ATG-Dependent Phagocytosis in Dendritic Cells Drives Myelin-Specific

Total Page:16

File Type:pdf, Size:1020Kb

ATG-Dependent Phagocytosis in Dendritic Cells Drives Myelin-Specific ATG-dependent phagocytosis in dendritic cells drives PNAS PLUS + myelin-specific CD4 T cell pathogenicity during CNS inflammation Christian W. Kellera, Christina Sinaa,b, Monika B. Kotura, Giulia Ramellia, Sarah Mundtc, Isaak Quasta,d, Laure-Anne Ligeone, Patrick Webera, Burkhard Becherc, Christian Münze, and Jan D. Lünemanna,f,1 aInstitute of Experimental Immunology, Laboratory of Neuroinflammation, University of Zurich, 8057 Zurich, Switzerland; bBrain Research Institute, University of Zurich, 8057 Zurich, Switzerland; cInstitute of Experimental Immunology, Laboratory of Inflammation Research, University of Zurich, 8057 Zurich, Switzerland; dDepartment of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia; eInstitute of Experimental Immunology, Laboratory of Viral Immunobiology, University of Zurich, 8057 Zurich, Switzerland; and fDepartment of Neurology, University Hospital Zurich, 8091 Zurich, Switzerland Edited by Lawrence Steinman, Stanford University School of Medicine, Stanford, CA, and approved November 10, 2017 (received for review August 2, 2017) Although reactivation and accumulation of autoreactive CD4+ T cells T cells recognize their target organ and become reactivated withintheCNSareconsideredtoplayakeyroleinthepathogenesis to induce sustained CNS tissue damage are, however, incom- of multiple sclerosis (MS) and its animal model, experimental auto- pletely understood. immune encephalomyelitis (EAE), the mechanisms of how these cells The autophagic machinery delivers cytoplasmic cargo and sub- recognize their target organ and induce sustained inflammation are strates for MHC class II presentation to late endosomes and lyso- incompletely understood. Here, we report that mice with conditional somes (10, 11). In addition, autophagy proteins regulate degradation deletion of the essential autophagy protein ATG5 in classical den- of extracellular material via the noncanonical use of autophagy- dritic cells (DCs), which are present at low frequencies in the non- related proteins (ATGs) during ATG8/microtubule-associated pro- diseased CNS, are completely resistant to EAE development tein 1A/1B light chain 3 (LC3)-associated phagocytosis (LAP) (12– following adoptive transfer of myelin-specific T cells and show sub- 18). Here, we report that DCs use ATG-dependent phagocytosis for + stantially reduced in situ CD4 T cell accumulation during the effector enhanced presentation of myelin antigen during autoimmune CNS INFLAMMATION phase of the disease. Endogenous myelin peptide presentation to inflammation, thereby linking oligodendrocyte injury with antigen IMMUNOLOGY AND CD4+ T cells following phagocytosis of injured, phosphatidylserine- processing and autoimmune T cell pathogenicity. exposing oligodendroglial cells is abrogated in the absence of ATG5. Pharmacological inhibition of ATG-dependent phagocytosis by the Results + + cardiac glycoside neriifolin, an inhibitor of the Na ,K -ATPase, de- Primed, Encephalitogenic CD4+ T Cells Require ATG5 Expression by lays the onset and reduces the clinical severity of EAE induced by DCs to Induce EAE. To address whether the autophagy machinery + myelin-specific CD4 T cells. These findings link phagocytosis of in- modulates EAE development, we generated conditional knock- + jured oligodendrocytes, a pathological hallmark of MS lesions and out mice (C57BL/6) for disruption of Atg5 in CD11c APCs − − during EAE, with myelin antigen processing and T cell pathogenicity, (Atg5flox/flox × CD11c-Cre-GFP, designated DC-Atg5 / ) (Fig. + and identify ATG-dependent phagocytosis in DCs as a key regulator 1A). Absence of ATG5 in CD11c cells led to complete pro- + in driving autoimmune CD4 T cell-mediated CNS damage. tection from EAE development upon adoptive transfer of T cell autophagy | neuroinflammation | EAE | multiple sclerosis Significance ultiple sclerosis (MS) is considered to be an antigen- How autoreactive CD4+ T cells recognize their target antigen and Mdriven, predominantly T cell-mediated autoimmune dis- induce sustained inflammation in organ-specific autoimmune ease of the CNS. Genome-wide association studies confirmed diseases is incompletely understood. In an experimental model that HLA class II haplotypes, in particular HLA-DRB1*1501/ of multiple sclerosis, we show that accumulation of myelin- + HLA-DRB5*0101, are the strongest genetic risk factors for MS specific CD4 T cells within the CNS and subsequent clinical dis- development (1, 2), a substantial fraction of T cells isolated from ease development requires autophagy protein (ATG)-dependent CNS lesional tissue and the cerebrospinal fluid from MS patients phagocytosis in dendritic cells (DCs). Absence of ATG-dependent are derived from clonal expansion (3–5), and inflammatory de- phagocytosis in DCs abrogates myelin presentation to CD4+ myelination in experimental autoimmune encephalomyelitis (EAE), T cells following phagocytosis of oligodendroglial cells, and its + an animal model for MS, is dependent on CD4 T cells that react pharmacological inhibition delays the onset and reduces the to myelin antigen (6, 7). clinical severity of experimental autoimmune encephalomyelitis. + Before infiltrating the CNS, autoreactive CD4 T cells are Thus, DCs use ATG-dependent phagocytosis for enhanced pre- primed in the peripheral immune system. Priming can be tar- sentation of myelin antigen during autoimmune CNS in- geted to skin draining lymph nodes after s.c. immunization with flammation, thereby linking oligodendrocyte injury with antigen myelin antigen and complete Freund’s adjuvant (CFA) during processing and autoimmune T cell pathogenicity. active EAE induction. In MS, the site where autoreactive T cells Author contributions: C.W.K., C.S., B.B., C.M., and J.D.L. designed research; C.W.K., C.S., are primed is not known, but the human disease is usually not M.B.K., G.R., S.M., I.Q., L.-A.L., and P.W. performed research; B.B. and C.M. contributed elicited by vaccinations and persists in the absence of any sys- new reagents/analytic tools; C.W.K., C.S., and M.B.K. analyzed data; and C.W.K. and J.D.L. temic inflammatory challenges. Local reactivation and sustained wrote the paper. accumulation of autoreactive T cells within the CNS are, The authors declare no conflict of interest. therefore, considered instrumental in both MS and EAE. This This article is a PNAS Direct Submission. effector phase can be modeled by adoptive transfer of primed Published under the PNAS license. + myelin-specific CD4 T cells into naïve mice (adoptive transfer 1To whom correspondence should be addressed. Email: [email protected]. + EAE; AT-EAE) and depends on the presence of CD11c + This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. antigen-presenting cells (APCs) (8, 9). How myelin-reactive CD4 1073/pnas.1713664114/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1713664114 PNAS Early Edition | 1of10 Downloaded by guest on October 2, 2021 – + neg +/+ −/− receptor-transgenic (TCR-tg) MOG35–55 specific CD4 T cells A CD11c / DC-Atg5 DC-Atg5 MOG CD11chi/ CD11b+/ derived from 2D2/TCR animals (Fig. 1B). Protection was MHCIIhi Ly6C+ also observed after adoptively transferring non–TCR-tg, poly- CD11chi MHCIIhi BMDCs + – ATG5- clonal encephalitogenic CD4 T cells obtained from MOG35–55 immunized C57BL/6 mice (Fig. 1C). In contrast, absence of 500 ATG12 + ATG5 in CD11c cells resulted in only minor and not statistically 400 LC3-I significant differences in incidence rates and clinical severity − − B cells CD4+ T cells 300 LC3-II grades in DC-Atg5 / mice upon active immunization (Fig. 1D). 200 % of Max CD11c-Cre-GFP mice were fully susceptible to EAE develop- 100 Actin Cre-GFP (MFI) Cre-GFP ment (Fig. S1A). + 0 Since loss of ATG5 in CD11c cells completely prevented the development of AT-EAE, we next profiled CD11c promoter- Cre-GFP + driven Cre-GFP expression in MHC class II CNS-resident CD11c+ CD11cneg Ly6C+ CD4+ APCs before EAE induction in naïve mice. A minor pop- + ATG5- ulation of CNS CD11b myeloid cells coexpressed high levels of ATG12 CD11c and MHC class II, indicative of classical DCs (cDCs), and Actin was efficiently targeted by Cre-mediated recombination (Fig. 2 A and B). By comparison, Cre-GFP expression in CD11cintMHC − − class IIhi cells derived from DC-Atg5 / mice was minor and not + + B DC-Atg5+/+ DC-Atg5−/− statistically different from DC-Atg5 / mice (Fig. S1B). CD11cneg 4 100 neg hi core myeloid populations such as CD11c Ly6C monocytes, pre- 80 cursors of CNS-invading monocyte-derived DCs and required for 3 the initiation of tissue inflammation in actively induced EAE EAE S l 60 (19–23), were not targeted by Cre-mediated recombination (Fig. ca 2 i n 2B), indicating that site-specific deletion of Atg5 was confined to 40 + + Cli Incidence (%) CD11c MHC class II DCs. However, we observed that up- 1 − − 20 regulation of MHC class II in DC-Atg5 / bone marrow-derived ean myeloid cells upon GM-CSF incubation precedes Cre-mediated M 0 0 1 10 20 30 recombination and loss of ATG5 (Fig. S1C), suggesting a days after transfer delayed targeting of ATG5 in monocyte-derived DCs in DC- −/− C Atg5 mice. 1.5 80 In C57BL/6 wild-type mice, ATG5 protein expression was core + detectable in CNS-derived CD11c cells in naïve mice as well as − − 60 after induction of AT-EAE (Fig. 2C). In DC-Atg5 / mice, fre- hi hi EAE1.0 S l quencies of CD11c MHC class II CNS DCs were similar +/+ ca 40 i compared with DC-Atg5 littermates (Fig. 2D). Moreover, n hi hi 0.5 ATG5-deficient CNS-derived CD11c MHC class II DCs did Incidence (%) Cli 20 not differ from their ATG5-competent counterparts in expres- ean sion levels of MHC class II, CD40 and CD86 (Fig. 2E). Micro- M 0 0 1 10 20 30 glial cells, in which expression of CD11c and MHC class II can days after transfer be induced upon activation, did not express CD11c, exhibited no detectable levels of MHC class II molecules (Fig. 2 F and G), and were observed at similar frequencies in naïve mice when D − − + + 3 100 comparing DC-Atg5 / with DC-Atg5 / (Fig. 2H). Furthermore, core + ns frequencies of splenic DC and monocyte subsets, CD4 T cells, 80 + + + CD8 T cells, and CD4 Foxp3 regulatory T cells and B cells EAE S 2 l 60 (Fig.
Recommended publications
  • 2019: the Year in Experimental Medicine Why Submit to Jem?
    2019: THE YEAR IN EXPERIMENTAL MEDICINE WHY SUBMIT TO JEM? FORMAT NEUTRAL You may submit your papers in ANY format. 92% OF INVITED REVISIONS ARE ACCEPTED TRANSFER POLICY We welcome submissions that include reviewer comments from another journal. You may also request manuscript transfer between Rockefeller University Press journals, and we can confidentially send reviewer reports and identities to another journal beyond RUP. INITIAL DECISION IN 6 DAYS FAIR AND FAST We limit rounds of revision, and we strive to provide clear, detailed decisions that illustrate what is expected in the revisions. Articles appear online one to two days after author proofs are returned. TIME IN PEER REVIEW 38 DAYS OPEN ACCESS OPTIONS Our options include Immediate Open Access (CC-BY) and open access six months after publication (CC-BY-NC-SA). *Median 2019 An Editorial Process Guided by Your Community At JEM, all editorial decisions on research manuscripts are made through collaborative consultation between professional scientific editors and the academic editorial board. Submission or transfer Academic and scientific If appropriate, sent Academic and scientific Informed decisions editors review to Peer Review editors review comments sent to authors Revised manuscript Academic and scientific 92% of invited Published online Circulated via alerts and submission and rereview editors review revisions accepted* 1-2 days after author social media to readers proofs returned around the world 2019: THE YEAR IN EXPERIMENTAL MEDICINE t the beginning of 2020, the start of a new decade, the Journal of Experimental Medicine (JEM) is proud to present our annual Year in Experimental Medicine collection to highlight some of the articles that were of greatest interest to our readers last year.
    [Show full text]
  • Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia
    Immunity Article Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia Melanie Greter,1,9,* Iva Lelios,1,9 Pawel Pelczar,2 Guillaume Hoeffel,3 Jeremy Price,4,5 Marylene Leboeuf,4,5 Thomas M. Ku¨ndig,7 Karl Frei,8 Florent Ginhoux,3 Miriam Merad,4,5,6,10,* and Burkhard Becher1,10 1Institute of Experimental Immunology, Neuroimmunology 2Institute of Laboratory Animal Science University of Zu¨ rich, CH 8006 Zu¨ rich, Switzerland 3Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), BIOPOLIS, 138648, Singapore 4Department of Oncological Sciences 5The Immunology Institute 6Tisch Cancer Institute Mount Sinai School of Medicine, New York, NY 10029, USA 7Clinical Tumor Biology & Immunotherapy Unit 8Department of Neurosurgery University Hospital Zu¨ rich, 8091 Zu¨ rich, Switzerland 9These authors contributed equally to this work 10These authors contributed equally to this work *Correspondence: [email protected] (M.G.), [email protected] (M.M.) http://dx.doi.org/10.1016/j.immuni.2012.11.001 SUMMARY the first immune barrier to foreign antigens that breach the skin. Microglia represent the resident macrophages of the Colony stimulating factor-1 (Csf-1) receptor and its CNS and are considered the first line of defense in many CNS ligand Csf-1 control macrophage development, main- pathologies. Most lymphoid and nonlymphoid tissue DCs and tenance, and function. The development of both macrophages are constantly repopulated by blood-derived Langerhans cells (LCs) and microglia is highly depen- circulating myeloid precursors. In contrast, epidermal LCs and dent on Csf-1 receptor signaling but independent microglia derive from embryonic precursors that take residence of Csf-1.
    [Show full text]
  • Table of Contents (PDF)
    189 (5) J Immunol 2012; 189:2067-2682; ; http://www.jimmunol.org/content/189/5 This information is current as of September 23, 2021. Downloaded from Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists http://www.jimmunol.org/ • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription by guest on September 23, 2021 Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. VOL. 189 | NO. 5 | September 1, 2012 | Pages 2067–2686 2067 IN THIS ISSUE PILLARS OF IMMUNOLOGY 2069 Cytokine Mimicry with an Immunologic Reformation: The Discovery of a Decade Kenneth M. Murphy 2072 Pillars Article: Homology of Cytokine Synthesis Inhibitory Factor (IL-10) to the Epstein-Barr Virus Gene BCRFI. Science. 1990. 248: 1230–1234 Kevin W. Moore, Paulo Vieira, David F. Fiorentino, Mary L. Trounstine, Tariq A. Khan, and Timothy R. Mosmann Downloaded from CUTTING EDGE 2079 Cutting Edge: Suppression of GM-CSF Expression in Murine and Human T Cells by IL-27 Andrew Young, Eimear Linehan, Emily Hams, Aisling C. O’Hara Hall, Angela McClurg, James A.
    [Show full text]
  • Regulation of Microglia Development and Homeostasis
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 Regulation of microglia development and homeostasis Greter, Melanie ; Merad, Miriam Abstract: Microglia represent the resident macrophages of the central nervous system (CNS) and account for 10% of the adult glial cell population in the normal brain. Although microglial cells are thought to contribute to most pathological conditions including CNS infections, neuroinflammatory lesions, brain tumors, and neurodegenerative diseases, their exact role in CNS development, homeostasis, and disease remains poorly understood. In contrast to most macrophage populations, microglia survive high-dose ionizing radiation and maintain themselves locally and independently of circulating precursors in the steady state. However, controversies remain on the origin of microglia in the brain and whether they could potentially be repopulated by circulating myeloid precursors after brain injury. Microglia-targeted therapies through the use of genetically modified circulating hematopoietic cells proved to be a promising therapeutic strategy for the treatment of brain diseases. It is thus of great importance to understand the contribution and developmental cues of circulating myeloid cells as potential microglia progenitors to the adult pool of microglia in the steady state and under inflammatory conditions. DOI: https://doi.org/10.1002/glia.22408 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-71412
    [Show full text]
  • The Cytokine TGF-Β Promotes the Development and Homeostasis of Alveolar Macrophages
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2018 The cytokine TGF-฀ promotes the development and homeostasis of alveolar macrophages Yu, Xueyang Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-159840 Dissertation Published Version Originally published at: Yu, Xueyang. The cytokine TGF-฀ promotes the development and homeostasis of alveolar macrophages. 2018, University of Zurich, Faculty of Science. The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Xueyang Yu aus der V. R. China Promotionskommission Prof. Dr. Melanie Greter (Vorsitz und Leitung der Dissertation) Prof. Dr. Burkhard Becher Prof. Dr. med. Markus Manz Zürich, 2018 Disclaimer This thesis is based upon and adapted from the following publication: The Cytokine TGF-β Promotes the Development and Homeostasis of Alveolar Macrophages Xueyang Yu, Anne Buttgereit, Iva Lelios, Sebastian Utz, Dilay Cansever, Burkhard Becher, Melanie Greter Table of Contents 1 Summary ................................................................................................................ 1 2 Zusammenfassung ................................................................................................. 3 3 Abbreviations ........................................................................................................
    [Show full text]
  • Microglia Versus Myeloid Cell Nomenclature During Brain Inflammation
    MINI REVIEW published: 26 May 2015 doi: 10.3389/fimmu.2015.00249 Microglia versus myeloid cell nomenclature during brain inflammation Melanie Greter*, Iva Lelios and Andrew Lewis Croxford Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland As immune sentinels of the central nervous system (CNS), microglia not only respond rapidly to pathological conditions but also contribute to homeostasis in the healthy brain. In contrast to other populations of the myeloid lineage, adult microglia derive from primitive myeloid precursors that arise in the yolk sac early during embryonic development, after which they self-maintain locally and independently of blood-borne myeloid precursors. Under neuro-inflammatory conditions such as experimental autoimmune encephalomyeli- tis, circulating monocytes invade the CNS parenchyma where they further differentiate into macrophages or inflammatory dendritic cells. Often it is difficult to delineate resident microglia from infiltrating myeloid cells using currently known markers. Here, we will discuss the current means to reliably distinguish between these populations, and which Edited by: recent advances have helped to make clear definitions between phenotypically similar, Martin Guilliams, Ghent University – VIB, Belgium yet functionally diverse myeloid cell types. Reviewed by: Keywords: microglia, macrophage, monocyte, dendritic cell, CNS inflammation Steffen Jung, Weizmann Institute of Science, Israel Marco Prinz, University of Freiburg, Germany Introduction *Correspondence: Most tissues are populated by incredibly diverse and abundant myeloid cells. By contrast, the central Melanie Greter, nervous system (CNS) harbors comparatively few myeloid cell subsets. This is likely due to the Institute of Experimental Immunology, immune privilege and relative isolation enjoyed by the CNS compared to other non-lymphoid University of Zurich, tissues such as the gut or the lung, which are continually confronted with foreign entities.
    [Show full text]
  • 7Th Introductory Course Microbiology and Immunology January 21 – 25
    7th Introductory Course Microbiology and Immunology January 21 – 25, 2013 Large Lecture Hall Institute of Plant Biology Zollikerstrasse 107 8008 Zurich Monday 21st 09:00-09:15 Welcome: Hauke Hennecke 09:15-10:15 Students’ Session: T-Cells in Viral Infections & Allergies S01 – Vanessa Landtwing The Cross-Talk between Human Dendritic Cells and Natural Killer Cells S02 – Nicolas Baumann CD8 T cell immunity during murine cytomegalovirus (MCMV) infection S03 – Donald McHugh Epstein-Barr virus associated central nervous system lymphoma genesis after selective loss of virus-specific T cell control S04 – Tess Brodie Characterization and reactivation of HIV latent reservoir Morning Break (10:15-10:30) 10:30-11:30 Students’ Session: Microbial Communities: Interaction & Cooperation S05 – Anne Leinweber Siderophore cooperation and the evolution of virulence S06 – Elena Butaite Siderophore cooperation in the environment S07 – Daniel Müller Metaproteomics of a synthetic phyllosphere community using SWATH-MS S08 – Martina Stöckli Microfluidic platforms for monitoring interaction between fungi & bacteria Lunch Break (11:30-13:00) 13:00-13:45 P01 – Silke Stertz (Intro: Renier Myburgh) Host factors required for influenza A virus entry 13:45-14:30 P02 – Cornel Fraefel (Intro: Hulda Jonsdottir) Molecular Mechanisms of inter-action between HSV-1 and adeno-associated virus in co-infected cells Afternoon Break (14:30-15:00) 15:00-15:45 P03 – Mübeccel Akdis (Intro: Tess Brodie) Antigen specific T and B cell regulation 15:45-16:30 P04 – Salomé LeibundGut (Intro:
    [Show full text]
  • Immunity Resolution of Inflammation and Airway Diversity in Expression
    Systemic Analysis of PPARγ in Mouse Macrophage Populations Reveals Marked Diversity in Expression with Critical Roles in Resolution of Inflammation and Airway This information is current as Immunity of September 29, 2021. Emmanuel L. Gautier, Andrew Chow, Rainer Spanbroek, Genevieve Marcelin, Melanie Greter, Claudia Jakubzick, Milena Bogunovic, Marylene Leboeuf, Nico van Rooijen, Andreas J. Habenicht, Miriam Merad and Gwendalyn J. Downloaded from Randolph J Immunol 2012; 189:2614-2624; Prepublished online 1 August 2012; doi: 10.4049/jimmunol.1200495 http://www.jimmunol.org/content/189/5/2614 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2012/08/01/jimmunol.120049 Material 5.DC1 References This article cites 48 articles, 15 of which you can access for free at: http://www.jimmunol.org/content/189/5/2614.full#ref-list-1 by guest on September 29, 2021 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606.
    [Show full text]
  • Mammalian Target of Rapamycin Controls Dendritic Cell Development Downstream of Flt3 Ligand Signaling
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Immunity Article Mammalian Target of Rapamycin Controls Dendritic Cell Development Downstream of Flt3 Ligand Signaling Taheri Sathaliyawala,1 William E. O’Gorman,2 Melanie Greter,3 Milena Bogunovic,3 Vjollca Konjufca,4 Z. Esther Hou,1 Garry P. Nolan,2 Mark J. Miller,4 Miriam Merad,3 and Boris Reizis1,* 1Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA 2Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305, USA 3Department of Gene and Cell Medicine and the Immunology Institute, Mount Sinai School of Medicine, New York, NY 10029, USA 4Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA *Correspondence: [email protected] DOI 10.1016/j.immuni.2010.09.012 SUMMARY present antigens on MHC class I molecules (den Haan et al., 2000). Consistent with these properties, CD8+ DCs are critical Dendritic cells (DCs) comprise distinct functional for the capture, transport, and presentation of intracellular path- À subsets including CD8 and CD8+ classical DCs ogens such as Listeria monocytogenes (LM) (Neuenhahn et al., (cDCs) and interferon-secreting plasmacytoid DCs 2006). The same dichotomy was documented in tissues, in which + (pDCs). The cytokine Flt3 ligand (Flt3L) controls the the CD103 cDC subset serves as a functional and genetic coun- + development of DCs and is particularly important terpart of CD8 cDCs (Bedoui et al., 2009b; Bogunovic et al., for the pDC and CD8+ cDC and their CD103+ tissue 2009; Ginhoux et al., 2009; Varol et al., 2009).
    [Show full text]
  • Monocytes Promote UV‐Induced Epidermal Carcinogenesis
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Monocytes promote UV‐induced epidermal carcinogenesis Lelios, Iva ; Stifter, Sebastian A ; Cecconi, Virginia ; Petrova, Ekaterina ; Lutz, Mirjam ; Cansever, Dilay ; Utz, Sebastian G ; Becher, Burkhard ; van den Broek, Maries ; Greter, Melanie Abstract: Mononuclear phagocytes consisting of monocytes, macrophages, and DCs play a complex role in tumor development by either promoting or restricting tumor growth. Cutaneous squamous cell carci- noma (cSCC) is the second most common nonmelanoma skin cancer arising from transformed epidermal keratinocytes. While present at high numbers, the role of tumor-infiltrating and resident myeloid cells in the formation of cSCC is largely unknown. Using transgenic mice and depleting antibodies to eliminate specific myeloid cell types in the skin, we investigated the involvement of mononuclear phagocytes in the development of UV-induced cSCC in K14-HPV8-E6 transgenic mice. Although resident Langerhans cells were enriched in the tumor, their contribution to tumor formation was negligible. Equally, der- mal macrophages were dispensable for the development of cSCC. In contrast, mice lacking circulating monocytes were completely resistant to UV-induced cSCC, indicating that monocytes promote tumor de- velopment. Collectively, these results demonstrate a critical role for classical monocytes in the initiation of skin cancer. DOI: https://doi.org/10.1002/eji.202048841 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-203200 Journal Article Published Version The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.
    [Show full text]
  • Antigen Presentation in Autoimmunity and CNS Inflammation: How T Lymphocytes Recognize the Brain
    J Mol Med (2006) 84: 532–543 DOI 10.1007/s00109-006-0065-1 REVIEW Burkhard Becher . Ingo Bechmann . Melanie Greter Antigen presentation in autoimmunity and CNS inflammation: how T lymphocytes recognize the brain Received: 4 November 2005 / Accepted: 2 March 2006 / Published online: 14 June 2006 # Springer-Verlag 2006 Abstract The central nervous system (CNS) is traditionally viewed as an immune privileged site in which overzealous immune cells are prevented from doing irreparable damage. It was believed that immune responses occurring within the CNS could potentially do more damage than the initial pathogenic insult itself. However, virtually every aspect of CNS tissue damage, including degeneration, tumors, infec- tion, and of course autoimmunity, involves a significant cellular inflammatory component. While the blood–brain barrier (BBB) inhibits diffusion of hydrophilic (immune) molecules across brain capillaries, activated lymphocytes readily pass the endothelial layer of postcapillary venules without difficulty. In classic neuro-immune diseases such as multiple sclerosis or acute disseminated encephalomyelitis, BURKHARD BECHER MELANIE GRETER it is thought that neuroantigen-reactive lymphocytes, which received his Ph.D. degree at the received her MSc degree in have escaped immune tolerance, now invade the CNS and Institute for Molecular Genetics, Biology at the University of are responsible for tissue damage, demyelination, and axo- University of Cologne, Ger- Zurich, Switzerland and per- ’ nal degeneration. The developed animal model for these many. He did his Post-Doc at formed her master s thesis at McGill University in Montreal, the institute of Neuropathology disorders, experimental autoimmune encephalomyelitis Canada and at the Department of at the University Hospital Zu- (EAE), reflects many aspects of the human conditions.
    [Show full text]
  • Gene Expression Profiles and Transcriptional Regulatory Pathways Underlying Mouse Tissue Macrophage Identity and Diversity
    Gene expression profiles and transcriptional regulatory pathways underlying mouse tissue macrophage identity and diversity The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Gautier, Emmanuel L, Tal Shay, Jennifer Miller, Melanie Greter, Claudia Jakubzick, Stoyan Ivanov, Julie Helft, et al. “Gene- expression profiles and transcriptional regulatory pathways that underlie the identity and diversity of mouse tissue macrophages.” Nature Immunology 13, no. 11 (September 30, 2012): 1118-1128. As Published http://dx.doi.org/10.1038/ni.2419 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/80773 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike 3.0 Detailed Terms http://creativecommons.org/licenses/by-nc-sa/3.0/ Gene expression profiles and transcriptional regulatory pathways underlying mouse tissue macrophage identity and diversity Emmanuel L. Gautier1,4,8, Tal Shay2, Jennifer Miller3,4, Melanie Greter3,4, Claudia Jakubzick1,4, Stoyan Ivanov8, Julie Helft3,4, Andrew Chow3,4, Kutlu G. Elpek5,6, Simon Gordonov7, Amin R. Mazloom7, Avi Ma’ayan7, Wei- Jen Chua8, Ted H. Hansen8, Shannon J. Turley5,6, Miriam Merad3,4, Gwendalyn J Randolph1,4,8 and the Immunological Genome Consortium. 1Department of Developmental and Regenerative Biology, 3Department of Oncological Sciences and Department of Medicine, 7Department of Pharmacology and Systems Therapeutics & Systems Biology Center New York (SBCNY) and 4the Immunology Institute, Mount Sinai School of Medicine, New York, NY, USA. 2Broad Institute, Cambridge, MA, USA. 5Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA. 6Department of Cancer Immunology and AIDS, Dana Farber Cancer Institute, Boston, MA, USA.
    [Show full text]