tara, McNulty, CPhT, RPhT • I do not have a vested interest in or affiliation with any corporate organization offering financial support or grant monies for this continuing education activity, or any affiliation with an organization whose philosophy could potentially bias my presentation http://www.dbriers.com/tutorials/wp- content/uploads/2012/12/GramPositiveNegative21.jpg https://microbewiki.kenyon.edu/images/1/1b/Gram.jpg 2016 ANNUAL MEETING 2016 ANNUAL MEETING OBJECTIVES ANTIBIOTIC RESISTANCE • Explore new medications for the treatment of infectious diseases, including HIV • Antibiotic resistance occurs when an antibiotic has lost and Hepatitis C its ability to control or kill bacterial growth • Analyze the impact of the new agents within clinical practice • Causes of antibiotic resistance: Drugs not appropriately prescribed, not completing courses of antibiotics, • Utilize
    [Show full text]
  • Identification of Clinically Relevant Streptococcus and Enterococcus
    pathogens Article Identification of Clinically Relevant Streptococcus and Enterococcus Species Based on Biochemical Methods and 16S rRNA, sodA, tuf, rpoB, and recA Gene Sequencing Maja Kosecka-Strojek 1,* , Mariola Wolska 1, Dorota Zabicka˙ 2 , Ewa Sadowy 3 and Jacek Mi˛edzobrodzki 1 1 Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland; [email protected] (M.W.); [email protected] (J.M.) 2 Department of Molecular Microbiology, National Medicines Institute, 00-725 Warsaw, Poland; [email protected] 3 Department of Epidemiology and Clinical Microbiology, National Medicines Institute, 00-725 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-12-664-6365 Received: 13 October 2020; Accepted: 9 November 2020; Published: 11 November 2020 Abstract: Streptococci and enterococci are significant opportunistic pathogens in epidemiology and infectious medicine. High genetic and taxonomic similarities and several reclassifications within genera are the most challenging in species identification. The aim of this study was to identify Streptococcus and Enterococcus species using genetic and phenotypic methods and to determine the most discriminatory identification method. Thirty strains recovered from clinical samples representing 15 streptococcal species, five enterococcal species, and four nonstreptococcal species were subjected to bacterial identification by the Vitek® 2 system and Sanger-based sequencing methods targeting the 16S rRNA, sodA, tuf, rpoB, and recA genes. Phenotypic methods allowed the identification of 10 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains (Leuconostoc, Granulicatella, and Globicatella genera). The combination of sequencing methods allowed the identification of 21 streptococcal strains, five enterococcal strains, and four nonstreptococcal strains.
    [Show full text]
  • Insights Into 6S RNA in Lactic Acid Bacteria (LAB) Pablo Gabriel Cataldo1,Paulklemm2, Marietta Thüring2, Lucila Saavedra1, Elvira Maria Hebert1, Roland K
    Cataldo et al. BMC Genomic Data (2021) 22:29 BMC Genomic Data https://doi.org/10.1186/s12863-021-00983-2 RESEARCH ARTICLE Open Access Insights into 6S RNA in lactic acid bacteria (LAB) Pablo Gabriel Cataldo1,PaulKlemm2, Marietta Thüring2, Lucila Saavedra1, Elvira Maria Hebert1, Roland K. Hartmann2 and Marcus Lechner2,3* Abstract Background: 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial products through fermentation. Some strains are used as probiotics while others represent potential pathogens. Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli.Thismay accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for its potential biotechnological utility is a general characterization of 6S RNA in LAB. Results: We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for a bioinformatic characterization of common 6S RNA features. This covers secondary structures, synteny, phylogeny, and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a template site for product RNA synthesis.
    [Show full text]
  • Primate Vaginal Microbiomes Exhibit Species Specificity Without Universal Lactobacillus Dominance
    The ISME Journal (2014) 8, 2431–2444 & 2014 International Society for Microbial Ecology All rights reserved 1751-7362/14 www.nature.com/ismej ORIGINAL ARTICLE Primate vaginal microbiomes exhibit species specificity without universal Lactobacillus dominance Suleyman Yildirim1,6, Carl J Yeoman1,7, Sarath Chandra Janga1,8, Susan M Thomas1, Mengfei Ho1,2, Steven R Leigh1,3,9, Primate Microbiome Consortium5, Bryan A White1,4, Brenda A Wilson1,2 and Rebecca M Stumpf1,3 1The Institute for Genomic Biology, University of Illinois, Urbana, IL, USA; 2Department of Microbiology, University of Illinois, Urbana, IL, USA; 3Department of Anthropology, University of Illinois, Urbana, IL, USA and 4Department of Animal Sciences, University of Illinois, Urbana, IL, USA Bacterial communities colonizing the reproductive tracts of primates (including humans) impact the health, survival and fitness of the host, and thereby the evolution of the host species. Despite their importance, we currently have a poor understanding of primate microbiomes. The composition and structure of microbial communities vary considerably depending on the host and environmental factors. We conducted comparative analyses of the primate vaginal microbiome using pyrosequencing of the 16S rRNA genes of a phylogenetically broad range of primates to test for factors affecting the diversity of primate vaginal ecosystems. The nine primate species included: humans (Homo sapiens), yellow baboons (Papio cynocephalus), olive baboons (Papio anubis), lemurs (Propithecus diadema), howler monkeys (Alouatta pigra), red colobus (Pilioco- lobus rufomitratus), vervets (Chlorocebus aethiops), mangabeys (Cercocebus atys) and chim- panzees (Pan troglodytes). Our results indicated that all primates exhibited host-specific vaginal microbiota and that humans were distinct from other primates in both microbiome composition and diversity.
    [Show full text]
  • Optimizing Microbiome Sequencing for Small Intestinal Aspirates
    Leite et al. BMC Microbiology (2019) 19:239 https://doi.org/10.1186/s12866-019-1617-1 METHODOLOGY ARTICLE Open Access Optimizing microbiome sequencing for small intestinal aspirates: validation of novel techniques through the REIMAGINE study Gabriela Guimaraes Sousa Leite1, Walter Morales1, Stacy Weitsman1, Shreya Celly1, Gonzalo Parodi1, Ruchi Mathur1,2, Rashin Sedighi1, Gillian M. Barlow1, Ali Rezaie1,3 and Mark Pimentel1,3* Abstract Background: The human small intestine plays a central role in the processes of digestion and nutrient absorption. However, characterizations of the human gut microbiome have largely relied on stool samples, and the associated methodologies are ill-suited for the viscosity and low microbial biomass of small intestine samples. As part of the REIMAGINE study to examine the specific roles of the small bowel microbiome in human health and disease, this study aimed to develop and validate methodologies to optimize microbial analysis of the small intestine. Results: Subjects undergoing esophagogastroduodenoscopy without colon preparation for standard of care were prospectively recruited, and ~ 2 ml samples of luminal fluid were obtained from the duodenum using a custom sterile aspiration catheter. Samples of duodenal aspirates were either untreated (DA-U, N = 127) or pretreated with dithiothreitol (DA-DTT, N = 101), then cultured on MacConkey agar for quantitation of aerobic gram-negative bacteria, typically from the class Gammaproteobacteria, and on blood agar for quantitation of anaerobic microorganisms. DA-DTT exhibited 2.86-fold greater anaerobic bacterial counts compared to DA-U (P = 0.0101), but were not statistically different on MacConkey agar. DNA isolation from DA-U (N = 112) and DA-DTT (N = 43) samples and library preparation for 16S rRNA gene sequencing were also performed using modified protocols.
    [Show full text]