Investigating Symmetryinvestigating at the Center of the Figure Center the At

Total Page:16

File Type:pdf, Size:1020Kb

Investigating Symmetryinvestigating at the Center of the Figure Center the At DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-C;CA-C DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-B;CA-B LESSON2 . 4 Name Class Date Investigating 2 . 4 Investigating Symmetry Symmetry Essential Question: How do you determine whether a figure has line symmetry or rotational symmetry? Resource Common Core Math Standards Locker 1 Explore 1 Identifying Line Symmetry The student is expected to: COMMON A figure has symmetry if a rigid motion exists that maps the figure onto itself. A figure Line of CORE G-CO.A.3 has line symmetry (or reflectional symmetry) if a reflection maps the figure onto itself. symmetry Given a rectangle, parallelogram, trapezoid, or regular polygon, describe Each of these lines of reflection is called a line of symmetry. the rotations and reflections that carry it onto itself. You can use paper folding to determine whether a figure has line symmetry. Mathematical Practices Trace the figure on a piece of tracing paper. COMMON CORE MP.7 Using Structure Language Objective Have students work with a partner to give clues about a figure, and identify whether figures have line symmetry, rotational symmetry, or both and draw the line(s) of symmetry. If the figure can be folded along a straight line so that one half of the figure exactly matches ENGAGE the other half, the figure has line symmetry. The crease is the line of symmetry. Place your shape against the original figure to check that each crease is a line of symmetry. Essential Question: How do you determine whether a figure has line symmetry or rotational symmetry? Possible answer: To identify line symmetry, look for a line of reflection, which is a line that divides the figure into mirror-image halves. To identify rotational symmetry, think of the figure rotating Sketch any lines of symmetry on the figure. one around its center. The figure has rotational The figure has line of symmetry. symmetry if a rotation of at most 180° produces the original figure. Mifflin Houghton © Company Harcourt Publishing PREVIEW: LESSON PERFORMANCE TASK View the online Engage. Discuss the photo of the Module 2 through “File info” 101 Lesson 4 DO NOT EDIT--Changes must be made CorrectionKey=NL-B;CA-B Date Class flower with students. Consider whether you could Name Symmetry 2 . 4 Investigating whether a figure has line symmetry Resource Locker Essential Question: orHow rotational do you determinesymmetry? ezoid, or regular polygon, describe the rotations HARDCOVER PAGES 8996 COMMON CORE G-CO.A.3 Given a rectangle, parallelogram, trap and reflections that carry it onto itself. Line of turn the flower and have it still appear the same. to itself. A figure symmetry Identifying Line Symmetry 1 Explore 1 if a rigid motion exists) if that a reflection maps the maps figure the on figure onto itself. A figure has symmetry of symmetry. e symmetry. has line symmetry (or reflectional symmetry GE_MNLESE385795_U1M02L4 101 Each of these lines of reflection is calledetermine a line whether a figure has lin 5/14/14 7:32 PM You can use paper folding to d Then preview the Lesson Performance Task. tracing paper. Trace the figure on a piece of Turn to these pages to find this lesson in the f of the figure exactly matches f symmetry. Place your long a straight line so that one hal symmetry. The crease is the linee o of symmetry. If the figure can be folded a the other half, the figure has lineure to check that each crease is a lin hardcover student shape against the original fig edition. try on the figure. Sketch any lines of symme one line of symmetry. The figure has © Houghton Mifflin Harcourt Publishing Company Publishing Harcourt Mifflin Houghton © Lesson 4 101 5/14/14 7:33 PM Module 2 02L4 101 GE_MNLESE385795_U1M 101 Lesson 2 . 4 DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-C;CA-C DO NOT EDIT--Changes must be made through “File info” DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-A;CA-A CorrectionKey=NL-A;CA-A Draw the lines of symmetry, if any, on each figure and tell the total number of lines of symmetry each figure has. EXPLORE 1 Figure Identifying Line Symmetry How many lines two zero one of symmetry? INTEGRATE TECHNOLOGY Reflect Have students use geometry software or cut out 1. What do you have to know about any segments and angles in a figure to figures to examine the symmetry of regular polygons. decide whether the figure has line symmetry? Pairs of segments in the figure must have the same length and pairs of angles must have Then have them use inductive reasoning to make the same measure, so that one half of the figure will coincide with the other half when the conjectures about the number of lines of symmetry a figure is folded across a line of symmetry. regular n-gon has. n lines of symmetry A circle 2. What figure has an infinite number of lines of symmetry? 3. Discussion A figure undergoes a rigid motion, such as a rotation. If the figure has line QUESTIONING STRATEGIES symmetry, does the image of the figure have line symmetry as well? Give an example. Yes. The line of symmetry also undergoes the rigid motion. For example, if the L-shape in What are the three rigid motions explained Step D is rotated into a V-shape, the line of symmetry is rotated the same way. in this module? What does a rigid motion transformation preserve? translation, reflection, 1 Explore 2 Identifying Rotational Symmetry rotation; shape and size A figure has rotational symmetry if a rotation maps the figure onto itself. The angle of rotational symmetry, which is greater than 0° but Angle of rotational less than or equal to 180°, is the smallest angle of rotation that maps a symmetry: 72° figure onto itself. EXPLORE 2 An angle of rotational symmetry is a fractional part of 360°. Notice that 360 ____ ° Mifflin Houghton © Company Harcourt Publishing every time the 5-pointed star rotates 5 = 72°, the star coincides with itself. The angles of rotation for the star are 72°, 144°, 216°, and 288°. If Identifying Rotational Symmetry a copy of the figure rotates to exactly match the original, the figure has rotational symmetry. Trace the figure onto tracing paper. Hold the center of the traced figure against the original INTEGRATE TECHNOLOGY figure with your pencil. Rotate the traced figure counterclockwise until it coincides again with the original figure beneath. Ask students to discuss the pros and cons of using geometry software to investigate properties of rotations and symmetry. Be sure students recognize that such software has the advantage of making it easy to change parameters (such as the angle of rotation) so that they can observe the effects of the 120 By how many degrees did you rotate the figure? ° changes. 120 , 240 What are all the angles of rotation? ° ° Module 2 102 Lesson 4 QUESTIONING STRATEGIES PROFESSIONAL DEVELOPMENT When you are testing a figure to see if it has GE_MNLESE385795_U1M02L4.indd 102 3/20/14 12:35 PM rotational symmetry, where is P, the center of Math Background rotation? at the center of the figure A wallpaper pattern is a planar repeating pattern. Mathematicians classify wallpaper patterns based on the symmetries they exhibit, for example, only translation symmetry; translation and reflection symmetry; or all these plus rotational symmetry. Every wallpaper pattern can be classified by identifying its symmetries. Surprisingly, there are precisely 17 different classifications. That is, any repeating pattern that covers a plane can be reduced to one of 17 basic types. This unusual mathematical fact has had far-reaching applications in a number of fields, including chemistry and crystallography. Investigating Symmetry 102 DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-C;CA-C DO NOT EDIT--Changes must be made through “File info” CorrectionKey=NL-A;CA-A Determine whether each figure has rotational symmetry. If so, identify all the angles of EXPLAIN 1 rotation less than 360°. Describing Symmetries Figure Angles of rotation 90°, 180°, 270° none 180° INTEGRATE TECHNOLOGY less than 360° Human faces appear to have symmetry, but most Reflect people’s faces aren’t perfectly symmetric. Photocopy a A circle 4. What figure is mapped onto itself by a rotation of any angle? picture of a face onto two transparencies and cut each 5. Discussion A figure is formed by line l and line m, which intersect at an angle of 60°. Does the figure one down the center of the face. Flip the pieces of one have an angle of rotational symmetry of 60°? If not, what is the angle of rotational symmetry? No, the angle of rotational symmetry for the figure is 180 . A rotation of 60 about the transparency over and put the two left sides together ° ° intersection will only map one of the lines onto the other line. and the two right sides together to create two different faces with perfect symmetry. Discuss with students how to tell if a figure has symmetry. Explain 1 Describing Symmetries A figure may have line symmetry, rotational symmetry, both types of symmetry, or no symmetry. Example 1 Describe the symmetry of each figure. Draw the lines of symmetry, name QUESTIONING STRATEGIES the angles of rotation, or both if the figure has both. How can you find the center point of a regular polygon? The center is the point that is equidistant from each vertex or corner. AVOID COMMON ERRORS Step 1 Begin by finding the line symmetry of the figure.
Recommended publications
  • In Order for the Figure to Map Onto Itself, the Line of Reflection Must Go Through the Center Point
    3-5 Symmetry State whether the figure appears to have line symmetry. Write yes or no. If so, copy the figure, draw all lines of symmetry, and state their number. 1. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The figure has reflectional symmetry. In order for the figure to map onto itself, the line of reflection must go through the center point. Two lines of reflection go through the sides of the figure. Two lines of reflection go through the vertices of the figure. Thus, there are four possible lines that go through the center and are lines of reflections. Therefore, the figure has four lines of symmetry. eSolutionsANSWER: Manual - Powered by Cognero Page 1 yes; 4 2. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure does not have reflectional symmetry. There is no way to fold or reflect it onto itself. ANSWER: no 3. SOLUTION: A figure has reflectional symmetry if the figure can be mapped onto itself by a reflection in a line. The given figure has reflectional symmetry. The figure has a vertical line of symmetry. It does not have a horizontal line of symmetry. The figure does not have a line of symmetry through the vertices. Thus, the figure has only one line of symmetry. ANSWER: yes; 1 State whether the figure has rotational symmetry. Write yes or no. If so, copy the figure, locate the center of symmetry, and state the order and magnitude of symmetry.
    [Show full text]
  • Enhancing Self-Reflection and Mathematics Achievement of At-Risk Urban Technical College Students
    Psychological Test and Assessment Modeling, Volume 53, 2011 (1), 108-127 Enhancing self-reflection and mathematics achievement of at-risk urban technical college students Barry J. Zimmerman1, Adam Moylan2, John Hudesman3, Niesha White3, & Bert Flugman3 Abstract A classroom-based intervention study sought to help struggling learners respond to their academic grades in math as sources of self-regulated learning (SRL) rather than as indices of personal limita- tion. Technical college students (N = 496) in developmental (remedial) math or introductory col- lege-level math courses were randomly assigned to receive SRL instruction or conventional in- struction (control) in their respective courses. SRL instruction was hypothesized to improve stu- dents’ math achievement by showing them how to self-reflect (i.e., self-assess and adapt to aca- demic quiz outcomes) more effectively. The results indicated that students receiving self-reflection training outperformed students in the control group on instructor-developed examinations and were better calibrated in their task-specific self-efficacy beliefs before solving problems and in their self- evaluative judgments after solving problems. Self-reflection training also increased students’ pass- rate on a national gateway examination in mathematics by 25% in comparison to that of control students. Key words: self-regulation, self-reflection, math instruction 1 Correspondence concerning this article should be addressed to: Barry Zimmerman, PhD, Graduate Center of the City University of New York and Center for Advanced Study in Education, 365 Fifth Ave- nue, New York, NY 10016, USA; email: [email protected] 2 Now affiliated with the University of California, San Francisco, School of Medicine 3 Graduate Center of the City University of New York and Center for Advanced Study in Education Enhancing self-reflection and math achievement 109 Across America, faculty and policy makers at two-year and technical colleges have been deeply troubled by the low academic achievement and high attrition rate of at-risk stu- dents.
    [Show full text]
  • Reflection Invariant and Symmetry Detection
    1 Reflection Invariant and Symmetry Detection Erbo Li and Hua Li Abstract—Symmetry detection and discrimination are of fundamental meaning in science, technology, and engineering. This paper introduces reflection invariants and defines the directional moments(DMs) to detect symmetry for shape analysis and object recognition. And it demonstrates that detection of reflection symmetry can be done in a simple way by solving a trigonometric system derived from the DMs, and discrimination of reflection symmetry can be achieved by application of the reflection invariants in 2D and 3D. Rotation symmetry can also be determined based on that. Also, if none of reflection invariants is equal to zero, then there is no symmetry. And the experiments in 2D and 3D show that all the reflection lines or planes can be deterministically found using DMs up to order six. This result can be used to simplify the efforts of symmetry detection in research areas,such as protein structure, model retrieval, reverse engineering, and machine vision etc. Index Terms—symmetry detection, shape analysis, object recognition, directional moment, moment invariant, isometry, congruent, reflection, chirality, rotation F 1 INTRODUCTION Kazhdan et al. [1] developed a continuous measure and dis- The essence of geometric symmetry is self-evident, which cussed the properties of the reflective symmetry descriptor, can be found everywhere in nature and social lives, as which was expanded to 3D by [2] and was augmented in shown in Figure 1. It is true that we are living in a spatial distribution of the objects asymmetry by [3] . For symmetric world. Pursuing the explanation of symmetry symmetry discrimination [4] defined a symmetry distance will provide better understanding to the surrounding world of shapes.
    [Show full text]
  • Molecular Symmetry
    Molecular Symmetry Symmetry helps us understand molecular structure, some chemical properties, and characteristics of physical properties (spectroscopy) – used with group theory to predict vibrational spectra for the identification of molecular shape, and as a tool for understanding electronic structure and bonding. Symmetrical : implies the species possesses a number of indistinguishable configurations. 1 Group Theory : mathematical treatment of symmetry. symmetry operation – an operation performed on an object which leaves it in a configuration that is indistinguishable from, and superimposable on, the original configuration. symmetry elements – the points, lines, or planes to which a symmetry operation is carried out. Element Operation Symbol Identity Identity E Symmetry plane Reflection in the plane σ Inversion center Inversion of a point x,y,z to -x,-y,-z i Proper axis Rotation by (360/n)° Cn 1. Rotation by (360/n)° Improper axis S 2. Reflection in plane perpendicular to rotation axis n Proper axes of rotation (C n) Rotation with respect to a line (axis of rotation). •Cn is a rotation of (360/n)°. •C2 = 180° rotation, C 3 = 120° rotation, C 4 = 90° rotation, C 5 = 72° rotation, C 6 = 60° rotation… •Each rotation brings you to an indistinguishable state from the original. However, rotation by 90° about the same axis does not give back the identical molecule. XeF 4 is square planar. Therefore H 2O does NOT possess It has four different C 2 axes. a C 4 symmetry axis. A C 4 axis out of the page is called the principle axis because it has the largest n . By convention, the principle axis is in the z-direction 2 3 Reflection through a planes of symmetry (mirror plane) If reflection of all parts of a molecule through a plane produced an indistinguishable configuration, the symmetry element is called a mirror plane or plane of symmetry .
    [Show full text]
  • History of Mathematics
    Georgia Department of Education History of Mathematics K-12 Mathematics Introduction The Georgia Mathematics Curriculum focuses on actively engaging the students in the development of mathematical understanding by using manipulatives and a variety of representations, working independently and cooperatively to solve problems, estimating and computing efficiently, and conducting investigations and recording findings. There is a shift towards applying mathematical concepts and skills in the context of authentic problems and for the student to understand concepts rather than merely follow a sequence of procedures. In mathematics classrooms, students will learn to think critically in a mathematical way with an understanding that there are many different ways to a solution and sometimes more than one right answer in applied mathematics. Mathematics is the economy of information. The central idea of all mathematics is to discover how knowing some things well, via reasoning, permit students to know much else—without having to commit the information to memory as a separate fact. It is the reasoned, logical connections that make mathematics coherent. The implementation of the Georgia Standards of Excellence in Mathematics places a greater emphasis on sense making, problem solving, reasoning, representation, connections, and communication. History of Mathematics History of Mathematics is a one-semester elective course option for students who have completed AP Calculus or are taking AP Calculus concurrently. It traces the development of major branches of mathematics throughout history, specifically algebra, geometry, number theory, and methods of proofs, how that development was influenced by the needs of various cultures, and how the mathematics in turn influenced culture. The course extends the numbers and counting, algebra, geometry, and data analysis and probability strands from previous courses, and includes a new history strand.
    [Show full text]
  • The Cubic Groups
    The Cubic Groups Baccalaureate Thesis in Electrical Engineering Author: Supervisor: Sana Zunic Dr. Wolfgang Herfort 0627758 Vienna University of Technology May 13, 2010 Contents 1 Concepts from Algebra 4 1.1 Groups . 4 1.2 Subgroups . 4 1.3 Actions . 5 2 Concepts from Crystallography 6 2.1 Space Groups and their Classification . 6 2.2 Motions in R3 ............................. 8 2.3 Cubic Lattices . 9 2.4 Space Groups with a Cubic Lattice . 10 3 The Octahedral Symmetry Groups 11 3.1 The Elements of O and Oh ..................... 11 3.2 A Presentation of Oh ......................... 14 3.3 The Subgroups of Oh ......................... 14 2 Abstract After introducing basics from (mathematical) crystallography we turn to the description of the octahedral symmetry groups { the symmetry group(s) of a cube. Preface The intention of this account is to provide a description of the octahedral sym- metry groups { symmetry group(s) of the cube. We first give the basic idea (without proofs) of mathematical crystallography, namely that the 219 space groups correspond to the 7 crystal systems. After this we come to describing cubic lattices { such ones that are built from \cubic cells". Finally, among the cubic lattices, we discuss briefly the ones on which O and Oh act. After this we provide lists of the elements and the subgroups of Oh. A presentation of Oh in terms of generators and relations { using the Dynkin diagram B3 is also given. It is our hope that this account is accessible to both { the mathematician and the engineer. The picture on the title page reflects Ha¨uy'sidea of crystal structure [4].
    [Show full text]
  • Symmetry and Beauty in the Living World I Thank the Governing Body and the Director of the G.B
    SYMMETRY AND BEAUTY IN THE LIVING WORLD I thank the Governing Body and the Director of the G.B. Pant Institute of Himalayan Environment & Development for providing me this opportunity to deliver the 17th Govind Ballabh Pant Memorial Lecture. Pt. Pant, as I have understood, was amongst those who contributed in multiple ways to shape and nurture the nation in general and the Himalayan area in particular. Established to honour this great ‘Son of the Mountains’, the Institute carries enormous responsibilities and expectations from millions of people across the region and outside. Undoubtedly the multidisciplinary skills and interdisciplinary approach of the Institute and the zeal of its members to work in remote areas and harsh Himalayan conditions will succeed in achieving the long term vision of Pt. Pant for the overall development of the region. My talk ‘Symmetry and Beauty in the Living World’ attempts to discuss aspects of symmetry and beauty in nature and their evolutionary explanations. I shall explain how these elements have helped developmental and evolutionary biologists to frame and answer research questions. INTRODUCTION Symmetry is an objective feature of the living world and also of some non-living entities. It forms an essential element of the laws of nature; it is often sought by human beings when they create artefacts. Beauty has to do with a subjective assessment of the extent to which something or someone has a pleasing appearance. It is something that people aspire to, whether in ideas, creations or people. Evolutionary biology tells us that it is useful to look for an evolutionary explanation of anything to do with life.
    [Show full text]
  • Isometries and the Plane
    Chapter 1 Isometries of the Plane \For geometry, you know, is the gate of science, and the gate is so low and small that one can only enter it as a little child. (W. K. Clifford) The focus of this first chapter is the 2-dimensional real plane R2, in which a point P can be described by its coordinates: 2 P 2 R ;P = (x; y); x 2 R; y 2 R: Alternatively, we can describe P as a complex number by writing P = (x; y) = x + iy 2 C: 2 The plane R comes with a usual distance. If P1 = (x1; y1);P2 = (x2; y2) 2 R2 are two points in the plane, then p 2 2 d(P1;P2) = (x2 − x1) + (y2 − y1) : Note that this is consistent withp the complex notation. For P = x + iy 2 C, p 2 2 recall that jP j = x + y = P P , thus for two complex points P1 = x1 + iy1;P2 = x2 + iy2 2 C, we have q d(P1;P2) = jP2 − P1j = (P2 − P1)(P2 − P1) p 2 2 = j(x2 − x1) + i(y2 − y1)j = (x2 − x1) + (y2 − y1) ; where ( ) denotes the complex conjugation, i.e. x + iy = x − iy. We are now interested in planar transformations (that is, maps from R2 to R2) that preserve distances. 1 2 CHAPTER 1. ISOMETRIES OF THE PLANE Points in the Plane • A point P in the plane is a pair of real numbers P=(x,y). d(0,P)2 = x2+y2. • A point P=(x,y) in the plane can be seen as a complex number x+iy.
    [Show full text]
  • Chapter 1 – Symmetry of Molecules – P. 1
    Chapter 1 – Symmetry of Molecules – p. 1 - 1. Symmetry of Molecules 1.1 Symmetry Elements · Symmetry operation: Operation that transforms a molecule to an equivalent position and orientation, i.e. after the operation every point of the molecule is coincident with an equivalent point. · Symmetry element: Geometrical entity (line, plane or point) which respect to which one or more symmetry operations can be carried out. In molecules there are only four types of symmetry elements or operations: · Mirror planes: reflection with respect to plane; notation: s · Center of inversion: inversion of all atom positions with respect to inversion center, notation i · Proper axis: Rotation by 2p/n with respect to the axis, notation Cn · Improper axis: Rotation by 2p/n with respect to the axis, followed by reflection with respect to plane, perpendicular to axis, notation Sn Formally, this classification can be further simplified by expressing the inversion i as an improper rotation S2 and the reflection s as an improper rotation S1. Thus, the only symmetry elements in molecules are Cn and Sn. Important: Successive execution of two symmetry operation corresponds to another symmetry operation of the molecule. In order to make this statement a general rule, we require one more symmetry operation, the identity E. (1.1: Symmetry elements in CH4, successive execution of symmetry operations) 1.2. Systematic classification by symmetry groups According to their inherent symmetry elements, molecules can be classified systematically in so called symmetry groups. We use the so-called Schönfliess notation to name the groups, Chapter 1 – Symmetry of Molecules – p. 2 - which is the usual notation for molecules.
    [Show full text]
  • 20. Geometry of the Circle (SC)
    20. GEOMETRY OF THE CIRCLE PARTS OF THE CIRCLE Segments When we speak of a circle we may be referring to the plane figure itself or the boundary of the shape, called the circumference. In solving problems involving the circle, we must be familiar with several theorems. In order to understand these theorems, we review the names given to parts of a circle. Diameter and chord The region that is encompassed between an arc and a chord is called a segment. The region between the chord and the minor arc is called the minor segment. The region between the chord and the major arc is called the major segment. If the chord is a diameter, then both segments are equal and are called semi-circles. The straight line joining any two points on the circle is called a chord. Sectors A diameter is a chord that passes through the center of the circle. It is, therefore, the longest possible chord of a circle. In the diagram, O is the center of the circle, AB is a diameter and PQ is also a chord. Arcs The region that is enclosed by any two radii and an arc is called a sector. If the region is bounded by the two radii and a minor arc, then it is called the minor sector. www.faspassmaths.comIf the region is bounded by two radii and the major arc, it is called the major sector. An arc of a circle is the part of the circumference of the circle that is cut off by a chord.
    [Show full text]
  • Pose Estimation for Objects with Rotational Symmetry
    Pose Estimation for Objects with Rotational Symmetry Enric Corona, Kaustav Kundu, Sanja Fidler Abstract— Pose estimation is a widely explored problem, enabling many robotic tasks such as grasping and manipulation. In this paper, we tackle the problem of pose estimation for objects that exhibit rotational symmetry, which are common in man-made and industrial environments. In particular, our aim is to infer poses for objects not seen at training time, but for which their 3D CAD models are available at test time. Previous X 2 X 1 X 2 X 1 work has tackled this problem by learning to compare captured Y ∼ 2 Y ∼ 2 Y ∼ 2 Y ∼ 2 views of real objects with the rendered views of their 3D CAD Z ∼ 6 Z ∼ 1 Z ∼ Z ∼ 1 ∼ ∼ ∼ ∞ ∼ models, by embedding them in a joint latent space using neural Fig. 1. Many industrial objects such as various tools exhibit rotational networks. We show that sidestepping the issue of symmetry symmetries. In our work, we address pose estimation for such objects. in this scenario during training leads to poor performance at test time. We propose a model that reasons about rotational symmetry during training by having access to only a small set of that this is not a trivial task, as the rendered views may look symmetry-labeled objects, whereby exploiting a large collection very different from objects in real images, both because of of unlabeled CAD models. We demonstrate that our approach different background, lighting, and possible occlusion that significantly outperforms a naively trained neural network on arise in real scenes.
    [Show full text]
  • Symmetry of Graphs. Circles
    Symmetry of graphs. Circles Symmetry of graphs. Circles 1 / 10 Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Reflection across y reflection across x reflection across (0; 0) Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Symmetry of graphs. Circles 2 / 10 Reflection across y reflection across x reflection across (0; 0) Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Symmetry of graphs. Circles 2 / 10 Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object. It is called symmetric if some geometric move preserves it Today we will be interested in reflection across the x-axis, reflection across the y-axis and reflection across the origin. Reflection across y reflection across x reflection across (0; 0) Symmetry of graphs. Circles 2 / 10 Sends (x,y) to (-x,y) Sends (x,y) to (x,-y) Sends (x,y) to (-x,-y) Examples with Symmetry What is Symmetry? Take some geometrical object.
    [Show full text]