Baroreceptor Dysfunction Induced by Nitric Oxide Synthase Inhibition in Humans Lukas E

Total Page:16

File Type:pdf, Size:1020Kb

Baroreceptor Dysfunction Induced by Nitric Oxide Synthase Inhibition in Humans Lukas E View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 36, No. 1, 2000 © 2000 by the American College of Cardiology ISSN 0735-1097/00/$20.00 Published by Elsevier Science Inc. PII S0735-1097(00)00674-4 Cardiac Physiology Baroreceptor Dysfunction Induced by Nitric Oxide Synthase Inhibition in Humans Lukas E. Spieker, MD, Roberto Corti, MD, Christian Binggeli, MD, Thomas F. Lu¨scher, MD, FACC, FRCP, FESC, Georg Noll, MD, FESC Zurich, Switzerland OBJECTIVES We sought to investigate baroreceptor regulation of sympathetic nerve activity and hemody- namics after inhibition of nitric oxide (NO) synthesis. BACKGROUND Both the sympathetic nervous system and endothelium-derived substances play essential roles in cardiovascular homeostasis and diseases. Little is known about their interactions. METHODS In healthy volunteers, we recorded muscle sympathetic nerve activity (MSA) with microneu- rography and central hemodynamics measured at different levels of central venous pressure induced by lower body negative pressure. G RESULTS After administration of the NO synthase inhibitor N -monomethyl-L-arginine (L-NMMA, 1 mg/kg/min), systolic blood pressure increased by 24 mm Hg (p ϭ 0.01) and diastolic blood pressure by 12 mm Hg (p ϭ 0.009), while stroke volume index (measured by thermodilution) fell from 53 to 38 mL/min/m2 (p Ͻ 0.002). Administration of L-NMMA prevented the compensatory increase of heart rate, but not MSA, to orthostatic stress. The altered response of heart rate was not due to higher blood pressure, because heart rate responses were not altered during infusion of the alpha-1-adrenoceptor agonist phenylephrine (titrated to an equal increase of systolic blood pressure). In the presence of equal systolic blood pressure and central venous pressure, we found no difference in MSA during phenylephrine and L-NMMA infusion. CONCLUSIONS This study demonstrates a highly specific alteration of baroreceptor regulation of heart rate but not muscle sympathetic activity after inhibition of NO synthesis in healthy volunteers. This suggests an important role of NO in reflex-mediated heart rate regulation in humans. (J Am Coll Cardiol 2000;36:213–8) © 2000 by the American College of Cardiology The vascular endothelium synthesizes and releases nitric abnormal baroreflex contributes to sympathetic activation, oxide (NO) and plays a fundamental role in the basal and which is an unfavorable prognostic factor (15–19). Alter- dynamic regulation of the circulation (1–4). Apart from the ations in endothelial function, with a resulting imbalance of tone of peripheral resistance vessels, NO also regulates endothelium-derived relaxing and contracting factors, may myocardial contractility and is synthesized in neuronal cells affect baroreceptor function because endothelial factors may (5–8). However, little is known about the interactions of act on baroreceptor nerve endings in the vessel wall. Various NO and other cardiovascular regulating systems, especially endogenous substances (e.g., NO, endothelin-1, prostacy- with the sympathetic nervous system. These interactions are clin, norepinephrine) have been shown to influence barore- of particular interest in congestive heart failure, arterial ceptor function in animals (12,20–24). It is not clear if these hypertension, atherosclerosis and septic shock, where sym- mediators also affect human baroreceptor function. pathetic nerves innervating and constricting blood vessels The aim of our study was to investigate the effects of NO act as important counterpart of the endothelium-derived synthase inhibition and alpha-1-adrenergic stimulation on vasodilator NO (5,9–11). baroreceptor-mediated regulation of sympathetic nerve ac- Sympathetic activity is mainly regulated by baroreceptors tivity, heart rate and hemodynamics in healthy humans. located in the cardiopulmonary and carotid vessel walls, which centrally inhibit sympathetic outflow. These stretch- METHODS activated mechanoreceptors not only regulate short-term changes of blood pressure but also react to chronic elevation Subjects. Nine healthy normotensive volunteers (118 Ϯ of blood pressure by resetting sensitivity to a lower level 2/65 Ϯ 2 mm Hg, seven men and two women) with a mean (12,13). In hypertension, altered baroreflex-mediated regu- age of 26 years (range 21 to 35 years) participated in this study. lation of muscle sympathetic nerve activity (MSA) has been Right heart catheterization was performed in seven subjects described (14). Similarly, in congestive heart failure, an (five men and two women), of whom three (one man and two women) were simultaneously studied by microneurography. From the Department of Cardiology, University Hospital, Zu¨rich, Switzerland. Microneurographic measurements of sympathetic activity and This study was supported by the Swiss National Foundation (Nos. 32-42560.94 and noninvasive hemodynamic measurements were additionally 32-5106997) and the Italian Society of Hypertension. Manuscript received August 5, 1999; revised manuscript received December 30, performed in two male volunteers (without right heart cathe- 1999, accepted February 28, 2000. terization). Each volunteer gave written, informed consent. 214 Spieker et al. JACC Vol. 36, No. 1, 2000 NO and Baroreceptor Regulation July 2000:213–8 ilance Monitor Model VGS1; Baxter Healthcare Corporation, Abbreviations and Acronyms Irvine, California) with a Swan-Ganz catheter (Model 746H- LBNP ϭ lower body negative pressure 8F; Baxter Healthcare Corporation) inserted through a sheath G L-NMMA ϭ N -monomethyl-L-arginine introducer system (Cordis, Langenthal, Switzerland) in a ϭ MSA muscle sympathetic nerve activity cubital vein and propagated to the pulmonary artery under NO ϭ nitric oxide fluoroscopic guidance. Arterial blood pressure was measured noninvasively (relative changes: Finapres; Ohmeda, Sweden; absolute baseline values: Dinamap; Critikon, Tampa, Florida) This study was approved by the local ethical committee. and a one-lead electrocardiogram was recorded and digitized Smokers and offspring of hypertensive parents were excluded for computation of heart rate (29). (25). None of the subjects was taking any medications. Experimental protocol. After recording stable baseline val- Microneurographic measurements. Microneurography ues for 15 min, phenylephrine was administered intravenously was performed as described previously (25–27). Subjects through the distal lumen of the Swan-Ganz catheter (or a were studied in standardized fashion, that is, at 2 PM in a peripheral intravenous line in three volunteers) at two dosages quiet, temperature-controlled room, after micturition to (75 and 100 ␮g/min, each over 3 min at 0.75 and 1 ml/min). avoid any increase of sympathetic nerve activity through Cardiac output was measured by thermodilution after each bladder distension (10). Multifiber recordings of MSA were dose of the drugs. During the last dose, LBNP was performed. obtained from the peroneal nerve. A reference electrode was G After reestablishing baseline conditions, N -monomethyl-L- inserted subcutaneously 1 to 2 cm from the recording arginine (L-NMMA) (Clinalfa, La¨ufelfingen, Switzerland) electrode. Signals were amplified, filtered (700 to was administered in two doses (0.3 and 1 mg/kg/min, each for 2,000 Hz), integrated (time constant, 0.1 s) and digitized 3 min at 1 to 3 ml/min) and cardiac output was determined using an analog-digital board (MIO-16L; National Instru- after each dose. Lower body negative pressure was performed ments, Austin, TX) and a modified commercial software again. The drug infusion order was not alternated because of (LabView; National Instruments). Data recorded on a the long elimination half life of L-NMMA. computer (Macintosh Power PC 7100; Apple) were ana- Statistical analysis. Results are presented as means Ϯ lyzed offline (MatLab; MathWorks, Natick, Massachu- SEM. Differences between drugs were evaluated using setts). The results were expressed as bursts per minute and paired Student t tests with Bonferroni adjusted p values for cumulative sum of the amplitude in volts per minute. multiple comparisons. The effects of LBNP were evaluated Lower body negative pressure. Lower body negative pres- by repeated-measures analysis of variance (StatView 4.5; sure (LBNP) decreases central venous pressure by restricting Abacus Concepts, Berkeley, California) (30). Statistical venous return of blood from the lower extremities to the significance was accepted at p Ͻ 0.05. heart (28). We used an air-tight plexiglass chamber in which the subjects were enclosed up to the waist. Negative RESULTS pressure was applied with a commercial vacuum cleaner (15 and 30 mm Hg, each for 2 min), monitored with a Hemodynamic effects. Changes in hemodynamic param- manometer connected to the interior of the chamber. eters and sympathetic nerve activity after administration of Hemodynamic measurements. Cardiac output (average of drugs are shown in Table 1. L-NMMA and phenylephrine three measurements) was determined by thermodilution (Vig- caused dose-related increases in arterial blood pressure. Table 1. Hemodynamic and Sympathetic Nervous Effects of L-NMMA and Phenylephrine L-NMMA Phenylephrine (mg/kg/min) (␮g/min) Baseline 0.3 1.0 75 100 SBP 134 Ϯ 7 152 Ϯ 5 150 Ϯ 3* 155 Ϯ 7 153 Ϯ 8* DBP 73 Ϯ 487Ϯ 585Ϯ 5† 88 Ϯ 690Ϯ 5† SVR 1,114 Ϯ 124 1,413 Ϯ 145* 1,973 Ϯ 203‡ 1,602 Ϯ 205† 1,743 Ϯ 209† HR 67 Ϯ 470Ϯ 663Ϯ 657Ϯ 5‡ 52 Ϯ 3‡ CI 3.5 Ϯ 0.3 3.1 Ϯ 0.2* 2.3 Ϯ 0.2§ 2.7 Ϯ 0.3† 2.6 Ϯ 0.2† SVI 53 Ϯ 648Ϯ 638Ϯ 5† 51 Ϯ 851Ϯ 4 CVP 4 Ϯ 0.7 3.6 Ϯ 0.4 4.3 Ϯ 0.05 6.3 Ϯ 0.5* 9.5 Ϯ 0.6† B/min 23.1 Ϯ 3.5 14 Ϯ 4.5* 18.6 Ϯ 5.5 12.8 Ϯ 5.8 17.6 Ϯ 5.7 B/100 HB 35.6 Ϯ 5.8 21.3 Ϯ 7.6 32.8 Ϯ 10.8 21.7 Ϯ 9.4 33.8 Ϯ 10 ACS 100 53 Ϯ 27 67 Ϯ 21 26 Ϯ 16* 78 Ϯ 17 Values represent means Ϯ SEM (n ϭ 9 for noninvasive, n ϭ 7 for invasive hemodynamic, and n ϭ 5 for microneurographic measurements).
Recommended publications
  • Baroreflex Sensitivity Impairment During Hypoglycemia
    Diabetes Volume 65, January 2016 209 Ajay D. Rao,1,2 Istvan Bonyhay,3 Joel Dankwa,1 Maria Baimas-George,1 Lindsay Kneen,1 Sarah Ballatori,3 Roy Freeman,3 and Gail K. Adler1 Baroreflex Sensitivity Impairment During Hypoglycemia: Implications for Cardiovascular Control Diabetes 2016;65:209–215 | DOI: 10.2337/db15-0871 Studies have shown associations between exposure to of cardiovascular benefit(4–7). These results raise the hypoglycemia and increased mortality, raising the pos- possibility that exposure to hypoglycemia has adverse sibility that hypoglycemia has adverse cardiovascular and unknown effects that persist after hypoglycemia effects. In this study, we determined the acute effects resolves and may oppose cardiovascular benefits of im- of hypoglycemia on cardiovascular autonomic control. proved glycemic control (8,9). Seventeen healthy volunteers were exposed to exper- Prior exposure to hypoglycemia impairs the hormonal imental hypoglycemia (2.8 mmol/L) for 120 min. Car- and muscle sympathetic nerve activity (MSNA) response fl COMPLICATIONS diac vagal barore ex function was assessed using the to subsequent hypoglycemia (10), the hormonal responses fi modi ed Oxford method before the initiation of the to subsequent exercise (11), and autonomic control of hypoglycemic-hyperinsulinemic clamp protocol and dur- cardiovascular function (12). After exposure to hypogly- ing the last 30 min of hypoglycemia. During hypoglycemia, cemia, induced by the hypoglycemic-hyperinsulinemic compared with baseline euglycemic conditions, 1)baro- clamp protocol, individuals exhibit decreased baroreflex reflex sensitivity decreases significantly (19.2 6 7.5 vs. 32.9 6 16.6 ms/mmHg, P < 0.005), 2) the systolic blood sensitivity (BRS), decreased MSNA response to transient pressure threshold for baroreflex activation increases hypotension, and decreased norepinephrine response to significantly (the baroreflex function shifts to the right; orthostatic stress compared with prior exposure to 120 6 14 vs.
    [Show full text]
  • Baroreflex and Cerebral Autoregulation Are Inversely
    2460 NASR N et al. Circulation Journal ORIGINAL ARTICLE Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp Hypertension and Circulatory Control Baroreflex and Cerebral Autoregulation Are Inversely Correlated Nathalie Nasr, MD, PhD; Marek Czosnyka, PhD; Anne Pavy-Le Traon, MD, PhD; Marc-Antoine Custaud, MD, PhD; Xiuyun Liu, BSc; Georgios V. Varsos, BSc; Vincent Larrue, MD Background: The relative stability of cerebral blood flow is maintained by the baroreflex and cerebral autoregulation (CA). We assessed the relationship between baroreflex sensitivity (BRS) and CA in patients with atherosclerotic carotid stenosis or occlusion. Methods and Results: Patients referred for assessment of atherosclerotic unilateral >50% carotid stenosis or oc- clusion were included. Ten healthy volunteers served as a reference group. BRS was measured using the sequence method. CA was quantified by the correlation coefficient (Mx) between slow oscillations in mean arterial blood pres- sure and mean cerebral blood flow velocities from transcranial Doppler. Forty-five patients (M/F: 36/9), with a me- dian age of 68 years (IQR:17) were included. Thirty-four patients had carotid stenosis, and 11 patients had carotid occlusion (asymptomatic: 31 patients; symptomatic: 14 patients). The median degree of carotid steno-occlusive disease was 90% (IQR:18). Both CA (P=0.02) and BRS (P<0.001) were impaired in patients as compared with healthy volunteers. CA and BRS were inversely and strongly correlated with each other in patients (rho=0.58, P<0.001) and in healthy volunteers (rho=0.939; P<0.001). Increasing BRS remained strongly associated with im- paired CA on multivariate analysis (P=0.004).
    [Show full text]
  • Increased Baroreflex Sensitivity and Reduced Cardiovascular Reactivity
    1873 Hypertens Res Vol.31 (2008) No.10 p.1873-1878 Original Article Increased Baroreflex Sensitivity and Reduced Cardiovascular Reactivity in Individuals with Chronic Low Blood Pressure Stefan DUSCHEK1), Anja DIETEL1), Rainer SCHANDRY1), and Gustavo A. REYES DEL PASO2) This study investigated aberrations in baroreflex function and cardiovascular reactivity related to the con- dition of chronic low blood pressure. In 40 hypotensive and 40 normotensive control subjects, blood pres- sures were continuously recorded at rest and during mental stress. Baroreflex sensitivity was determined in the time domain using sequence analysis. Beat-to-beat hemodynamic indices were estimated from the blood pressure waveforms by means of Modelflow analysis. In the hypotensive sample, a higher baroreflex sensitivity was observed under both conditions. Furthermore, this group experienced a less pronounced increase of blood pressure and stroke volume under stress. The findings underline the involvement of the baroreflex in the long-term setting of tonic blood pressure and suggest its relevance in the etiology of chronic hypotension. In addition, this study documents reduced cardiovascular reactivity and thus deficient hemodynamic adjustment to situational requirements in chronic low blood pressure. (Hypertens Res 2008; 31: 1873–1878) Key Words: hypotension, blood pressure, baroreflex, cardiac output, mental stress tory problems when assuming an upright position (5). Introduction The cardiac baroreflex has been considered to be involved in the etiology of chronic hypotension (1, 6). This regulatory Chronic low blood pressure is relatively widespread; it affects system consists of a negative feedback loop in which changes approximately 3% of the general population (1). It is typically in the firing rate of the arterial baroreceptors lead to compen- accompanied by symptoms such as fatigue, reduced drive, satory alterations of heart rate, cardiac contractility, and vaso- faintness, dizziness, headaches, cold limbs, and reduced cog- motor activity (7, 8).
    [Show full text]
  • Arterial Baroreflex Buffering of Sympathetic Activation During Exercise-Induced Elevations in Arterial Pressure
    Arterial baroreflex buffering of sympathetic activation during exercise-induced elevations in arterial pressure. U Scherrer, … , L A Bertocci, R G Victor J Clin Invest. 1990;86(6):1855-1861. https://doi.org/10.1172/JCI114916. Research Article Static muscle contraction activates metabolically sensitive muscle afferents that reflexively increase sympathetic nerve activity and arterial pressure. To determine if this contraction-induced reflex is modulated by the sinoaortic baroreflex, we performed microelectrode recordings of sympathetic nerve activity to resting leg muscle during static handgrip in humans while attempting to clamp the level of baroreflex stimulation by controlling the exercise-induced rise in blood pressure with pharmacologic agents. The principal new finding is that partial pharmacologic suppression of the rise in blood pressure during static handgrip (nitroprusside infusion) augmented the exercise-induced increases in heart rate and sympathetic activity by greater than 300%. Pharmacologic accentuation of the exercise-induced rise in blood pressure (phenylephrine infusion) attenuated these reflex increases by greater than 50%. In contrast, these pharmacologic manipulations in arterial pressure had little or no effect on: (a) forearm muscle cell pH, an index of the metabolic stimulus to skeletal muscle afferents; or (b) central venous pressure, an index of the mechanical stimulus to cardiopulmonary afferents. We conclude that in humans the sinoaortic baroreflex is much more effective than previously thought in buffering the reflex sympathetic activation caused by static muscle contraction. Find the latest version: https://jci.me/114916/pdf Arterial Baroreflex Buffering of Sympathetic Activation during Exercise-induced Elevations in Arterial Pressure Urs Scherrer,* Susan L. Pryor,* Loren A. Bertocci,t and Ronald G.
    [Show full text]
  • Arterial Baroreflex Regulation of Cerebral Blood Flow in Humans
    J Phys Fitness Sports Med, 1(4): 631-636 (2012) JPFSM: Review Article Arterial baroreflex regulation of cerebral blood flow in humans Shigehiko Ogoh1*, Ai Hirasawa1 and James P. Fisher2 1 Department of Biomedical Engineering, Toyo University, 2100 Kujirai, Kawagoe-shi, Saitama 350-8585, Japan 2 School of Sport and Exercise Sciences, University of Birmingham, Edgbaston, Birmingham, West Midlands B15 2TT UK Received: October 12, 2012 / Accepted: November 19, 2012 Abstract The arterial baroreflex plays an essential role in the short-term regulation of arterial blood pressure, and thus helps ensure that the vital organs are adequately perfused. For stand- ing humans, appropriate arterial baroreflex control of cardiac output and vasomotor tone are particularly important for cerebral blood flow regulation. However, the numerous mechanisms implicated in the regulation of the cerebral vasculature (e.g. cerebral autoregulation, carbon dioxide reactivity) mean that the precise nature of the direct and indirect effects of the arterial baroreflex on cerebral blood flow regulation are highly complex and remain incompletely un- derstood. This review paper provides an update on recent insights into the influence of the arte- rial baroreflex on cerebral circulation. Keywords : arterial blood pressure, cardiac output, cerebral autoregulation, cerebral CO2 reactiv- ity, autonomic nervous system control cerebral vascular resistance3). Introduction The concept that CA is a powerful mechanism of blood Adequate oxygen delivery is essential for the mainte- flow regulation in the brain has become well established. nance of cerebral function, and a loss of consciousness However, in the early studies of Lassen (1959), the CA rapidly results from inadequate cerebral perfusion and curve relating CBF to MAP was derived from eleven oxygen delivery.
    [Show full text]
  • Influence of Central Venous Pressure Upon Sinus Node Responses To
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) I INFLUENCE OF CENTRAL VENOUS PRESSURE UPON SINUS NODE. RESPONSES TO ARTERIAL BAROREFLEX STIMULATION IN MAN Akira Takeshita Allyn L. Mark i Dwain L. Eckberg* rm ^n and a, N 1 ^r Francois M. Abboud cN N Running head: Modulation of baroreflex control of heart rate Ln c^ Address correspondence to: Allyn L. Mark, M.D. o b w Cardiovascular Division F ! ^0 00 Department of Medicine U) H University Hospitals y Iowa City, IA 52242 ^O.CUa z Zto m G F vl wmH From the Cardiovascular and Clinical Research Centers and the v Cardiovascular Division, Department of Internal Medicine, IwAawz University of Iowa College of Medicine and Hospitals, and the p O H F.. Veterans Administration Hospital, Iowa City, IA 52242 W .x U rn •1 V- Supported by a grant ( NSG 9060) from the U.S.
    [Show full text]
  • Resetting of the Baroreflex Control of Sympathetic Vasomotor Activity
    REVIEW published: 15 August 2017 doi: 10.3389/fnins.2017.00461 Resetting of the Baroreflex Control of Sympathetic Vasomotor Activity during Natural Behaviors: Description and Conceptual Model of Central Mechanisms Roger A. L. Dampney* Physiology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia The baroreceptor reflex controls arterial pressure primarily via reflex changes in vascular resistance, rather than cardiac output. The vascular resistance in turn is dependent upon the activity of sympathetic vasomotor nerves innervating arterioles in different vascular beds. In this review, the major theme is that the baroreflex control of sympathetic vasomotor activity is not constant, but varies according to the behavioral state of the animal. In contrast to the view that was generally accepted up until the 1980s, I argue that the baroreflex control of sympathetic vasomotor activity is not inhibited or overridden during behaviors such as mental stress or exercise, but instead is reset under those Edited by: Chloe E. Taylor, conditions so that it continues to be highly effective in regulating sympathetic activity and Western Sydney University, Australia arterial blood pressure at levels that are appropriate for the particular ongoing behavior. A Reviewed by: major challenge is to identify the central mechanisms and neural pathways that subserve Satoshi Iwase, Aichi Medical University, Japan such resetting in different states. A model is proposed that is capable of simulating the Craig D. Steinback, different ways in which baroreflex resetting is occurred. Future studies are required to University of Alberta, Canada determine whether this proposed model is an accurate representation of the central *Correspondence: mechanisms responsible for baroreflex resetting.
    [Show full text]
  • Bupivacaine Inhibits Baroreflex Control of Heart Rate in Conscious
    197 Anesthesiology 2000; 92:197–207 © 2000 American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins, Inc. Bupivacaine Inhibits Baroreflex Control of Heart Rate in Conscious Rats Kyoung S. K. Chang, M.D., Ph.D.,* Don R. Morrow, B.S.,† Kazuyo Kuzume, M.D.,‡ Michael C. Andresen, Ph.D.§ Downloaded from http://pubs.asahq.org/anesthesiology/article-pdf/92/1/197/399010/0000542-200001000-00032.pdf by guest on 26 September 2021 Background: Because exposure to intravenously adminis- 0.633 6 0.204 vs. 0.277 6 0.282; nitroprusside, 0.653 6 0.142 vs. tered bupivacaine may alter cardiovascular reflexes, the au- 0.320 6 0.299 ms/mmHg, P < 0.05). In contrast, bupivacaine did thors examined bupivacaine actions on baroreflex control of not alter baroreflex sensitivity in the presence of methyl atropine. heart rate in conscious rats. Conclusions: Bupivacaine, in clinically relevant concentrations, Methods: Baroreflex sensitivity (pulse interval vs. systolic inhibits baroreflex control of heart rate in conscious rats. This blood pressure in ms/mmHg) was determined before, and 1.5 inhibition appears to involve primarily vagal components of the and 15.0 min after rapid intravenous administration of bupiv- baroreflex–heart rate pathways. (Key words: Autonomic nervous acaine (0.5, 1.0, and 2.0 mg/kg) using heart rate changes evoked system; baroreceptors; hypertension; local anesthetics.) by intravenously administered phenylephrine or nitroprusside. The actions on the sympathetic and parasympathetic auto- nomic divisions of the baroreflex were tested in the presence of BUPIVACAINE is a potent, long-acting local anesthetic a muscarinic antagonist methyl atropine and a b-adrenergic agent.
    [Show full text]
  • Review Course Lectures
    Review Course Lectures International Anesthesia Research Society IARS 2011 REVIEW COURSE LECTURES The material included in the publication has not undergone peer review or review by the Editorial Board of Anesthesia and Analgesia for this publication. Any of the material in this publication may have been transmitted by the author to IARS in various forms of electronic medium. IARS has used its best efforts to receive and format electronic submissions for this publication but has not reviewed each abstract for the purpose of textual error correction and is not liable in any way for any formatting, textual, or grammatical error or inaccuracy. 2 ©2011 International Anesthesia Research Society. Unauthorized Use Prohibited IARS 2011 REVIEW COURSE LECTURES Table of Contents Perioperative Implications of Emerging Concepts In Management of the Malignant Hyperthermia Vascular Aging, Health And Disease Patient In Ambulatory Surgery Charles W. Hogue, MD ..............................1 Denise J. Wedel, MD ...............................38 Professor of Anesthesiology and Professor of Anesthesiology, Mayo Clinic Critical Care Medicine Rochester, Minnesota Chief, Division of Adult Anesthesia The Johns Hopkins University School of Medicine, Central Venous Access Guideline The Johns Hopkins Hospital Development and Recommendations Baltimore, Maryland Stephen M. Rupp, MD ..............................41 Anesthesiologist Perioperative Management of Pain and PONV in Medical Director, Perioperative Services Ambulatory Surgery Virginia Mason Medical Center, Seattle, Washington Spencer S. Liu, MD .................................5 Clinical Professor of Anesthesiology Pediatric Anesthesia and Analgesia Outside the OR: Director of Acute Pain Service What You Need To Know Hospital for Special Surgery Pierre Fiset, MD, FRCPC............................47 New York, New York Department Head, Anesthesiology Montreal Children’s Hospital Colloid or Crystalloid: Any Differences In Outcomes? Montreal, Quebec, Canada Tong J.
    [Show full text]
  • UNIVERSITY of CALIFORNIA Los Angeles Baroreflex Sensitivity
    UNIVERSITY OF CALIFORNIA Los Angeles Baroreflex Sensitivity during Positional Changes in Patients with Traumatic Brain Injury A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Nursing by Norma Dianne McNair 2012 © Copyright by Norma Dianne McNair 2012 ABSTRACT OF THE DISSERTATION Baroreflex Sensitivity during Positional Changes in Patients with Traumatic Brain Injury by Norma Dianne McNair Doctor of Philosophy in Nursing University of California, Los Angeles, 2012 Professor Mary A. Woo, Chair Background and Significance: Traumatic brain injury (TBI) affects 1.7 million Americans annually leading to significant morbidity and health care costs. An important cause of morbidity in TBI is secondary brain injury due to abnormal cerebrovascular autoregulation (CA). Standard measures of CA are not amenable to use outside of the intensive care unit (ICU) and patients continue to be at risk for secondary brain injury post- ICU. Baroreflex sensitivity (BRS) is a non-invasive assessment of autonomic tone that may be useful in evaluating CA. Evaluation of BRS and its relation to CA has not been examined in patients with TBI and predictors of CA are unknown. Purpose: The specific aims for this study were to 1) examine the association between BRS and CA in patients with TBI, 2) compare BRS and CA in TBI patients and age and gender matched healthy volunteers (HV) and 3) identify predictors of BRS and CA in TBI. ii Methods: This study used a two group comparative design with 52 subjects (26 with moderate to severe TBI; 26 HV). Measurement of variables: BRS was calculated as heart rate/mean arterial pressure; CA was calculated as cerebral blood flow velocity using transcranial Doppler; and cognition was assessed using the Galveston Orientation and Amnesia Test (GOAT).
    [Show full text]
  • Fundamental Aspects of Cardiovascular Regulation In
    L. Sidorenko et al. Moldovan Medical Journal. December 2018; 61(4):42-45 REVIEW ARTICLES DOI: 10.5281/zenodo.2222313 UDC: 616.12-008.813.2 Fundamental aspects of cardiovascular regulation in predisposition to atrial fibrillation *1Ludmila Sidorenko, MD, PhD Applicant; 2Ivan Diaz-Ramirez, MD, PhD; 1Victor Vovc, MD, PhD, Professor; 2Gert Baumann, MD, PhD, Professor 1Department of Physiology, Nicolae Testemitsanu State University of Medicine and Pharmacy Chisinau, the Republic of Moldova 2Department of Cardiology and Angiology, Charité University Clinic, Berlin, Germany *Corresponding author: [email protected] Manuscript received September 10, 2018; revised manuscript December 07, 2018 Abstract Background: Atrial fibrillation is the most common sustained arrhythmia in cardiology. The structural factors leading to atrial fibrillation are well known, but there should be also regarded the functional factors. In 2014, the Task Force published guidelines for atrial fibrillation describing the importance of the vegetative nervous system in creating predisposition to atrial fibrillation although it describes that the mechanism is not completely clear. Furthermore, it is important to understand this mechanism, regarding the increasing number of patients affected by atrial fibrillation without any structural heart diseases. The aim of this work is to understand the physiological background of the predisposition to the appearance and recurrence of atrial fibrillation regarding the role of neural regulatory systems of the heart, especially when no structural heart diseases are present. Therefore, the following is a fundamental analysis of the neural regulation of heart rhythm, including the vegetative nervous system at its medullar and central levels and also the cerebral cortex input in heart regulation.
    [Show full text]
  • Baroreflex Sensitivity and the Blood Pressure Response To
    Journal of Human Hypertension (1999) 13, 185–190 1999 Stockton Press. All rights reserved 0950-9240/99 $12.00 http://www.stockton-press.co.uk/jhh ORIGINAL ARTICLE Baroreflex sensitivity and the blood pressure response to ␤-blockade X Chen, MO Hassan, JV Jones, P Sleight and JS Floras Department of Cardiovascular Medicine, University of Oxford, and Centre for Cardiovascular Research, University of Toronto, Canada -␤ .(؊0.08؍ The objective of this analysis was to determine whether P Ͻ 0.001), but not with its variability (r changes in baroreflex sensitivity (BRS) within 35 hyper- blockade attenuated the pressor response to exercise, tensive patients (25 M, 10 F, mean age 47 years) treated but there was a positive relationship between the effect with ␤-blockade as monotherapy relate to reductions in of ␤-blockade on BRS, and on the rise in systolic BP P Ͻ 0.001). Any dampening ;0.63 ؍ ambulatory blood pressure (BP) or its variability. BP during bicycling (r was recorded intra-arterially directly from the brachial effect of ␤-blockade on BP variability at rest in hyperten- artery before and during submaximal exercise. BRS was sive patients with the greatest increase in BRS may be determined by the phenylephrine injection technique. offset by increased pressor responses to physical MAP and its variability were determined for the awake activity such as exercise. Consequently, BP variability period of 24-h BP monitoring. Subjects were random- is unaffected, even though reductions in ambulatory BP ised to one of atenolol, metoprolol, pindolol, or propran- during chronic ␤-blockade are inversely related to olol, and restudied after a mean of 5 months.
    [Show full text]