The Effects of Nicotine and Cigarette Smoking on Cardiac Electrophysiology

Total Page:16

File Type:pdf, Size:1020Kb

The Effects of Nicotine and Cigarette Smoking on Cardiac Electrophysiology University of Louisville ThinkIR: The University of Louisville's Institutional Repository Electronic Theses and Dissertations 12-2019 The effects of nicotine and cigarette smoking on cardiac electrophysiology. Affan B. Irfan University of Louisville Follow this and additional works at: https://ir.library.louisville.edu/etd Part of the Cardiology Commons, Cardiovascular Diseases Commons, Medical Physiology Commons, and the Preventive Medicine Commons Recommended Citation Irfan, Affan B., "The effects of nicotine and cigarette smoking on cardiac electrophysiology." (2019). Electronic Theses and Dissertations. Paper 3319. https://doi.org/10.18297/etd/3319 This Doctoral Dissertation is brought to you for free and open access by ThinkIR: The University of Louisville's Institutional Repository. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of ThinkIR: The University of Louisville's Institutional Repository. This title appears here courtesy of the author, who has retained all other copyrights. For more information, please contact [email protected]. THE EFFECTS OF NICOTINE AND CIGARETTE SMOKING ON CARDIAC ELECTROPHYSIOLOGY By Affan B. Irfan M,B.B,S Aga Khan University, 2008 A Dissertation Submitted to the Faculty of the School of Medicine of the University of Louisville In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physiology and Biophysics Department of Physiology University of Louisville Louisville, Kentucky December 2019 THE EFFECTS OF NICOTINE AND CIGARETTE SMOKING ON CARDIAC ELECTROPHYSIOLOGY By Affan B. Irfan M,B.B,S Aga Khan University, 2008 A Dissertation Approved on November 27, 2019 by the following Dissertation Committee: Dr Aruni Bhatnagar (Dissertation Director) Dr Alex Carll (Co-Director) Dr. Andrew P. DeFilippis Dr. Irving G. Joshua Dr. Dale A. Schuschke ii DEDICATION This dissertation is dedicated to my parents, Irfan Uddin and Farzana Irfan, (without whom I would not have been here), my brother, Furqan Irfan, and sister Bismah Irfan, (without whom I would not have been the middle child), and my wife, Sommaya Naveed, and our daughter, Aiza Affan (without whom this dissertation would have been completed a year ago). iii ACKNOWLEDGEMENTS Firstly, I am indebted to Dr. Aruni Bhatnagar, for giving me the opportunity to complete my Ph.D dissertation under his supervision, and also to Dr. Glenn Hirsch and the University of Louisville Cardiovascular Fellowship Program, for allowing me to participate in the Ph.D graduate studies during my fellowship training. I particularly would like to thank my mentors, Dr. Bhatnagar and Dr. Alex P. Carll, for their tireless guidance and “tough love” that pushed me out of my comfort zone (of just being a physician), and onto the path of a successful (and humble) scientist. I would like to thank the rest of my dissertation committee members (Dr. Andrew P. DeFilippis, Dr. Irving G. Joshua, and Dr. Dale A. Schuschke) for their support and invaluable advice. I am also especially grateful to Dr. Andrew P. DeFilippis for his expertise in clinical research studies that contributed greatly to this research. Moreover, I am thankful to Dr. Elsayed Soliman for his advice, collaboration, and contribution to projects related to this dissertation. This work would not have been possible without the administrative and financial support of Marshall University’s Departments of Cardiology and Clinical Translational Services. I am especially grateful to research coordinators, Melissa Marcum and Scott Wiley, for their perseverance and unwavering commitment to this research study. I am greatly indebted to, and honored by, the encouragement and guidance from Dr. Christian Mueller, who introduced me to cardiovascular research and helped take the first steps of my scientific pursuits. Lastly, I thank my dear family, especially my mother, father, brother, sister, and wife for their enduring love, support, and sacrifice. iv ABSTRACT THE EFFECTS OF NICOTINE AND CIGARETTE SMOKING ON CARDIAC ELECTROPHYSIOLOGY Affan B. Irfan November 27, 2019 Cigarette smoking is a leading cause of preventable disease and premature death worldwide. The adverse effects of cigarette smoking, including proarrhythmia, are related to the mixture of chemicals, including nicotine (which sustains tobacco addiction). However, it remains unclear which individual tobacco smoke constituents and biological pathways mediate this increased risk. The purpose of this research was to explore the chronic effects of cigarette smoking, as well as compare the acute effects of nicotine and cigarette smoking, and the possible role of β-adrenoreceptors, on human cardiac electrophysiology. Chapter 1 is a comprehensive literature review of (a) the ex vivo and in vivo effects of nicotine and non-nicotine constituents of cigarette smoking on cardiac ion channels, (b) the direct and indirect effects of the autonomic nervous system on cardiac electrophysiology, and (c) studies of acute and chronic effects of cigarette smoking in humans. Chapter 2 consists of two studies in which we used cotinine levels to investigate the differences in baseline cardiac electrocardiogram between chronic smokers and non- smokers, and to define smoking status and its burden. We also explored the relationship between urinary catecholamines, cotinine, and electrocardiographic changes. Chapter 3 features the 2 x 2 factorial experimental study designed to compare v the acute effects of cigarette smoking and nicotine, with and without a β-blocker (propranolol). We found that chronic cigarette smoking was associated with a shortened PR segment at baseline, and that dopamine possibly mediates this effect. There was also (corrected) QT interval shortening with increased cotinine levels. This experimental study revealed that the non-nicotine constituents in cigarette smoking were mainly responsible for PR segment shortening, through β-adrenoreceptors. Other evidence revealed that, although nicotine in cigarette smoke is primarily responsible for sympathetic activation and (corrected) QT interval shortening, it is the non-nicotine constituents that depress the ST segment. Collectively, acute and chronic exposure studies indicate that smoking may promote cardiac arrhythmia, primarily via β-adrenoreceptors, causing acceleration of dromotropy and ischemia (non-nicotine mediated), and ventricular repolarization (nicotine-mediated). This research elucidated a major physiological mechanism driving the effect of cigarette smoking and nicotine on cardiac electrophysiology. Consequently, these findings will inform U.S. Food and Drug Administration of tobacco and nicotine- containing products’ impact on the human cardiac electrical system, and potentially help regulate alternative forms of nicotine delivery and protect public health. vi TABLE OF CONTENTS PAGE ACKNOWLEDGEMENTS ............................................................................................ iv ABSTRACT ..................................................................................................................... v LIST OF TABLES .......................................................................................................... ix LIST OF FIGURES .......................................................................................................... X CHAPTER I. INTRODUCTION ..................................................................................... 1 Background and context ............................................................................................... 1 Clinical significance of cigarette smoking, nicotine, and cardiac electrophysiology ...................................................................................................... 1 Effects of cardiac autonomic system and cigarette smoke on cardiac action potential .......................................................................................................... 7 Literature review of effects of autonomic nervous system and smoking on electrocardiogram .................................................................................................... 32 Hypothesis ................................................................................................................... 44 Ethical considerations ............................................................................................. 45 CHAPTER II CHRONIC EFFECTS OF CIGARETTE SMOKING ON ELECTROCARDIOGRAM ........................................................................................... 46 Cigarette smoking, ECG and interaction with Atrioventricular nodal blockers ............................................................................................................. 46 Participants from NHANES database ..................................................................... 45 Results ..................................................................................................................... 52 Discussion ............................................................................................................... 61 Conclusions ............................................................................................................. 64 Effects of cigarette smoking on electrocardiogram mediated via catecholamines ...................................................................................................... 65 Participants from Louisville Healthy Heart Study .................................................. 65 Results ....................................................................................................................
Recommended publications
  • The QT Interval: How Long Is Too Long?
    heart matters The QT interval: How long is too long? By Natalie K. Cox, RN Staff Nurse • Coronary Care Unit • McLeod Regional Medical Center • Florence, S.C. What’s the QT interval and why’s it so the appearance that the QT interval is pro- important? In this article, I’ll answer these longed. However, a wide QRS complex questions plus show you how to measure represents depolarization, and LQTS is a dis- the QT interval and how to recognize the order of repolarization. Sometimes the end types of long QT syndrome (LQTS) and of a T wave isn’t clearly defi ned, which can their symptoms, causes, and treatments. make it diffi cult to get the QT measurement. Irregular rhythms also make it diffi cult to The long and short of it obtain a consistent QT interval measure- The QT interval on the ECG is measured ment. For example, atrial fi brillation makes from the beginning of the QRS complex to it extremely diffi cult to measure a QT inter- the end of the T wave (see ECG components). val because fi nding a T wave isn’t always It represents the time it takes for the ventricles of the heart to depolarize and repolarize, or to ECG components contract and relax. The QT interval is longer when First positive deflection after the the heart rate is slower and short- ECG components P or Q wave er when the heart rate is faster. So it’s necessary to calculate the corrected QT interval (QTc) using the Bazett formula: QT interval divided by the square root of the R-R interval.
    [Show full text]
  • Some Observations on the Atrial Sound*
    15 Oktober 1960 S.A. TYDSKRIF VIR GENEESKUNDE 887 SOME OBSERVATIONS ON THE ATRIAL SOUND* JOHN R BARLOW, M.R, RCH., M.R.C.P., Department of Medicine, University of The WiTwaTersralld. Johallllesburg The atrial sound, also known as the fourth heart sound Emotional factors probably play a large part in this; the or. presystolic gallop, has been defined' as an audible P-G interval may quickly horten again on the introduction ibration occurring more than 0·07 second after the of an intravenous needle or imilar procedure. beginning of the P wave of the simultaneous electrocardio­ 3. EffeCT of respiration. Whereas re piration produce gram (ECG) but preceding the onset of the QRS complex. no effect on the P-G interval in patients with hyperten ion It has been shown' that, unrelated to any alteration in the or ischaemia. the atrial sound of cor pulmonale both in­ P-R interval, the position of the atrial sound varies in creases in intensity and occurs earlier in the cardiac cycle relation to the first heart sound and to the simultaneous during inspiration as compared with expiration (Fig. 4). ECG. 4. EffeCT of various procedures. Jt has already been Jt is the purpose of this paper to demonstrate this mentioned that the intravenous administration of hypo­ variation in the timing of the atrial sound and to discuss tensive drugs will increase the P-G interval in hypertensive some of the clinical implications resulting from this varia­ patients. The inhalation of amyl nitrite has a similar effect bility. in hypertension (Fig. 5), though a change in the P-G METHODS AND OBSERVATIO S interval is seldom seen in cases with ischaemic heart disease following inhalation of this drug.
    [Show full text]
  • Chronotropic and Dromotropic Responses to Localized Glutamate Microinjections in the Rat $ Nucleus Ambiguus
    brain research 1542 (2014) 93–103 Available online at www.sciencedirect.com www.elsevier.com/locate/brainres Research Report Chronotropic and dromotropic responses to localized glutamate microinjections in the rat $ nucleus ambiguus Karla N. Sampaio1,He´lder Mauad2, K. Michael Spyer, Timothy W. Fordn Division of Biosciences, Faculty of Life Sciences, University College London, Gower Street, London WC1E 6BT, UK article info abstract Article history: The cardioinhibitory effects of cardiac vagal motoneurons (CVMs) are mediated by Accepted 18 October 2013 activation of postganglionic neurons in the epicardial ganglia which have been shown to Available online 24 October 2013 exert functionally selective effects on heart rate and atrioventricular conduction in the rat. Here we investigate whether CVMs producing these responses may occupy different Keywords: rostrocaudal positions within the nucleus ambiguus. Excitation of CVMs was attempted Autonomic nervous system by microinjections of glutamate into the nucleus ambiguus of an arterially perfused Vagus nerve preparation in a grid extending over 2 mm in the rostrocaudal plane using the obex as a Nucleus ambiguus reference point. Microinjections were paired, one made during pacing to measure changes Heart rate in atrioventricular conduction (P-R interval) independent of changes in heart rate and the Glutamate other looking for changes in heart period (P-P interval) un-paced. Although evidence of a differential distribution was found in 7 cases, in the majority (13/20), sites producing maximal effects on both variables coincided. Maximal changes in atrioventricular conduc- tion resulted from more rostral sites in 6 cases and from a more caudal site in only one. Overall, the ratio of the change in atrioventricular conduction to the change in heart rate for a given site was significantly greater 1 mm rostral to the obex than at either end of the test grid.
    [Show full text]
  • The ECG Made Very Easy Indeed: a Beginner’S Guide
    Part 1 The ECG made very easy indeed: a beginner’s guide The ECG made very easy indeed 1 What is an ECG? 1 The heart is a pump driven by intrinsic electrical When do you need an ECG? 1 impulses which make the heart beat. An ECG is a paper recording of that electrical activity. The ECG records where How to record an ECG 2 electrical impulses start and how they flow through the How to interpret an ECG: the basics 2 heart. It does not measure how well the heart is pumping. The electrical activity of the heart starts in the ‘inter- The ECG waves and what they mean 2 nal pacemaker’, which is called the sinoatrial node. This Interpretation starts here! 4 is in the right atrium. The normal rhythm is called ‘sinus rhythm’ (properly it should be called sinoatrial rhythm, Rhythms you must be able to recognize 8 but it isn’t). The way electrical impulses flow through the Patterns you must be able to recognize 10 heart is called conduction. Abnormalities in the electrical activity of the heart can The normal ECG and its variants 13 result in abnormal conduction or rhythms where the heart ECG red flags 14 may go too quickly, too slowly, or beat irregularly. Changes to the normal flow of electricity through the heart can be shown on an ECG and may indicate damaged This guide has been written for those who are just starting heart muscle. Heart muscle can be damaged by many to use ECGs in their clinical practice.
    [Show full text]
  • Baroreflex Sensitivity Impairment During Hypoglycemia
    Diabetes Volume 65, January 2016 209 Ajay D. Rao,1,2 Istvan Bonyhay,3 Joel Dankwa,1 Maria Baimas-George,1 Lindsay Kneen,1 Sarah Ballatori,3 Roy Freeman,3 and Gail K. Adler1 Baroreflex Sensitivity Impairment During Hypoglycemia: Implications for Cardiovascular Control Diabetes 2016;65:209–215 | DOI: 10.2337/db15-0871 Studies have shown associations between exposure to of cardiovascular benefit(4–7). These results raise the hypoglycemia and increased mortality, raising the pos- possibility that exposure to hypoglycemia has adverse sibility that hypoglycemia has adverse cardiovascular and unknown effects that persist after hypoglycemia effects. In this study, we determined the acute effects resolves and may oppose cardiovascular benefits of im- of hypoglycemia on cardiovascular autonomic control. proved glycemic control (8,9). Seventeen healthy volunteers were exposed to exper- Prior exposure to hypoglycemia impairs the hormonal imental hypoglycemia (2.8 mmol/L) for 120 min. Car- and muscle sympathetic nerve activity (MSNA) response fl COMPLICATIONS diac vagal barore ex function was assessed using the to subsequent hypoglycemia (10), the hormonal responses fi modi ed Oxford method before the initiation of the to subsequent exercise (11), and autonomic control of hypoglycemic-hyperinsulinemic clamp protocol and dur- cardiovascular function (12). After exposure to hypogly- ing the last 30 min of hypoglycemia. During hypoglycemia, cemia, induced by the hypoglycemic-hyperinsulinemic compared with baseline euglycemic conditions, 1)baro- clamp protocol, individuals exhibit decreased baroreflex reflex sensitivity decreases significantly (19.2 6 7.5 vs. 32.9 6 16.6 ms/mmHg, P < 0.005), 2) the systolic blood sensitivity (BRS), decreased MSNA response to transient pressure threshold for baroreflex activation increases hypotension, and decreased norepinephrine response to significantly (the baroreflex function shifts to the right; orthostatic stress compared with prior exposure to 120 6 14 vs.
    [Show full text]
  • Baroreflex and Cerebral Autoregulation Are Inversely
    2460 NASR N et al. Circulation Journal ORIGINAL ARTICLE Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp Hypertension and Circulatory Control Baroreflex and Cerebral Autoregulation Are Inversely Correlated Nathalie Nasr, MD, PhD; Marek Czosnyka, PhD; Anne Pavy-Le Traon, MD, PhD; Marc-Antoine Custaud, MD, PhD; Xiuyun Liu, BSc; Georgios V. Varsos, BSc; Vincent Larrue, MD Background: The relative stability of cerebral blood flow is maintained by the baroreflex and cerebral autoregulation (CA). We assessed the relationship between baroreflex sensitivity (BRS) and CA in patients with atherosclerotic carotid stenosis or occlusion. Methods and Results: Patients referred for assessment of atherosclerotic unilateral >50% carotid stenosis or oc- clusion were included. Ten healthy volunteers served as a reference group. BRS was measured using the sequence method. CA was quantified by the correlation coefficient (Mx) between slow oscillations in mean arterial blood pres- sure and mean cerebral blood flow velocities from transcranial Doppler. Forty-five patients (M/F: 36/9), with a me- dian age of 68 years (IQR:17) were included. Thirty-four patients had carotid stenosis, and 11 patients had carotid occlusion (asymptomatic: 31 patients; symptomatic: 14 patients). The median degree of carotid steno-occlusive disease was 90% (IQR:18). Both CA (P=0.02) and BRS (P<0.001) were impaired in patients as compared with healthy volunteers. CA and BRS were inversely and strongly correlated with each other in patients (rho=0.58, P<0.001) and in healthy volunteers (rho=0.939; P<0.001). Increasing BRS remained strongly associated with im- paired CA on multivariate analysis (P=0.004).
    [Show full text]
  • Oxygen Chemoreception by Carotid Body Cells in Culture (Glomus Cells/Dopamine/Hypoxia/Sensory Cells) MARK C
    Proc. Nati. Acad. Sci. USA Vol. 82, pp. 1448-1450, March 1985 Cell Biology Oxygen chemoreception by carotid body cells in culture (glomus cells/dopamine/hypoxia/sensory cells) MARK C. FISHMAN*t#§¶, WILLIAM L. GREENEt§, AND DoRos PLATIKAt¶ *Howard Hughes Medical Institute, tThe Developmental Biology Laboratory (Medical Services), and *Neurology Services of the Massachusetts General Hospital, Boston, MA 02114; and Departments of §Medicine and ¶Neurology, Harvard Medical School, Boston, MA 02115 Communicated by Jerome Gross, October 29, 1984 ABSTRACT Chemoreceptors for oxygen reside within the enrichment procedure. Hypoxic conditions were identical carotid body, but it is not known which cells actually sense except that the Po2 was diminished to 36 mm Hg. Since there hypoxia and by what mechanisms they transduce this informa- are only a few thousand cells in the carotid body, each ex- tion into afferent signals in the carotid sinus nerve. We have periment necessitated the pooling of dissociated cells of 10- developed systems for the growth of glomus cells of the carotid 12 rats and subsequent distribution to two plates, one to be body in dissociated cell culture. Here we demonstrate that, as used for control and one for hypoxic conditions. Cells in in vivo, these cells contain the putative neurotransmitters do- both plates for each experiment were grown in culture for pamine, serotonin, and norepinephrine. Oxygen tension regu- the same period of time. Experiments were performed after lates the rate of dopamine secretion from the glomus cells. culturing of the cells for 5-7 days. Similar to chemically stimulated catecholamine secretion from Prior to testing the cells were washed twice in Hanks' bal- other adrenergic cells this hypoxia-stimulated release requires anced salt solution supplemented with 100 ,uM pargyline/5 extracellular calcium.
    [Show full text]
  • Long QT Syndrome: from Channels to Cardiac Arrhythmias
    Long QT syndrome: from channels to cardiac arrhythmias Arthur J. Moss, Robert S. Kass J Clin Invest. 2005;115(8):2018-2024. https://doi.org/10.1172/JCI25537. Review Series Long QT syndrome, a rare genetic disorder associated with life-threatening arrhythmias, has provided a wealth of information about fundamental mechanisms underlying human cardiac electrophysiology that has come about because of truly collaborative interactions between clinical and basic scientists. Our understanding of the mechanisms that control the critical plateau and repolarization phases of the human ventricular action potential has been raised to new levels through these studies, which have clarified the manner in which both potassium and sodium channels regulate this critical period of electrical activity. Find the latest version: https://jci.me/25537/pdf Review series Long QT syndrome: from channels to cardiac arrhythmias Arthur J. Moss1 and Robert S. Kass2 1Heart Research Follow-up Program, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA. 2Department of Pharmacology, Columbia University Medical Center, New York, New York, USA. Long QT syndrome, a rare genetic disorder associated with life-threatening arrhythmias, has provided a wealth of information about fundamental mechanisms underlying human cardiac electrophysiology that has come about because of truly collaborative interactions between clinical and basic scientists. Our understanding of the mecha- nisms that control the critical plateau and repolarization phases of the human ventricular action potential has been raised to new levels through these studies, which have clarified the manner in which both potassium and sodium channels regulate this critical period of electrical activity.
    [Show full text]
  • Cardiovascular Physiology
    CARDIOVASCULAR PHYSIOLOGY Ida Sletteng Karlsen • Trym Reiberg Second Edition 15 March 2020 Copyright StudyAid 2020 Authors Trym Reiberg Ida Sletteng Karlsen Illustrators Nora Charlotte Sønstebø Ida Marie Lisle Amalie Misund Ida Sletteng Karlsen Trym Reiberg Booklet Disclaimer All rights reserved. No part oF this book may be reproduced in any Form on by an electronic or mechanical means, without permission From StudyAid. Although the authors have made every efFort to ensure the inFormation in the booklet was correct at date of publishing, the authors do not assume and hereby disclaim any liability to any part For any inFormation that is omitted or possible errors. The material is taken From a variety of academic sources as well as physiology lecturers, but are Further incorporated and summarized in an original manner. It is important to note, the material has not been approved by professors of physiology. All illustrations in the booklet are original. This booklet is made especially For students at the Jagiellonian University in Krakow by tutors in the StudyAid group (students at JU). It is available as a PDF and is available for printing. If you have any questions concerning copyrights oF the booklet please contact [email protected]. About StudyAid StudyAid is a student organization at the Jagiellonian University in Krakow. Throughout the academic year we host seminars in the major theoretical subjects: anatomy, physiology, biochemistry, immunology, pathophysiology, supplementing the lectures provided by the university. We are a group of 25 tutors, who are students at JU, each with their own Field oF specialty. To make our seminars as useful and relevant as possible, we teach in an interactive manner often using drawings and diagrams to help students remember the concepts.
    [Show full text]
  • Nitric Oxide-Mediated Flow-Dependent Dilation Is Impaired in Coronary Arteries in Patients with Coronary Spastic Angina
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector 920 JACC Vol. 30, No. 4 October 1997:920–6 Nitric Oxide-Mediated Flow-Dependent Dilation Is Impaired in Coronary Arteries in Patients With Coronary Spastic Angina KIYOTAKA KUGIYAMA, MD, MASAMICHI OHGUSHI, MD, TAKESHI MOTOYAMA, MD, SEIGO SUGIYAMA, MD, HISAO OGAWA, MD, MICHIHIRO YOSHIMURA, MD, YOSHITO INOBE, MD, OSAMU HIRASHIMA, MD, HIROAKI KAWANO, MD, HIROFUMI SOEJIMA, MD, HIROFUMI YASUE, MD Kumamoto City, Japan Objectives. This study sought to examine whether flow- Results. Flow-dependent dilation of the proximal LAD was dependent dilation is impaired at the site of coronary artery found to be less in spasm arteries than in control arteries. G spasm in patients with coronary spastic angina. Infusion of N -monomethyl-L-arginine (L-NMMA) in the proxi- Background. Physiologic stimuli such as exercise and exposure mal LAD suppressed flow-dependent dilation in control arteries to cold have been shown to cause an increase in coronary blood but had no significant effect on spasm arteries. The dilator flow, leading to flow-dependent dilation of coronary arteries in response to nitroglycerin was not impaired in spasm coronary normal subjects, but cause coronary constriction in patients with arteries. coronary spastic angina. Conclusions. Our results indicate that flow-dependent coronary Methods. A maximal increase in blood flow was induced dilation is impaired in spasm arteries, partly due to a deficiency in selectively in the left anterior descending coronary artery (LAD) endothelial nitric oxide bioactivity, which in turn may contribute by infusion of adenosine through a Doppler flow catheter tip in the to the increase in coronary tone during physiologic stimuli in midportion of the LAD in 10 patients with coronary spastic patients with coronary spastic angina.
    [Show full text]
  • Carotid Sinus Syndrome As a Manifestation of Head and Neck
    Mehta et al. Int J Clin Cardiol 2014, 1:2 ISSN: 2378-2951 International Journal of Clinical Cardiology Research Article: Open Access Carotid Sinus Syndrome as a Manifestation of Head and Neck Cancer - Case Report and Literature Review Nikhil Mehta*, Medhat Abdelmessih, Lachlan Smith, Daniel Jacoby and Mark Marieb Yale School of Medicine, USA *Corresponding author: Nikhil Mehta, 1180 Chapel Street, New Haven, CT-06511, USA, E-mail: [email protected] In 1799, Parry noticed that the heart rate can be slowed by Abstract applying pressure over one of the carotid sinuses [3]. An exaggerated Head and neck cancers rarely manifest as Carotid Sinus Syndrome response to this maneuver is called Carotid Sinus Hypersensitivity (CSS). CSS is a rare complex of symptoms found in 1% of all (CSH). Most patients with CSH are asymptomatic [4,5]. However, patients who experience syncope, the pathophysiology of which is sometimes CSH can manifestas hypotension, cerebral ischemia, yet to be fully understood. Common trigger mechanisms for CSS spontaneous dizziness or syncope, and this is termed Carotid Sinus include neck movement, shaving, constricting neck wear, coughing, sneezing and straining to lift heavy objects. The left carotid sinus Syndrome (CSS). The incidence of CSS increases with advancing age mainly causes AV block while the right carotid sinus mainly causes [2,6]. Spontaneous CSS is a rare phenomenon, found in 1 percent of sinus bradycardia. The incidence of AV block in CSS is very low all cases of syncope [4]. Induced CSS is much more common, found (4.9 to 16.7%) as reported in many case series.
    [Show full text]
  • Increased Baroreflex Sensitivity and Reduced Cardiovascular Reactivity
    1873 Hypertens Res Vol.31 (2008) No.10 p.1873-1878 Original Article Increased Baroreflex Sensitivity and Reduced Cardiovascular Reactivity in Individuals with Chronic Low Blood Pressure Stefan DUSCHEK1), Anja DIETEL1), Rainer SCHANDRY1), and Gustavo A. REYES DEL PASO2) This study investigated aberrations in baroreflex function and cardiovascular reactivity related to the con- dition of chronic low blood pressure. In 40 hypotensive and 40 normotensive control subjects, blood pres- sures were continuously recorded at rest and during mental stress. Baroreflex sensitivity was determined in the time domain using sequence analysis. Beat-to-beat hemodynamic indices were estimated from the blood pressure waveforms by means of Modelflow analysis. In the hypotensive sample, a higher baroreflex sensitivity was observed under both conditions. Furthermore, this group experienced a less pronounced increase of blood pressure and stroke volume under stress. The findings underline the involvement of the baroreflex in the long-term setting of tonic blood pressure and suggest its relevance in the etiology of chronic hypotension. In addition, this study documents reduced cardiovascular reactivity and thus deficient hemodynamic adjustment to situational requirements in chronic low blood pressure. (Hypertens Res 2008; 31: 1873–1878) Key Words: hypotension, blood pressure, baroreflex, cardiac output, mental stress tory problems when assuming an upright position (5). Introduction The cardiac baroreflex has been considered to be involved in the etiology of chronic hypotension (1, 6). This regulatory Chronic low blood pressure is relatively widespread; it affects system consists of a negative feedback loop in which changes approximately 3% of the general population (1). It is typically in the firing rate of the arterial baroreceptors lead to compen- accompanied by symptoms such as fatigue, reduced drive, satory alterations of heart rate, cardiac contractility, and vaso- faintness, dizziness, headaches, cold limbs, and reduced cog- motor activity (7, 8).
    [Show full text]