Oxygen Chemoreception by Carotid Body Cells in Culture (Glomus Cells/Dopamine/Hypoxia/Sensory Cells) MARK C

Total Page:16

File Type:pdf, Size:1020Kb

Oxygen Chemoreception by Carotid Body Cells in Culture (Glomus Cells/Dopamine/Hypoxia/Sensory Cells) MARK C Proc. Nati. Acad. Sci. USA Vol. 82, pp. 1448-1450, March 1985 Cell Biology Oxygen chemoreception by carotid body cells in culture (glomus cells/dopamine/hypoxia/sensory cells) MARK C. FISHMAN*t#§¶, WILLIAM L. GREENEt§, AND DoRos PLATIKAt¶ *Howard Hughes Medical Institute, tThe Developmental Biology Laboratory (Medical Services), and *Neurology Services of the Massachusetts General Hospital, Boston, MA 02114; and Departments of §Medicine and ¶Neurology, Harvard Medical School, Boston, MA 02115 Communicated by Jerome Gross, October 29, 1984 ABSTRACT Chemoreceptors for oxygen reside within the enrichment procedure. Hypoxic conditions were identical carotid body, but it is not known which cells actually sense except that the Po2 was diminished to 36 mm Hg. Since there hypoxia and by what mechanisms they transduce this informa- are only a few thousand cells in the carotid body, each ex- tion into afferent signals in the carotid sinus nerve. We have periment necessitated the pooling of dissociated cells of 10- developed systems for the growth of glomus cells of the carotid 12 rats and subsequent distribution to two plates, one to be body in dissociated cell culture. Here we demonstrate that, as used for control and one for hypoxic conditions. Cells in in vivo, these cells contain the putative neurotransmitters do- both plates for each experiment were grown in culture for pamine, serotonin, and norepinephrine. Oxygen tension regu- the same period of time. Experiments were performed after lates the rate of dopamine secretion from the glomus cells. culturing of the cells for 5-7 days. Similar to chemically stimulated catecholamine secretion from Prior to testing the cells were washed twice in Hanks' bal- other adrenergic cells this hypoxia-stimulated release requires anced salt solution supplemented with 100 ,uM pargyline/5 extracellular calcium. These results are compatible with the mM ascorbate/4.5 g of glucose per liter, and then exposed in suggestion that the glomus cells of the carotid body are chemo- 500 ,ll of the same solution for 1-2 hr to either Po2 151 mm receptor cells and that they signal hypoxia by regulated secre- Hg or Po2 36 mm Hg. The Po2 of the cells beneath 2 mm of tion of dopamine. culture fluid can be estimated to be diminished below that of the surrounding air by <5 mm Hg (8). Prior to analysis, the Since the work of Heymans (1) it has been known that the cells were sonicated and freeze-thawed in HPLC running hypoxic ventilatory drive originates primarily within the ca- buffer. This buffer consisted of 0.75 M dibasic sodium phos- rotid body. Subsequent work has outlined the role of this phate/0.1 M citric acid/1.5 mM sodium heptane sulfonate sensory organ in control ofbreathing at sea level and at high- (Kodak)/14% (vol/vol) methanol. Particulate matter was re- er altitude (1, 2) and in the sensation of dyspnea (3). Howev- moved from both the sonicated cellular extract and the su- er, definition of the molecular basis of oxygen transduction pernatant by centrifugation in an Airfuge (Beckman) for 5 has been hampered by the complexity of the carotid body. It min. [Concentration of the catecholamines by alumina ex- contains several cell types, including endothelial, sustentac- traction (9) proved infeasible because of the very small ular, and glomus cells as well as the terminals ofafferent and amounts of tissue.] The supernatant from the centrifugation sympathetic nerves (4, 5), but it is not known which are actu- was separated by the use of HPLC (Beckman 420) with a C- ally capable of sensing the level of oxygen. The glomus cells 18 column (Altex Ultrasphere ODS), and detection was by have been attractive candidates to be chemoreceptor cells an electrochemical detector (BAS LC-3A). Elution rate was because they contain dopamine, a transmitter secreted from 1.5 ml/min, and the sample injection size was 200 /.. The the carotid body during hypoxia, and because they form electrochemical detector was used at 0.70 V. The identity of morphological synapses with afferent nerve terminals (5, 6). peaks was confirmed by exact superimposition of standard We have designed systems for the growth of glomus cells in peaks with presumptive norepinephrine, dopamine, and ser- culture in order to investigate the neurophysiology of these otonin peaks from the cellular extract, which represented cells and their potential role in chemoreception (7). Here, we cell content, or the culture fluid, which reflected the secret- report evidence that carotid body glomus cells in culture ed catecholamines. The sensitivity of the HPLC-EC system synthesize and secrete putative neurotransmitters and mani- for measuring catecholamines was "'100 pg ofdopamine, 150 fest chemosensitivity in their control ofdopamine secretion. pg of norepinephrine, and 200 pg of serotonin. RESULTS MATERIALS AND METHODS Glomus cells in vivo contain several putative neurotransmit- Dissociated newborn rat carotid body cells were cultured as ters, including norepinephrine , dopamine, and serotonin (5, described (7) in 24-well plates and were grown in a humidi- 10). As shown in Fig. 1, measurement of the extracted con- fied atmosphere of Po2 151 mm Hg, Pco2 36 mm Hg in sup- tents of cultured glomus cells by HPLC combined with elec- plemented F-12 medium (pH 7.2). Nerve growth factor was trochemical detection (HPLC-EC) documented their synthe- not added to the medium. Enrichment for glomus cells could sis of norepinephrine, dopamine, and serotonin. Dopamine be achieved by the use of tyrosine-free medium (7), but suc- and serotonin secretory rates were great enough to be de- cessful elimination of other cells required several weeks of tected in the culture fluid after 1 hr of incubation, as shown growth under these conditions. Since the very few cells in in Fig. 1. Secreted norepinephrine was not detected, but the carotid body was the limiting factor in the number of very low levels might have been obscured by interference experiments that were possible and since there was a slow from other oxidizable compounds. Interestingly, carotid but noticeable decrement in catecholamine content in cul- body cells cultured for <4 days synthesized dopamine but tures >7-10 days old, we elected not to use this long-term did not secrete measurable quantities into the medium. In each of the six experiments using the cultured carotid body cells, hypoxia caused an increase in dopamine secre- The publication costs of this article were defrayed in part by page charge ± payment. This article must therefore be hereby marked "advertisement" tion. The mean dopamine secretion increased from 0.092 in accordance with 18 U.S.C. §1734 solely to indicate this fact. 0.029 ng per carotid body per hr to 0.211 ± 0.091 ng per 1448 Downloaded by guest on September 25, 2021 Cell Biology: Fishman et aL Proc. NatL Acad Sci USA 82 (1985) 1449 ic> I CU a)a -0- .6 CZ mv 0.05 IL FIG. 1. (Left) Cellular content of neurotransmitters synthesized o - by cultured carotid body cells and revealed by HPLC-EC include norepinephrine (NE), dopamine (DA), and serotonin (5HT). Cali- CL bration bar length represents 2 min, and height represents 125 pg of NE, 200 pg of DA, and 333 pg of 5HT. (Right) HPLC-EC of culture CY) fluid, revealing secreted DA and 5HT. ........... carotid body per hr (mean ± SD; n = 6 independent experi- P < ments; 0.01, Student's t test). As shown in Fig. 2, this FIG. 3. Extracellular calcium is necesbary for stimulated dopa- enhanced secretion was accomplished without significant mine secretion. Baseline secretory rate of dopamine (Left) is un- diminution in cellular content of dopamine. This suggests changed by hypoxia in the absence ofextracellular calcium (Middle) first of all that hypoxia did not injure the cell and thereby but is increased significantly by hypoxia when calcium is present cause a nonspecific leak of dopamine. In addition, the in- (Right) (mean ± SEM). crease in secretion without diminution in content suggests that hypoxia also stimulated enhanced synthesis of dopa- mine, an effect of hypoxia that has been noted using ex- To assess further the specificity of the oxygen sensitivity, planted rabbit carotid bodies (11). we investigated the effect of hypoxia on epinephrine secre- Decrease in extracellular calcium diminishes hypoxia- tion by cultured rat adrenal medullary cells. Glomus cells stimulated release of dopamine from explanted carotid bod- resemble adrenal medullary cells morphologically, and both ies (6). Since calcium influx is integral to many secretory cell types derive embryologically from the neural crest (13, processes that involve vesicular release (12), it was of inter- 14). In vivo, the predominant secreted catecholamine from est to evaluate the effect of calcium on glomus cell function. the adrenal is epinephrine. Adrenal cells cultured for 4 days Omission of calcium from the medium, with magnesium con- secreted epinephrine, as shown in Fig. 4. Hypoxia, however, centration left unaltered, did not significantly affect baseline did not cause an increase in their rate of secretion. dopamine secretion from the cultured carotid body cells (not shown). However, as shown in Fig. 3, the oxygen-sensitive DISCUSSION component was abolished. Under the same conditions but with the addition of calcium to the medium, hypoxia induced The hypoxic stimulus to ventilatory drive originates predom- a significant increase in the mean dopamine secretory rate inantly within the carotid body. As arterial Po2 decreases, from 0.040 ± 0.020 ng per carotid body per hr to 0.077 ± the discharge rate of the carotid sinus sensory nerve in- 0.023 ng per carotid body per hr (mean + SD; n = 4; P < creases. It has been suggested, however, that it may not be 0.05). Extracellular calcium might, of course, be involved the nerve itself that is chemosensory, but rather other cells not only in but at of the carotid body, because a cut carotid sinus nerve must secretion also other steps in the sensory regenerate to the carotid body to manifest chemosensitivity transduction mechanism.
Recommended publications
  • Oxygen Sensing by Ion Channels
    Kidney International, Vol. 51 (1997), pp. 454—461 ION CHANNELS AND HEME PROTEINS AS OXYGEN SENSORS Oxygen sensing by ion channels JoSE LOPEZ-BARNEO, PATRICIA ORTEGA-SAENZ, ANTONIO MOLINA, ALFREDO FRANCO-OBREGON, JUAN UREA, and ANTONIO CASTELLANO Departamento de Fisiologla Médica y Biofisica, Universidad de Sevilla, Facultad de Medicina, Sevilla, Spain Oxygen is required for the survival of all higher life forms due 02-sensitive ion channels and chemotransduction in arterial to its role in mitochondrial respiration permitting ATP synthesis chemoreceptors by oxidative phosphorylation. Oxygen is also necessary for many The carotid bodies, located in the bifurcation of the carotid other cellular functions, including the synthesis of steroid hor-artery, are the main arterial oxygen chemoreceptors in mammals. mones or the generation of reactive oxygen species in the macro-The mechanisms underlying the basic transductional process have phage defense response. In mammals, 02 diffuses into the bloodremained obscure for decades, but most authors have traditionally in the lungs, is concentrated within the erythrocytes by its bindingascribed a central role to the glomus, or type I, cells, which are of to hemoglobin and is distributed throughout the body by theneuroectodermal origin. These cells contain numerous cytosolic circulatory system. Arterial and tissular 02 tension (P02) are keptgranules rich in dopamine and other neurotransmitters and within restricted limits by short- and long-term adaptative mech-peptides, establishing synapses with afferent sensory fibers of the anisms set in motion by changes in 07 availability due tosinus nerve. Hence, it was widely accepted that glomus cells act as environmental or physiological circumstances. An immediatethe primary 02 sensors releasing transmitters that stimulate the response to a hypoxic stress is the reflex increase in respiratoryafferent fibers of the sinus nerve in response to low P02 [1, 21.
    [Show full text]
  • A Possible Role of the Glomus Cell in Controlling Vascular Tone of the Carotid Labyrinth of Xenopus Laevis
    Tohoku J. exp. Med., 1987, 151, 395-408 A Possible Role of the Glomus Cell in Controlling Vascular Tone of the Carotid Labyrinth of Xenopus laevis TATSUMIKUSAKABE, * KAZUKOISHII and KOSEI ISHIIt Department of Physiology, Fukushima Medical College, Fukushima 960 KUSAKABE,T., ISHII,K. and Isxu, K. A Possible Role of the Glomus Cell in Controlling Vascular Tone of the Carotid Labyrinth of Xenopus laevis. Tohoku J. exp. Med., 1987, 151(4), 395-408 To clarify the physiological significance of the g-s connection (intimate apposition of the glomus cell to the smooth muscle) in the Xenopus carotid labyrinth, experiments were carried out morphologically and physiologically. Results obtained are as follows. 1. Efferent electrical stim- ulation of the glossopharyngeal nerve resulted in concentrating dense-cored vesicles on the peripheral region of the glomus cell, and a decrease of vesicles as a whole. 2. In the carotid labyrinth perfused artificially, outflow of the internal and the external carotid arteries decreased with administration of catecholamines (adrenaline, noradrenaline and dopamine). 3. Acetylcholine reduced only the internal outflow. This response was depressed by atropine, hexamethonium and phenotolamine, whereas accelerated by propranolol. 4. Sodium cyanide reduced the internal outflow without affecting the external outflow, and its effect is depressed by phentolamine. From these results, a possibility that the glomus cell participates in controlling the blood flow in the labyrinth through the intervention of the g-s connection was discussed. Xenopus laevis ; carotid labyrinth ; glomus cell ; catecholamine ; arterial chemoreceptor The carotid labyrinth of amphibia has a chemoreceptor function (Ishii et al. 1966) and contains glomus cells similar to those of many animal species in fine structure (Rogers 1963; Ishii and Oosaki 1969; Poullet-Krieger 1973).
    [Show full text]
  • Carotid Sinus Syndrome As a Manifestation of Head and Neck
    Mehta et al. Int J Clin Cardiol 2014, 1:2 ISSN: 2378-2951 International Journal of Clinical Cardiology Research Article: Open Access Carotid Sinus Syndrome as a Manifestation of Head and Neck Cancer - Case Report and Literature Review Nikhil Mehta*, Medhat Abdelmessih, Lachlan Smith, Daniel Jacoby and Mark Marieb Yale School of Medicine, USA *Corresponding author: Nikhil Mehta, 1180 Chapel Street, New Haven, CT-06511, USA, E-mail: [email protected] In 1799, Parry noticed that the heart rate can be slowed by Abstract applying pressure over one of the carotid sinuses [3]. An exaggerated Head and neck cancers rarely manifest as Carotid Sinus Syndrome response to this maneuver is called Carotid Sinus Hypersensitivity (CSS). CSS is a rare complex of symptoms found in 1% of all (CSH). Most patients with CSH are asymptomatic [4,5]. However, patients who experience syncope, the pathophysiology of which is sometimes CSH can manifestas hypotension, cerebral ischemia, yet to be fully understood. Common trigger mechanisms for CSS spontaneous dizziness or syncope, and this is termed Carotid Sinus include neck movement, shaving, constricting neck wear, coughing, sneezing and straining to lift heavy objects. The left carotid sinus Syndrome (CSS). The incidence of CSS increases with advancing age mainly causes AV block while the right carotid sinus mainly causes [2,6]. Spontaneous CSS is a rare phenomenon, found in 1 percent of sinus bradycardia. The incidence of AV block in CSS is very low all cases of syncope [4]. Induced CSS is much more common, found (4.9 to 16.7%) as reported in many case series.
    [Show full text]
  • Carotid Body Detection on CT Angiography
    ORIGINAL RESEARCH Carotid Body Detection on CT Angiography R.P. Nguyen BACKGROUND AND PURPOSE: Advances in multidetector CT provide exquisite detail with improved L.M. Shah delineation of the normal anatomic structures in the head and neck. The carotid body is 1 structure that is now routinely depicted with this new imaging technique. An understanding of the size range of the E.P. Quigley normal carotid body will allow the radiologist to distinguish patients with prominent normal carotid H.R. Harnsberger bodies from those who have a small carotid body paraganglioma. R.H. Wiggins MATERIALS AND METHODS: We performed a retrospective analysis of 180 CTAs to assess the imaging appearance of the normal carotid body in its expected anatomic location. RESULTS: The carotid body was detected in Ͼ80% of carotid bifurcations. The normal size range measured from 1.1 to 3.9 mm Ϯ 2 SDs, which is consistent with the reported values from anatomic dissections. CONCLUSIONS: An ovoid avidly enhancing structure at the inferomedial aspect of the carotid bifurca- tion within the above range should be considered a normal carotid body. When the carotid body measures Ͼ6 mm, a small carotid body paraganglioma should be suspected and further evaluated. ABBREVIATIONS: AP ϭ anteroposterior; CTA ϭ CT angiography he carotid body is a structure usually located within the glomus jugulare; and at the cochlear promontory, a glomus Tadventitia of the common carotid artery at the inferome- tympanicum.5 There have been rare reports of paraganglio- dial aspect of the carotid
    [Show full text]
  • 1.) Senses When Oxygen Is Low Or CO2 Is High. Hint: How Might You Use Oxygen to Trigger Excitation of a Cell?
    Take 2 minutes to build/design a system that does two things: 1.) Senses when oxygen is low or CO2 is high. Hint: how might you use oxygen to trigger excitation of a cell? 2.) Triggers increased rate of breathing. Hint: model it after the baroreceptor reflex and everything you need for a homeostatic feedback loop 31 Step 1: we need a sensor. 32 Peripheral chemoreceptors monitor PO2, PCO2, pH Video from: http://bk.psu.edu/clt/bisc4/ipweb/systems/buildframes.html?respiratory/conresp/01 3 Glomus cells are peripheral chemoreceptors which sense O2, CO2, pH Blood vessel Low PO 2 Low P O 2 K+ channels close This system responds Cell when PaO2 gets very depolarizes Glomus cell in carotid low (~60 mmHg) body Ca2+ Relevant at high enters Voltage-gated Ca2+ altitudes or in chronic channel opens pulmonary disease Exocytosis of neurotransmitters Glomus cells also Receptor on sensory neuron respond to PaCO2 Action potential Increase in ventilation=faster Signal to medullary breathing=more O2 centers to increase 4 ventilation in, more CO2 out Central chemoreceptors in brain monitor PCO2 Video from: http://bk.psu.edu/clt/bisc4/ipweb/systems/buildframes.html?respiratory/conresp/015 Sidenote: wait wait wait wait......wait. CO2 is most important factor?? Remember changes in CO2 affect pH. Dangerous and deadly. Remember also that hemoglobin has oxygen reserves 6 Step 2: send signal to integrating center 7 Peripheral chemoreceptors monitor PO2, PCO2, pH Video from: http://bk.psu.edu/clt/bisc4/ipweb/systems/buildframes.html?respiratory/conresp/01 8 Step 3: have integrating center cause change in effectors 9 10 Figure 18.17 REVIEW: CHEMORECEPTOR RESPONSE Central Chemoreceptors Peripheral Chemoreceptors + Central chemoreceptors monitor CO2 in cerebrospinal fluid.
    [Show full text]
  • Carotid Chemoreflex Endocrine Vasoconstrictors #NO Nitric
    Fetal hypoxia Glossopharyngeal (IXth) nerve Cardiovascular centre in medulla Carotid body and sinus Vagus (Xth) nerve nerve Carotid chemoreflex Endocrine vasoconstrictors Sympathetic chain Vasculature Vascular oxidant tone •O - •NO 2 : Superoxide Anion Nitric Oxide The Fetal Brain Sparing Response to Hypoxia: Physiological Mechanisms Dino A Giussani Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK Journal: Journal of Physiology Submission: Invited Review Key Words: Fetus, Hypoxia, Cardiovascular, Chemoreflex, Nitric Oxide, Reactive Oxygen Species, IUGR, Intra-partum hypoxia, Asphyxia, Cerebral palsy Running Title: Fetal Brain Sparing Correspondence: Professor Dino A Giussani, Ph.D. Department of Physiology Development & Neuroscience Downing Street University of Cambridge Cambridge CB2 3EG UK Tel: +44 1223 333894 E-mail: [email protected] 1 1 ABSTRACT 2 3 How the fetus withstands an environment of reduced oxygenation during life in the 4 womb has been a vibrant area of research since this field was introduced by Joseph 5 Barcroft, a century ago. Studies spanning five decades have since used the 6 chronically instrumented fetal sheep preparation to investigate the fetal 7 compensatory responses to hypoxia. This defence is contingent on the fetal 8 cardiovascular system, which in late gestation adopts strategies to decrease oxygen 9 consumption and redistribute the cardiac output away from peripheral vascular 10 beds and towards essential circulations, such as those perfusing the brain. The 11 introduction of simultaneous measurement of blood flow in the fetal carotid and 12 femoral circulations by ultrasonic transducers has permitted investigation of the 13 dynamics of the fetal brain sparing response for the first time.
    [Show full text]
  • Cardiovascular Responses to Hypoxemia in Sinoaortic-Denervated Fetal Sheep
    003 1-399819 1 /3004-038 1$03.0010 PEDIATRIC RESEARCH Vol. 30. No. 4, I991 Copyright ID1991 International Pediatric Research Foundation. Inc. I1riiirc~c/it1 U.S. ,.I Cardiovascular Responses to Hypoxemia in Sinoaortic-Denervated Fetal Sheep JOSEPH ITSKOVITZ (ELDOR), EDMOND F. LAGAMMA. JAMES BRISTOW, AND ABRAHAM M. RUDOLPH Ccirdiovascz~karResearch Instillrle. Unlver:c.i/yqf Califi~rniu,Sari Francisco. Sun Francisco. Cu11fi)rilia94/43 ABSTRACT. Fetal cardiovascular response to acute hy- hypoxemia in postnatal life (1 3). The vascular effects of periph- poxemia is characterized by bradycardia, hypertension, and eral chemoreceptor stimulation, with ventilation held constant, redistribution of cardiac output. The role of aortic and include coronary vasodilation and vasoconstriction in the carotid chemoreceptors in mediating these responses was splanchnic organs and the skeletal muscles. Stimulation of the examined in eight sinoaortic-denervated and nine sham- carotid body chemoreceptors results in reflex bradycardia and operated fetal lambs. Blood gases, pH, heart rate, arterial negative inotropic responses. The bradycardia and peripheral pressure, and blood flow distribution were determined be- vasoconstriction during carotid chemoreceptor stimulation can fore and during hypoxemia. In intact fetuses, heart rate be reversed by effects arising from concurrent hypernea (13). fell from 184 -+ 12 to 165 + 23 beatslmin (p< 0.01) but The arterial chemoreceptors (aortic and carotid bodies) are increased from 184 + 22 to 200 + 16 beatslmin (p< 0.05) active in the fetal lamb and are responsive to hypoxemia (14- in the sinoaortic-denervated fetuses. Intact fetuses showed 21). Stimulation of the fetal arterial chemoreceptors result in an early hypertensive response to hypoxemia, whereas the bradycardia, which is abolished by SAD (19, 20, 22).
    [Show full text]
  • Carotid Bodies and Breathing in Humans Thorax: First Published As 10.1136/Thx.49.11.1081 on 1 November 1994
    Thorax 1994;49:1081-1084 1081 Carotid bodies and breathing in humans Thorax: first published as 10.1136/thx.49.11.1081 on 1 November 1994. Downloaded from The first report to describe the carotid bodies ("ganglion clearly demonstrated in the cat.5 The carotid bodies are minutem") was a dissertation published in 1743 by Taube,l therefore the organs which subserve hypoxic ventilatory although initially there was some uncertainty as to whether responsiveness in humans; consequently, they play a vital it was Taube or his professor (Professor Haller who used the part in constraining the fall of arterial Po2 in response to term "ganglion exiguum") who was the actual discoverer.* the challenge of hypoxaemia. While other investigators continued to report that they The most convincing evidence supporting this con- had "discovered" these organs (now termed the "ganglion tention comes from studies performed in subjects who intercaroticum") even as late as the middle of the 19th have had both carotid bodies surgically resected (see century, it remained for de Castro's detailed anatomical below). These subjects have no hyperpnoea in response to characterisation to provide the great advance in the un- experimentally induced hypoxaemia,67 nor do they show a derstanding of the structures. While he did not actually decline in ventilation following the abrupt and surreptitious use the term "chemoreceptors" as such, it is hard to believe administration of 100% oxygen against an hypoxic back- that he had anything else in mind when he stated2 that ground.7 However, in tests in which the alveolar - and they function to "taste the blood".
    [Show full text]
  • Morphological and New Neurochemical Aspects of the Mammalian Carotid Body
    Trakia Journal of Sciences, Vol. 17, Suppl. 2, pp 67-72, 2019 Copyright © 2019 Trakia University Available online at: http://www.uni-sz.bg ISSN 1313-3551 (online) doi:10.15547/tjs.2019.s.02.015 MORPHOLOGICAL AND NEW NEUROCHEMICAL ASPECTS OF THE MAMMALIAN CAROTID BODY N. Lazarov1,2,*, D. Atanasova2,3 1Department of Anatomy and Histology, Medical University of Sofia, Sofia, Bulgaria 2Institute of Neurobiology, Bulgarian Academy of Sciences, Sofia, Bulgaria 3Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora, Bulgaria ABSTRACT The carotid body (CB) is a polymodal chemosensory organ that plays an essential role in initiating respiratory and cardiovascular adjustments to maintain blood gas homeostasis. It is strategically located at the carotid bifurcation. The CB works in concert with the apposing afferent nerve endings of the petrosal ganglion (PG) cells and together they form a functional unit, the CB chemosensory system. The organ consists of small clusters called glomeruli composed of two cell types, glomus and sustentacular cells, interspersed by blood vessels and nerve bundles, and separated by connective tissue. During chemotransduction glomus cells release a variety of neurotransmitters which activate chemoafferent nerve endings of PG neurons. Much of the available evidence suggests that the CB dysfunction and altered oxygen homeostasis are involved in the pathophysiology of several diseases including systemic hypertension. Our recent data show that in glomus cells of hypertensive animals the production of nitric oxide is impaired and components of the neurotrophin signaling system display enhanced expression. These results suggest that a heightened chemosensory discharge may contribute to sympathetic hyperactivity leading to hypertension.
    [Show full text]
  • Physiology and Pathophysiology of Oxygen Sensitivity
    antioxidants Opinion Physiology and Pathophysiology of Oxygen Sensitivity Robert S. Fitzgerald 1,* and Asuncion Rocher 2 1 Department of Environmental Health & Engineering, The Johns Hopkins University Medical Institutions, Baltimore, MD 21205, USA 2 Departamento de Bioquimica y Biología Molecular y Fisiologia, Instituto de Biologia y Genetica Molecular (IBGM), Universidad de Valladolid-CSIC, 47005 Valladolid, Spain; [email protected] * Correspondence: rfi[email protected] Abstract: Oxygen is an essential requirement for metabolism in mammals and many other animals. Therefore, pathways that sense a reduction in available oxygen are critical for organism survival. Higher mammals developed specialized organs to detect and respond to changes in O2 content to maintain gas homeostasis by balancing oxygen demand and supply. Here, we summarize the various oxygen sensors that have been identified in mammals (carotid body, aortic bodies, and astrocytes), by what mechanisms they detect oxygen and the cellular and molecular aspects of their function on control of respiratory and circulatory O2 transport that contribute to maintaining normal physiology. Finally, we discuss how dysregulation of oxygen availability leads to elevated signalling sensitivity in these systems and may contribute to the pathogenesis of chronic cardiovascular and respiratory diseases and many other disorders. Hence, too little oxygen, too much oxygen, and a malfunctioning sensitivity of receptors/sensors can create major pathophysiological problems for the organism. Keywords: oxygen sensing; cardiovascular disease; carotid body; aortic bodies; astrocytes; hypoxia Citation: Fitzgerald, R.S.; Rocher, A. Identification of the Various Sensors of O2 in the Organism and by What Mechanisms Physiology and Pathophysiology of They Sense O2: The Carotid Body, Aortic Bodies, and Astrocytes Oxygen Sensitivity.
    [Show full text]
  • Deactivation of Carotid Body Chemoreceptors by Hyperoxia Decreases Blood Pressure in Hypertensive Patients
    Hypertension Research (2014) 37, 858–862 & 2014 The Japanese Society of Hypertension All rights reserved 0916-9636/14 www.nature.com/hr ORIGINAL ARTICLE Deactivation of carotid body chemoreceptors by hyperoxia decreases blood pressure in hypertensive patients Maciej Sinski1, Jacek Lewandowski1, Jacek Przybylski2, Pawe" Zalewski3, Bartosz Symonides1, Piotr Abramczyk1 and Zbigniew Gaciong1 Previous studies have shown that hyperoxia-induced deactivation of carotid body chemoreceptors reduces sympathetic activity in hypertensive patients but it does not affect blood pressure. The maintenance of blood pressure can be explained by the direct, vasoconstrictive effect of hyperoxia, which offsets diminished sympathetic activity. This study compares the effect of acute hyperoxia on hemodynamic parameters between hypertensive and normotensive subjects. Twelve males with hypertension (age 39.4±2.4 years; body mass index 27.4±1.1 kg m À2) and 11 normotensive males (age 39.9±2.7 years; body mass index 25.4±0.7 kg m À2) received, via non-rebreathing mask ventilation, ambient air, followed by 100% oxygen for 20 min. The stroke volume, heart rate, cardiac output, blood pressure, total peripheral resistance, respiratory rate, baroreceptor control of heart rate and oxygen saturation were recorded continuously. Several 30 s periods were analyzed before, during and after inducing hyperoxia. At baseline, the hypertensive subject’s blood pressure was higher and their baroreflex control of heart rate was lower when compared with the normotensive control group. After the first 30 s of hyperoxia, systolic, diastolic and mean blood pressures, as well as the total peripheral resistance, decreased significantly in hypertensives but not in normotensives. After 20 min of 100% oxygen ventilation, systolic and mean blood pressures and total peripheral resistance was increased in hypertensive patients, and the cardiac output and stroke volume had decreased in both groups.
    [Show full text]
  • HIF-2A Is Essential for Carotid Body Development and Function
    RESEARCH ARTICLE HIF-2a is essential for carotid body development and function David Macias1*, Andrew S Cowburn1,2, Hortensia Torres-Torrelo3, Patricia Ortega-Sa´ enz3, Jose´ Lo´ pez-Barneo3, Randall S Johnson1,4* 1Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom; 2Department of Medicine, University of Cambridge, Cambridge, United Kingdom; 3Instituto de Biomedicina de Sevilla, Seville, Spain; 4Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden Abstract Mammalian adaptation to oxygen flux occurs at many levels, from shifts in cellular metabolism to physiological adaptations facilitated by the sympathetic nervous system and carotid body (CB). Interactions between differing forms of adaptive response to hypoxia, including transcriptional responses orchestrated by the Hypoxia Inducible transcription Factors (HIFs), are complex and clearly synergistic. We show here that there is an absolute developmental requirement for HIF-2a, one of the HIF isoforms, for growth and survival of oxygen sensitive glomus cells of the carotid body. The loss of these cells renders mice incapable of ventilatory responses to hypoxia, and this has striking effects on processes as diverse as arterial pressure regulation, exercise performance, and glucose homeostasis. We show that the expansion of the glomus cells is correlated with mTORC1 activation, and is functionally inhibited by rapamycin treatment. These findings demonstrate the central role played by HIF-2a in carotid body development, growth and function. DOI: https://doi.org/10.7554/eLife.34681.001 *For correspondence: [email protected] (DM); Introduction [email protected] (RSJ) Detecting and responding to shifts in oxygen availability is essential for animal survival. Responding to changes in oxygenation occurs in cells, tissues, and at the level of the whole organism.
    [Show full text]