Number 3 March 2013
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Análise Integrativa De Perfis Transcricionais De Pacientes Com
UNIVERSIDADE DE SÃO PAULO FACULDADE DE MEDICINA DE RIBEIRÃO PRETO PROGRAMA DE PÓS-GRADUAÇÃO EM GENÉTICA ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Ribeirão Preto – 2012 ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas Tese apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo para obtenção do título de Doutor em Ciências. Área de Concentração: Genética Orientador: Prof. Dr. Eduardo Antonio Donadi Co-orientador: Prof. Dr. Geraldo A. S. Passos Ribeirão Preto – 2012 AUTORIZO A REPRODUÇÃO E DIVULGAÇÃO TOTAL OU PARCIAL DESTE TRABALHO, POR QUALQUER MEIO CONVENCIONAL OU ELETRÔNICO, PARA FINS DE ESTUDO E PESQUISA, DESDE QUE CITADA A FONTE. FICHA CATALOGRÁFICA Evangelista, Adriane Feijó Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. Ribeirão Preto, 2012 192p. Tese de Doutorado apresentada à Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo. Área de Concentração: Genética. Orientador: Donadi, Eduardo Antonio Co-orientador: Passos, Geraldo A. 1. Expressão gênica – microarrays 2. Análise bioinformática por module maps 3. Diabetes mellitus tipo 1 4. Diabetes mellitus tipo 2 5. Diabetes mellitus gestacional FOLHA DE APROVAÇÃO ADRIANE FEIJÓ EVANGELISTA Análise integrativa de perfis transcricionais de pacientes com diabetes mellitus tipo 1, tipo 2 e gestacional, comparando-os com manifestações demográficas, clínicas, laboratoriais, fisiopatológicas e terapêuticas. -
The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2. -
Lysine Benzoylation Is a Histone Mark Regulated by SIRT2
ARTICLE DOI: 10.1038/s41467-018-05567-w OPEN Lysine benzoylation is a histone mark regulated by SIRT2 He Huang1, Di Zhang1, Yi Wang2, Mathew Perez-Neut1, Zhen Han3, Y. George Zheng3, Quan Hao2 & Yingming Zhao1 Metabolic regulation of histone marks is associated with diverse biological processes through dynamically modulating chromatin structure and functions. Here we report the identification 1234567890():,; and characterization of a histone mark, lysine benzoylation (Kbz). Our study identifies 22 Kbz sites on histones from HepG2 and RAW cells. This type of histone mark can be stimulated by sodium benzoate (SB), an FDA-approved drug and a widely used chemical food preservative, via generation of benzoyl CoA. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbz marks are associated with gene expression and have physiological relevance distinct from histone acetylation. In addition, we demonstrate that SIRT2, a NAD+-dependent protein deacetylase, removes histone Kbz both in vitro and in vivo. This study therefore reveals a new type of histone marks with potential physiological relevance and identifies possible non-canonical functions of a widely used chemical food preservative. 1 Ben May Department for Cancer Research, The University of Chicago, Chicago, IL 60637, USA. 2 School of Biomedical Sciences, University of Hong Kong, Hong Kong, China. 3 Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA. Correspondence and requests for materials should be addressed to Y.Z. (email: [email protected]) NATURE COMMUNICATIONS | (2018) 9:3374 | DOI: 10.1038/s41467-018-05567-w | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-05567-w hromatin structure and transcriptional activity of genes and coelution analysis were performed to compare the synthetic are regulated by diverse protein posttranslational mod- peptide with its in vivo counterpart (Fig. -
Impact of RNA‑Binding Motif 3 Expression on the Whole Transcriptome of Prostate Cancer Cells: an RNA Sequencing Study
ONCOLOGY REPORTS 40: 2307-2315, 2018 Impact of RNA‑binding motif 3 expression on the whole transcriptome of prostate cancer cells: An RNA sequencing study QINGZHUO DONG1, CHENGCHENG LV1, GEJUN ZHANG1,2, ZI YU1,2, CHUIZE KONG2, CHENG FU1 and YU ZENG1 1Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042; 2Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China Received March 3, 2018; Accepted July 25, 2018 DOI: 10.3892/or.2018.6618 Abstract. RNA-binding motif 3 (RBM3) is a cold-shock Introduction protein that has been previously shown to attenuate cancer stem cell-like features in prostate cancer (PCa) cells. However, There were 4,292,000 new cases of cancer and 2,814,000 cases the mechanism underlying RBM3 regulation in PCa cells is of cancer-associated mortality reported in 2015 in China (1). largely unknown. The present study investigated the impact Among all types of cancer, prostate cancer (PCa) was diag- of RBM3 expression on the whole transcriptome of PCa nosed in ~603,000 men, and over 26,000 men succumbed to cells using high-throughput RNA sequencing (RNA-seq). this disease (1). Although the incidence and mortality rates of Differentially expressed genes (DEGs) that were identified PCa remain lower in China than in Western countries, they through RNA-seq were applied to Gene Ontology (GO), are increasing rapidly. Thus, PCa has become one of the major pathway analysis, pathway-action networks and protein-protein healthy issues for men in China. -
Supplementary Data
Supplemental figures Supplemental figure 1: Tumor sample selection. A total of 98 thymic tumor specimens were stored in Memorial Sloan-Kettering Cancer Center tumor banks during the study period. 64 cases corresponded to previously untreated tumors, which were resected upfront after diagnosis. Adjuvant treatment was delivered in 7 patients (radiotherapy in 4 cases, cyclophosphamide- doxorubicin-vincristine (CAV) chemotherapy in 3 cases). 34 tumors were resected after induction treatment, consisting of chemotherapy in 16 patients (cyclophosphamide-doxorubicin- cisplatin (CAP) in 11 cases, cisplatin-etoposide (PE) in 3 cases, cisplatin-etoposide-ifosfamide (VIP) in 1 case, and cisplatin-docetaxel in 1 case), in radiotherapy (45 Gy) in 1 patient, and in sequential chemoradiation (CAP followed by a 45 Gy-radiotherapy) in 1 patient. Among these 34 patients, 6 received adjuvant radiotherapy. 1 Supplemental Figure 2: Amino acid alignments of KIT H697 in the human protein and related orthologs, using (A) the Homologene database (exons 14 and 15), and (B) the UCSC Genome Browser database (exon 14). Residue H697 is highlighted with red boxes. Both alignments indicate that residue H697 is highly conserved. 2 Supplemental Figure 3: Direct comparison of the genomic profiles of thymic squamous cell carcinomas (n=7) and lung primary squamous cell carcinomas (n=6). (A) Unsupervised clustering analysis. Gains are indicated in red, and losses in green, by genomic position along the 22 chromosomes. (B) Genomic profiles and recurrent copy number alterations in thymic carcinomas and lung squamous cell carcinomas. Gains are indicated in red, and losses in blue. 3 Supplemental Methods Mutational profiling The exonic regions of interest (NCBI Human Genome Build 36.1) were broken into amplicons of 500 bp or less, and specific primers were designed using Primer 3 (on the World Wide Web for general users and for biologist programmers (see Supplemental Table 2) [1]. -
A Chromosome-Centric Human Proteome Project (C-HPP) To
computational proteomics Laboratory for Computational Proteomics www.FenyoLab.org E-mail: [email protected] Facebook: NYUMC Computational Proteomics Laboratory Twitter: @CompProteomics Perspective pubs.acs.org/jpr A Chromosome-centric Human Proteome Project (C-HPP) to Characterize the Sets of Proteins Encoded in Chromosome 17 † ‡ § ∥ ‡ ⊥ Suli Liu, Hogune Im, Amos Bairoch, Massimo Cristofanilli, Rui Chen, Eric W. Deutsch, # ¶ △ ● § † Stephen Dalton, David Fenyo, Susan Fanayan,$ Chris Gates, , Pascale Gaudet, Marina Hincapie, ○ ■ △ ⬡ ‡ ⊥ ⬢ Samir Hanash, Hoguen Kim, Seul-Ki Jeong, Emma Lundberg, George Mias, Rajasree Menon, , ∥ □ △ # ⬡ ▲ † Zhaomei Mu, Edouard Nice, Young-Ki Paik, , Mathias Uhlen, Lance Wells, Shiaw-Lin Wu, † † † ‡ ⊥ ⬢ ⬡ Fangfei Yan, Fan Zhang, Yue Zhang, Michael Snyder, Gilbert S. Omenn, , Ronald C. Beavis, † # and William S. Hancock*, ,$, † Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States ‡ Stanford University, Palo Alto, California, United States § Swiss Institute of Bioinformatics (SIB) and University of Geneva, Geneva, Switzerland ∥ Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States ⊥ Institute for System Biology, Seattle, Washington, United States ¶ School of Medicine, New York University, New York, United States $Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia ○ MD Anderson Cancer Center, Houston, Texas, United States ■ Yonsei University College of Medicine, Yonsei University, -
Primate-Specific Evolution of Noncoding Element Insertion Into PLA2G4C and Human Preterm Birth
Primate-specific evolution of noncoding element insertion into PLA2G4C and human preterm birth The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Plunkett, Jevon et al. “Primate-specific Evolution of Noncoding Element Insertion into PLA2G4C and Human Preterm Birth.” BMC Medical Genomics 3.1 (2010): 62. Web. 1 Mar. 2012. As Published http://dx.doi.org/10.1186/1755-8794-3-62 Publisher Springer (Biomed Central Ltd.) Version Final published version Citable link http://hdl.handle.net/1721.1/69548 Terms of Use Creative Commons Attribution Detailed Terms http://creativecommons.org/licenses/by/2.0 Plunkett et al. BMC Medical Genomics 2010, 3:62 http://www.biomedcentral.com/1755-8794/3/62 RESEARCH ARTICLE Open Access Primate-specific evolution of noncoding element insertion into PLA2G4C and human preterm birth Jevon Plunkett1,2, Scott Doniger3, Thomas Morgan1,4, Ritva Haataja5, Mikko Hallman5, Hilkka Puttonen6, Ramkumar Menon7,8, Edward Kuczynski9, Errol Norwitz9, Victoria Snegovskikh9, Aarno Palotie10,11,12,13, Leena Peltonen10,11,12, Vineta Fellman14,15, Emily A DeFranco16, Bimal P Chaudhari17, John Oates18, Olivier Boutaud18, Tracy L McGregor1, Jude J McElroy1, Kari Teramo6, Ingrid Borecki19, Justin C Fay20, Louis J Muglia1,21* Abstract Background: The onset of birth in humans, like other apes, differs from non-primate mammals in its endocrine physiology. We hypothesize that higher primate-specific gene evolution may lead to these differences and target genes involved in human preterm birth, an area of global health significance. Methods: We performed a comparative genomics screen of highly conserved noncoding elements and identified PLA2G4C, a phospholipase A isoform involved in prostaglandin biosynthesis as human accelerated. -
MAFB Determines Human Macrophage Anti-Inflammatory
MAFB Determines Human Macrophage Anti-Inflammatory Polarization: Relevance for the Pathogenic Mechanisms Operating in Multicentric Carpotarsal Osteolysis This information is current as of October 4, 2021. Víctor D. Cuevas, Laura Anta, Rafael Samaniego, Emmanuel Orta-Zavalza, Juan Vladimir de la Rosa, Geneviève Baujat, Ángeles Domínguez-Soto, Paloma Sánchez-Mateos, María M. Escribese, Antonio Castrillo, Valérie Cormier-Daire, Miguel A. Vega and Ángel L. Corbí Downloaded from J Immunol 2017; 198:2070-2081; Prepublished online 16 January 2017; doi: 10.4049/jimmunol.1601667 http://www.jimmunol.org/content/198/5/2070 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/01/15/jimmunol.160166 Material 7.DCSupplemental References This article cites 69 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/198/5/2070.full#ref-list-1 by guest on October 4, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. -
Transcriptional Profile of Human Anti-Inflamatory Macrophages Under Homeostatic, Activating and Pathological Conditions
UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS QUÍMICAS Departamento de Bioquímica y Biología Molecular I TESIS DOCTORAL Transcriptional profile of human anti-inflamatory macrophages under homeostatic, activating and pathological conditions Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Víctor Delgado Cuevas Directores María Marta Escribese Alonso Ángel Luís Corbí López Madrid, 2017 © Víctor Delgado Cuevas, 2016 Universidad Complutense de Madrid Facultad de Ciencias Químicas Dpto. de Bioquímica y Biología Molecular I TRANSCRIPTIONAL PROFILE OF HUMAN ANTI-INFLAMMATORY MACROPHAGES UNDER HOMEOSTATIC, ACTIVATING AND PATHOLOGICAL CONDITIONS Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas. Víctor Delgado Cuevas Tesis Doctoral Madrid 2016 Universidad Complutense de Madrid Facultad de Ciencias Químicas Dpto. de Bioquímica y Biología Molecular I TRANSCRIPTIONAL PROFILE OF HUMAN ANTI-INFLAMMATORY MACROPHAGES UNDER HOMEOSTATIC, ACTIVATING AND PATHOLOGICAL CONDITIONS Perfil transcripcional de macrófagos antiinflamatorios humanos en condiciones de homeostasis, activación y patológicas. Este trabajo ha sido realizado por Víctor Delgado Cuevas para optar al grado de Doctor en el Centro de Investigaciones Biológicas de Madrid (CSIC), bajo la dirección de la Dra. María Marta Escribese Alonso y el Dr. Ángel Luís Corbí López Fdo. Dra. María Marta Escribese -
Genome-Wide Interaction and Pathway-Based Identification of Key Regulators in Multiple Myeloma
ARTICLE https://doi.org/10.1038/s42003-019-0329-2 OPEN Genome-wide interaction and pathway-based identification of key regulators in multiple myeloma Subhayan Chattopadhyay 1,2, Hauke Thomsen1, Pankaj Yadav1, Miguel Inacio da Silva Filho1, Niels Weinhold3,4, Markus M. Nöthen5,6, Per Hoffman5,6,7, Uta Bertsch3, Stefanie Huhn3, Gareth J. Morgan4, Hartmut Goldschmidt3,8, Richard Houlston 9,10, Kari Hemminki1,11 & Asta Försti1,11 1234567890():,; Inherited genetic susceptibility to multiple myeloma has been investigated in a number of studies. Although 23 individual risk loci have been identified, much of the genetic heritability remains unknown. Here we carried out genome-wide interaction analyses on two European cohorts accounting for 3,999 cases and 7,266 controls and characterized genetic suscept- ibility to multiple myeloma with subsequent meta-analysis that discovered 16 unique inter- acting loci. These risk loci along with previously known variants explain 17% of the heritability in liability scale. The genes associated with the interacting loci were found to be enriched in transforming growth factor beta signaling and circadian rhythm regulation pathways sug- gesting immunoglobulin trait modulation, TH17 cell differentiation and bone morphogenesis as mechanistic links between the predisposition markers and intrinsic multiple myeloma biology. Further tissue/cell-type enrichment analysis associated the discovered genes with hemic-immune system tissue types and immune-related cell types indicating overall invol- vement in immune response. 1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg 69120, Germany. 2 Faculty of Medicine, University of Heidelberg, Heidelberg 69117, Germany. 3 University Clinic Heidelberg, Internal Medicine V, Heidelberg 69117, Germany. -
Entrez Programming Utilities Help
Entrez Programming Utilities Help Last Updated: February 8, 2021 National Center for Biotechnology Information (US) Bethesda (MD) National Center for Biotechnology Information (US), Bethesda (MD) NLM Citation: Entrez Programming Utilities Help [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2010-. iii • E-utilities Introduction • Please see the Release Notes for details and changes. The Entrez Programming Utilities (E-utilities) are a set of eight server-side programs that provide a stable interface into the Entrez query and database system at the National Center for Biotechnology Information (NCBI). The E-utilities use a fixed URL syntax that translates a standard set of input parameters into the values necessary for various NCBI software components to search for and retrieve the requested data. The E-utilities are therefore the structured interface to the Entrez system, which currently includes 38 databases covering a variety of biomedical data, including nucleotide and protein sequences, gene records, three- dimensional molecular structures, and the biomedical literature. iv Entrez Programming Utilities Help Table of Contents E-utilities Quick Start..................................................................................................................................................................................... 1 Release Notes....................................................................................................................................................................................................... -
Durham E-Theses
Durham E-Theses Genetic analysis of limb girdle muscular dystrophy and Miyoshi myopathy Summerill, Gillian How to cite: Summerill, Gillian (2003) Genetic analysis of limb girdle muscular dystrophy and Miyoshi myopathy, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3149/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Genetic analysis of Limb Girdle Muscular Dystrophy and Miyoshi Myopathy Gillian Summerill MSc 2003 Abstract The autosomal recess1ve muscular dystrophies encompass limb girdle muscular dystrophy (LGMD) and Miyoshi myopathy (MM), which can show clinical and genetic overlap. In this study we have made good progress towards understanding the molecular basis of LGMD2I and non-dysferlin MM. Our work on LGMD2I involved haplotype analysis of chromosome 19q 13.3 to identify potential LGMD2I families. We generated a primary transcript map of the LGMD2I region.