Alphitonia Excelsa Common Name: Red Ash Family - Rhamnaceae

Total Page:16

File Type:pdf, Size:1020Kb

Alphitonia Excelsa Common Name: Red Ash Family - Rhamnaceae Alphitonia Excelsa Common Name: Red Ash Family - Rhamnaceae Description • Alphitonia Excelsa is a small to medium size tree with a branching canopy formation • Reaches a height of 15m and width of 6m • The tree is commonly found in dry sclerophyll forest and rainforests • Favours well drained soils and is highly suitable for erosion control areas • Fast growing ability, highly suitable for areas prone to coastal salty winds and drought condition • Prefers full sun conditions • Spectacular cream ‘petal-like’ flowers appear from summer to autumn • Ecological role provides a habitat for native birds (cockatoos) and the small green-banded blue butterfly • Round black fruit ripens from June to September • Distribution occurs from the coastal areas of WA across the top end of the NT, and along the coastline from Northern Qld to the southern coastal areas of NSW How to look after this plant • Prefers full sun • When planting tree into ground, dig a slow release native fertiliser (low phosphorous formulation) into soil to provide plant with essential nutrients, encourage healthy plant growth and increase flowering. Slow release fertiliser will generally last up to 6 months, reapply between 5-6 months to continue plant growth • Water every 2-3 days a week for the first month when planted. Cut back watering to once or twice a week after the first month (avoid over watering) • Lightly prune after the flowering season to increase the foliage growth • If soil is low in organic matter, dig compost into existing soil to develop valuable humus around your plant. • For clay soils, dig gypsum and garden soil into the existing ground to encourage drainage. • Once tree is established, plant will be capable of drought conditions • Dig hole for plant twice the size of the plant pot • Break up soil where root ball of plant will sit to allow room for roots to grow efficiently • Spread a 100mm deep layer of mulch around tree (keep a 150mm clearance around trunk) to prevent weeks and retain moisture within soil CALL 1300 325 519 VISIT US TODAY, CNR TANNUM SANDS AND DAHL ROADS, TANNUM SANDS, WWW.TANNUMBLUE.COM.AU.
Recommended publications
  • Kingdom Class Family Scientific Name Common Name I Q a Records
    Kingdom Class Family Scientific Name Common Name I Q A Records plants monocots Poaceae Paspalidium rarum C 2/2 plants monocots Poaceae Aristida latifolia feathertop wiregrass C 3/3 plants monocots Poaceae Aristida lazaridis C 1/1 plants monocots Poaceae Astrebla pectinata barley mitchell grass C 1/1 plants monocots Poaceae Cenchrus setigerus Y 1/1 plants monocots Poaceae Echinochloa colona awnless barnyard grass Y 2/2 plants monocots Poaceae Aristida polyclados C 1/1 plants monocots Poaceae Cymbopogon ambiguus lemon grass C 1/1 plants monocots Poaceae Digitaria ctenantha C 1/1 plants monocots Poaceae Enteropogon ramosus C 1/1 plants monocots Poaceae Enneapogon avenaceus C 1/1 plants monocots Poaceae Eragrostis tenellula delicate lovegrass C 2/2 plants monocots Poaceae Urochloa praetervisa C 1/1 plants monocots Poaceae Heteropogon contortus black speargrass C 1/1 plants monocots Poaceae Iseilema membranaceum small flinders grass C 1/1 plants monocots Poaceae Bothriochloa ewartiana desert bluegrass C 2/2 plants monocots Poaceae Brachyachne convergens common native couch C 2/2 plants monocots Poaceae Enneapogon lindleyanus C 3/3 plants monocots Poaceae Enneapogon polyphyllus leafy nineawn C 1/1 plants monocots Poaceae Sporobolus actinocladus katoora grass C 1/1 plants monocots Poaceae Cenchrus pennisetiformis Y 1/1 plants monocots Poaceae Sporobolus australasicus C 1/1 plants monocots Poaceae Eriachne pulchella subsp. dominii C 1/1 plants monocots Poaceae Dichanthium sericeum subsp. humilius C 1/1 plants monocots Poaceae Digitaria divaricatissima var. divaricatissima C 1/1 plants monocots Poaceae Eriachne mucronata forma (Alpha C.E.Hubbard 7882) C 1/1 plants monocots Poaceae Sehima nervosum C 1/1 plants monocots Poaceae Eulalia aurea silky browntop C 2/2 plants monocots Poaceae Chloris virgata feathertop rhodes grass Y 1/1 CODES I - Y indicates that the taxon is introduced to Queensland and has naturalised.
    [Show full text]
  • Honey and Pollen Flora of SE Australia Species
    List of families - genus/species Page Acanthaceae ........................................................................................................................................................................34 Avicennia marina grey mangrove 34 Aizoaceae ............................................................................................................................................................................... 35 Mesembryanthemum crystallinum ice plant 35 Alliaceae ................................................................................................................................................................................... 36 Allium cepa onions 36 Amaranthaceae ..................................................................................................................................................................37 Ptilotus species foxtails 37 Anacardiaceae ................................................................................................................................................................... 38 Schinus molle var areira pepper tree 38 Schinus terebinthifolius Brazilian pepper tree 39 Apiaceae .................................................................................................................................................................................. 40 Daucus carota carrot 40 Foeniculum vulgare fennel 41 Araliaceae ................................................................................................................................................................................42
    [Show full text]
  • Brisbane Native Plants by Suburb
    INDEX - BRISBANE SUBURBS SPECIES LIST Acacia Ridge. ...........15 Chelmer ...................14 Hamilton. .................10 Mayne. .................25 Pullenvale............... 22 Toowong ....................46 Albion .......................25 Chermside West .11 Hawthorne................. 7 McDowall. ..............6 Torwood .....................47 Alderley ....................45 Clayfield ..................14 Heathwood.... 34. Meeandah.............. 2 Queensport ............32 Trinder Park ...............32 Algester.................... 15 Coopers Plains........32 Hemmant. .................32 Merthyr .................7 Annerley ...................32 Coorparoo ................3 Hendra. .................10 Middle Park .........19 Rainworth. ..............47 Underwood. ................41 Anstead ....................17 Corinda. ..................14 Herston ....................5 Milton ...................46 Ransome. ................32 Upper Brookfield .......23 Archerfield ...............32 Highgate Hill. ........43 Mitchelton ...........45 Red Hill.................... 43 Upper Mt gravatt. .......15 Ascot. .......................36 Darra .......................33 Hill End ..................45 Moggill. .................20 Richlands ................34 Ashgrove. ................26 Deagon ....................2 Holland Park........... 3 Moorooka. ............32 River Hills................ 19 Virginia ........................31 Aspley ......................31 Doboy ......................2 Morningside. .........3 Robertson ................42 Auchenflower
    [Show full text]
  • Auwahi: Ethnobotany of a Hawaiian Dryland Forest
    AUWAHI: ETHNOBOTANY OF A HAWAIIAN DRYLAND FOREST. A. C. Medeiros1, C.F. Davenport2, and C.G. Chimera1 1. U.S. Geological Survey, Biological Resources Division, Haleakala Field Station, P.O. Box 369, Makawao, HI 96768 2. Social Sciences Department, Maui Community College, 310 Ka’ahumanu Ave., Kahului, HI 96732 ABSTRACT Auwahi district on East Maui extends from sea level to about 6800 feet (1790 meters) elevation at the southwest rift of leeward Haleakal¯a volcano. In botanical references, Auwahi currently refers to a centrally located, fairly large (5400 acres) stand of diverse dry forest at 3000-5000 feet (915- 1525 meters) elevation surrounded by less diverse forest and more open-statured shrubland on lava. Auwahi contains high native tree diversity with 50 dryland species, many with extremely hard, durable, and heavy wood. To early Hawaiians, forests like Auwahi must have seemed an invaluable source of unique natural materials, especially the wide variety of woods for tool making for agriculture and fishing, canoe building, kapa making, and weapons. Of the 50 species of native trees at Auwahi, 19 species (38%) are known to have been used for medicine, 13 species (26%) for tool-making, 13 species (26%) for canoe building 13 species (26%) for house building, 8 species (16%) for tools for making kapa, 8 species (16%) for weapons 8 species (16%) for fishing, 8 species (16%) for dyes, and 7 species (14 %) for religious purposes. Other miscellaneous uses include edible fruits or seeds, bird lime, cordage, a fish narcotizing agent, firewood, a source of "fireworks", recreation, scenting agents, poi boards, and h¯olua sled construction.
    [Show full text]
  • Alphitonia Excelsa
    Plant of the Month - February by Allan Carr Alphitonia excelsa soap tree Pronunciation: al-fit-OWN-ee-a ek-SELL-sa RHAMNACEAE Derivation: Alphitonia, from the Greek, alphiton – baked barley meal (referring to the red mealy matter around the seeds); excelsa, from the Latin, excelsus – elevated, lofty (referring to its tall habit). Chewed leaves (undersides) Buds, flowers, sugar ant Fruits, both green and mature There are about 20 Alphitonia species, mostly in tropical areas around the world with 7 or 8 extending to Australia. Description: A. excelsa is a tree to 18 m, sometimes smaller, that occurs in deep sands on forest edges in coastal and near coastal areas from northern Qld down into southern NSW. It is also found in northern WA and NT The bark is usually distinctively mottled with a variety of lichens. Young parts of the plant are covered in rusty hairs and smell of sarsaparilla when crushed. The common name comes from the ability to form a soapy froth when leaves are rubbed with wet hands. This is due to a high *saponin content. Bark Leaves to 150 mm x 55 mm are alternate, green above with an under surface of silvery- white with fine hairs. Their edges are slightly curled under and frequently show much damage after being eaten by various leaf chewing insects including caterpillars of the Small Green-banded Blue butterfly (Psychonotis caelius). Flowers are creamy-green, tiny, 5-petalled and borne in *axillary clusters from November to April. Fruits are dry, black, globular to 12 mm across with reddish -brown seeds inside.
    [Show full text]
  • Alphitonia Excelsa (A
    TAXON: Alphitonia excelsa (A. SCORE: 5.0 RATING: High Risk Cunn. ex Fenzl) Reissek ex Benth. Taxon: Alphitonia excelsa (A. Cunn. ex Fenzl) Reissek ex Family: Rhamnaceae Benth. Common Name(s): Cooper's wood Synonym(s): Colubrina excelsa A. Cunn. ex Fenzl leather jacket mountain ash pink almond red almond red ash red tweedie soaptree white myrtle whiteleaf Assessor: Chuck Chimera Status: Assessor Approved End Date: 19 Oct 2018 WRA Score: 5.0 Designation: H(HPWRA) Rating: High Risk Keywords: Tropical Tree, Naturalized, Pure Stands, Self-Incompatible, Bird-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 y Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 n outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 y 302 Garden/amenity/disturbance weed 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed 401 Produces spines, thorns or burrs y=1, n=0 n Creation Date: 19 Oct 2018 (Alphitonia excelsa (A.
    [Show full text]
  • Tribe Species Secretory Structure Compounds Organ References Incerteae Sedis Alphitonia Sp. Epidermis, Idioblasts, Cavities
    Table S1. List of secretory structures found in Rhamanaceae (excluding the nectaries), showing the compounds and organ of occurrence. Data extracted from the literature and from the present study (species in bold). * The mucilaginous ducts, when present in the leaves, always occur in the collenchyma of the veins, except in Maesopsis, where they also occur in the phloem. Tribe Species Secretory structure Compounds Organ References Epidermis, idioblasts, Alphitonia sp. Mucilage Leaf (blade, petiole) 12, 13 cavities, ducts Epidermis, ducts, Alphitonia excelsa Mucilage, terpenes Flower, leaf (blade) 10, 24 osmophores Glandular leaf-teeth, Flower, leaf (blade, Ceanothus sp. Epidermis, hypodermis, Mucilage, tannins 12, 13, 46, 73 petiole) idioblasts, colleters Ceanothus americanus Idioblasts Mucilage Leaf (blade, petiole), stem 74 Ceanothus buxifolius Epidermis, idioblasts Mucilage, tannins Leaf (blade) 10 Ceanothus caeruleus Idioblasts Tannins Leaf (blade) 10 Incerteae sedis Ceanothus cordulatus Epidermis, idioblasts Mucilage, tannins Leaf (blade) 10 Ceanothus crassifolius Epidermis; hypodermis Mucilage, tannins Leaf (blade) 10, 12 Ceanothus cuneatus Epidermis Mucilage Leaf (blade) 10 Glandular leaf-teeth Ceanothus dentatus Lipids, flavonoids Leaf (blade) (trichomes) 60 Glandular leaf-teeth Ceanothus foliosus Lipids, flavonoids Leaf (blade) (trichomes) 60 Glandular leaf-teeth Ceanothus hearstiorum Lipids, flavonoids Leaf (blade) (trichomes) 60 Ceanothus herbaceus Idioblasts Mucilage Leaf (blade, petiole), stem 74 Glandular leaf-teeth Ceanothus
    [Show full text]
  • Approved EMP Appendices 1 to 12
    Appendix 1. Field Management Plans Environmental Management/ Control Monitoring Monitoring Report Objective Impact Activity Reporting Action Responsibility Value Strategy Action Frequency Frequency Flora/fauna No permanent Loss of protected • All vegetation Ensure all necessary Visual Weekly Corrective action record as Induction Person in charge detrimental flora species, clearing permits and approvals are required training impact to essential habitat • Removal of fertile in place and compliance Prior to start of biodiversity or and biodiversity topsoil obligations communicated work ecological to site personnel prior to function commencing vegetation clearing Mark the boundary of the Visual weekly Corrective action record as Monthly Person in charge work program area with required (summary in tape and/ or hi-viz fencing monthly designated for ‘No Go report) Zones’ and monitor integrity Ensure site specific fire Audit At start of new Audit report As required Person in charge management plans are in work and place quarterly Weed invasion/ • All vegetation Upgrade existing tracks Visual Weekly Corrective action record as Monthly Weeds Officer infestation and / clearing where practical to required increased • Accessing site by accommodate the heavy occurrence or vehicle vehicle traffic (including abundance of widening). feral animals Vehicle wash down prior Weed certificate Prior to Certificate At Weeds Officer to entering the area mobilization commencemen t Vehicle wash down for the Weed certificate As required Self-assessment As required
    [Show full text]
  • Section 8-Maggie-Final AM
    KEY TO GROUP 8 Shrubs or trees usually more than 1.5 m tall. A. flower B. phyllode and C. leaf D. leaf E. leaf margins F. leaf margins spike pod lobed dissected crenate serrate NOTE: The following trees and shrubs, which are deciduous when flowering, will not come out in this key unless you can find a leaf. There are usually some old ones on the ground or even a few hanging on the tree. These plants are: Brachychiton (Group 8.G), Cochlospermum (Group 8.G), Cordia (Group 8.K), Gyrocarpos (Group 8.G), Sterculia (Group 8.O), Terminalia (Group 8.M), Turraea (Group 8.R), and the mangrove, Xylocarpus (Group 1.H). 1 Leaves with oil glands, readily visible with a hand lens if not to the naked eye, aromatic when crushed, eucalypt or citrus smell. (Chiefly eucalypts, paperbarks, bottlebrushes and similar) go to 2 1* Leaves lacking easily seen oil glands, if aromatic when crushed, then smell not of an eucalypt; citrus or even an apple smell go to 5 Oil glands/dots as seen with a good hand lens 2 Trees; petals fused to form an operculum or cap, stamens numerous and free (eucalpyts) go to 3 2* Shrubs or trees, petals not fused to form an operculum or cap, stamens if numerous then usually united into bundles or stamens are fewer than 10 (Myrtaceae-Rutaceae) go to 4 3 Bark smooth throughout but occasionally some rough fibrous or persistent bark at base go to Group 8.A 3* Persistent, fibrous bark for at least 2-3 m or usually more from the base go to Group 8.B 4 Flowers clustered into spikes (see sketch A), old capsules usually remain on the old wood
    [Show full text]
  • Nomenclatural Notes on the Alphitonia Group in Australia (Rhamnaceae) Jürgen Kellermanna,B
    Swainsona 33: 135–142 (2020) © 2020 Board of the Botanic Gardens & State Herbarium (Adelaide, South Australia) Nomenclatural notes on the Alphitonia Group in Australia (Rhamnaceae) Jürgen Kellermanna,b a State Herbarium of South Australia, Botanic Gardens and State Herbarium, Hackney Road, Adelaide, South Australia 5000 Email: [email protected] b The University of Adelaide, School of Biological Sciences, Adelaide, South Australia 5005 Abstract: The nomenclature and typification of seven species of Alphitonia Reissek ex Endl. and Emmenosperma F.Muell. is discussed. These two genera form the “Alphitonia Group” together with Granitites Rye and Jaffrea H.C.Hopkins & Pillon from New Caledonia. Lectotypes are chosen for E. cunninghamii Benth. and for the synonyms A. excelsa var. acutifolia Braid, A. obtusifolia R.Br. ex Braid and A. obtusifolia var. tenuis Braid. The lectotypes of A. petriei Braid & C.T.White and A. philippinensis Braid are clarified. Three species are illustrated: A. petriei, A. whitei Braid and E. cunninghamii. Keywords: Nomenclature, typification, second-step lectotype, Rhamnaceae, incertae sedis, Australia Introduction when fruits are ripe, they split open and the pericarp falls off, leaving the seeds (usually 3) remaining attached Rhamnaceae Juss. is a medium-sized plant family with to the base of the fruit (Fig. 3F, P). over 1000 species in 64 genera. The current intra- familial classification was devised by Richardson et al. Alphitonia (10–15 species) was published in (2000b), following the first molecular analysis of the Endlicher (1840), using Reissek’s manuscript name whole family (Richardson et al. 2000a). The family is and description. He indicated that Colubrina excelsa divided into 11 tribes, but several genera have not been A.Cunn.
    [Show full text]
  • Jewel Bugs of Australia (Insecta, Heteroptera, Scutelleridae)1
    © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Jewel Bugs of Australia (Insecta, Heteroptera, Scutelleridae)1 G. CASSIS & L. VANAGS Abstract: The Australian genera of the Scutelleridae are redescribed, with a species exemplar of the ma- le genitalia of each genus illustrated. Scanning electron micrographs are also provided for key non-ge- nitalic characters. The Australian jewel bug fauna comprises 13 genera and 25 species. Heissiphara is described as a new genus, for a single species, H. minuta nov.sp., from Western Australia. Calliscyta is restored as a valid genus, and removed from synonymy with Choerocoris. All the Australian species of Scutelleridae are described, and an identification key is given. Two new species of Choerocoris are des- cribed from eastern Australia: C. grossi nov.sp. and C. lattini nov.sp. Lampromicra aerea (DISTANT) is res- tored as a valid species, and removed from synonymy with L. senator (FABRICIUS). Calliphara nobilis (LIN- NAEUS) is recorded from Australia for the first time. Calliphara billardierii (FABRICIUS) and C. praslinia praslinia BREDDIN are removed from the Australian biota. The identity of Sphaerocoris subnotatus WAL- KER is unknown and is incertae sedis. A description is also given for the Neotropical species, Agonoso- ma trilineatum (FABRICIUS); a biological control agent recently introduced into Australia to control the pasture weed Bellyache Bush (Jatropha gossypifolia, Euphorbiaceae). Coleotichus borealis DISTANT and C. (Epicoleotichus) schultzei TAUEBER are synonymised with C. excellens (WALKER). Callidea erythrina WAL- KER is synonymized with Lampromicra senator. Lectotype designations are given for the following taxa: Coleotichus testaceus WALKER, Coleotichus excellens, Sphaerocoris circuliferus (WALKER), Callidea aureocinc- ta WALKER, Callidea collaris WALKER and Callidea curtula WALKER.
    [Show full text]
  • Drought's Legacy: Multi-Year Hydraulic Deterioration Underlies Widespread
    1 Woody plants optimize stomatal behavior relative to hydraulic risk 2 3 Supporting Information 4 Supplementary Methods 5 Dataset processing 6 In four of the tropical understory plants, measurements from extremely low light 7 conditions (PAR < 70 µmol m-2 s-1) were excluded because the plant was estimated to be in 8 negative carbon balance unrelated to water stress. Excluding these is unlikely to change the cost 9 function calculations, as they would be entirely during low water stress conditions and the cost 10 functions should mostly diverge during dry conditions (Fig 1). Leaf temperatures were not 11 available for 1 species (Prosopis velutina) and thus leaf temperatures were assumed to be air 12 temperature for that species. 13 14 MXTE functional form 15 Because the MXTE is the derivative of the cost function, this linear formulation of the 16 MXTE assumes a parabolic functional form of the costs/risk of low water potential (e.g. 17 Equation 9). This was chosen because it had the fewest parameters that allowed distinguishing 18 whether observed MXTE was constant/increasing (CM) or decreasing (WUE) with more 19 negative ψL (Fig. 1a) and can capture a general threshold pattern in response to changing ψL with 20 a relatively constant region around the parabola maximum/minimum and then a quadratically 21 increasing or decreasing risk as water potentials decline. 22 23 Sensitivity analyses and statistics Anderegg et al. – Supporting Information – 1 24 The bootstrap analysis using the input driving data should capture much of the potential 25 error within driving variables and measurements within the estimated 95% confidence intervals 26 for the cost function parameters (e.g.
    [Show full text]