Chapter 92 (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 92 (PDF) TITLE 92 - NEBRASKA DEPARTMENT OF EDUCATION CHAPTER 92 - REGULATIONS GOVERNING THE MINIMUM EQUIPMENT STANDARDS AND SAFETY INSPECTION CRITERIA FOR PUPIL TRANSPORTATION VEHICLES Numerical Table of Contents Statutory Code Subject Authority Section General Information 79-318, 79-602 001 Definitions 79-318 002 Responsibility of Schools 79-318 003 Chassis and Body Delivery Requirements 79-318 004 School Bus and Activity Bus Body and Chassis 79-318 005 Minimum Equipment Standards Small Vehicle (General) Minimum Equipment 79-318 006 Standards Additional Required Equipment for Vehicles Used 79-318 007 With Mobile Seating Devices Safety Inspection Process for Pupil Transportation 79-602 008 Vehicles Minimum Safety Inspection Criteria for School and 79-602 009 Activity Buses Minimum Safety Inspection Criteria for Small 79-602 010 Vehicles Minimum Safety Inspection Criteria for Vehicles for Transporting Children in Mobile Seating Devices 79-602 011 i TITLE 92 - NEBRASKA DEPARTMENT OF EDUCATION CHAPTER 92 - REGULATIONS GOVERNING THE MINIMUM EQUIPMENT STANDARDS AND SAFETY INSPECTION CRITERIA FOR PUPIL TRANSPORTATION VEHICLES Alphabetical Table of Contents Statutory Code Subject Authority Section Additional Required Equipment for Vehicles Used 79-318 007 With Mobile Seating Devices Chassis and Body Delivery Requirements 79-318 004 Definitions 79-318 002 General Information 79-318, 79-602 001 Minimum Safety Inspection Criteria for School and 79-602 009 Activity Buses Minimum Safety Inspection Criteria for Small 79-602 010 Vehicles Minimum Safety Inspection Criteria for Vehicles for 79-602 011 Transporting Children in Mobile Seating Devices Responsibility of Schools 79-318 003 Safety Inspection Process for Pupil Transportation 79-602 008 Vehicles School Bus and Activity Bus Body and Chassis 79-318 005 Minimum Equipment Standards Small Vehicle (General) Minimum Equipment 79-318 006 Standards ii TITLE 92 - NEBRASKA DEPARTMENT OF EDUCATION CHAPTER 92 - REGULATIONS GOVERNING THE MINIMUM EQUIPMENT STANDARDS AND SAFETY INSPECTION CRITERIA FOR PUPIL TRANSPORTATION VEHICLES Alphabetical Minimum Equipment Standards and Safety Inspection Criteria Table of Contents School/Activity Bus Body and Chassis Minimum Equipment Standards Page Air Cleaner 5 Aisle 5 Axles 6 Back-up Warning Alarm 6 Body Sizes 6 Brakes 6 Bumpers, Front 8 Bumpers, Rear 9 Certification 9 Color 9 Communications 10 Construction 10 Defrosters 12 Doors 12 Drive Shaft 14 Electrical System 14 Emergency Equipment 18 Exhaust System 19 Fenders, Front Type C Vehicles 20 Floor, Covering 20 Frame 21 Fuel Tank 21 Fuel Alternative 22 Governor 24 Handrails 24 Heating and Air Conditioning System 24 Horn 27 Identification 27 Instruments and Instrument Panel 28 Insulation 29 Interior 29 Lamps and Signals 30 Metal Treatment 33 Mirrors 33 Mounting 34 Oil Filter 34 Openings 34 Passenger Load 34 Retarder System 34 iii TITLE 92 - NEBRASKA DEPARTMENT OF EDUCATION CHAPTER 92 - REGULATIONS GOVERNING THE MINIMUM EQUIPMENT STANDARDS AND SAFETY INSPECTION CRITERIA FOR PUPIL TRANSPORTATION VEHICLES School/Activity Bus Body and Chassis Minimum Equipment Standards Page Rub Rails 34 Seat Belts/Occupant Protection Systems 35 Seats and Restraining Barriers 35 Seat Barrier 37 Shock Absorbers 37 Springs and Suspension Systems 37 Steering Gear 37 Steps 37 Stirrup Steps 38 Stop Signal Arm 39 Storage Compartment 39 Sun Shield 39 Throttle 39 Tires and Rims 39 Tow Hooks 39 Traction Assisting Devices 40 Transmission 40 Trash Container 40 Turning Radius 41 Undercoating 41 Ventilation 41 Wheel Housings 41 Windows 42 Windshield Washers 42 Windshield Wipers 42 Small Vehicle General Minimum Equipment Standards 42 Additional Required Equipment for Vehicles Used with Mobile Seating Devices 44 Safety Inspection Process for Pupil Transportation Vehicles 51 Minimum Safety Inspection Criteria for School and Activity Buses 51 Minimum Safety Inspection Criteria for Small Vehicles 51 Minimum Safety Inspection Criteria for Vehicles for Transporting Children in Mobile Seating Devices 52 iv TITLE 92 - NEBRASKA DEPARTMENT OF EDUCATION CHAPTER 92 - REGULATIONS GOVERNING THE MINIMUM EQUIPMENT STANDARDS AND SAFETY INSPECTION CRITERIA FOR PUPIL TRANSPORTATION VEHICLES Table of Contents for Appendices Appendix Title Page A Description of National School Bus Yellow 54 B Contents of a First Aid Kit 55 C Contents of a Body Fluid Clean-up Kit 56 D School Bus Seat Upholstery Fire Block Test 57 E Noise Test Procedures 62 F Retro Reflective Sheeting 64 G Reference List 67 H Minimum Inspection Criteria for School Buses 69 I Mechanic’s Pupil Transportation Vehicle Inspection Report 87 J Wheelchair or Mobility and Envelope 89 v TITLE 92 CHAPTER 92 001 General Information 001.01 Statutory Authority. This Chapter is adopted pursuant to Sections 79- 318(12) and 79-602 of the Revised Statutes of Nebraska (R.R.S.). 001.02 Scope and Application. This Chapter presents: 001.02A The minimum equipment standards required on all vehicles utilized to transport public and nonpublic school students. The following regulations, when addressing subject matter regulated by the Federal Motor Vehicle Safety Standards, (FMVSS), 49 Code of Federal Regulations (CFR) 571.101 et seq., are identical to or additional requirements beyond what is addressed in the FMVSS. Should conflicts be found or arise between the following regulations and the FMVSS, as to the same aspect of performance of a motor vehicle or motor vehicle equipment, the FMVSS or any other applicable provision of federal law or regulation shall supersede these regulations; and 001.02B The safety inspection criteria required for all vehicles utilized to transport public and non-public school students. 001.03 Related Regulation. An additional regulation promulgated by the Nebraska Department of Education dealing with pupil transportation is Rule 91, Regulations Governing Driver Qualifications and Operational Procedures for Pupil Transportation Vehicles. 001.04 Penalty Provisions. Sections 79-603 and 79-607 of the Revised Statutes of Nebraska (R.R.S.) provide for Misdemeanor criminal penalties for violation of statutory requirements for inspections of pupil transportation vehicles, safety features, or traffic rules or regulations which relate to school bus transportation. 001.05 Effective date and Implementation Date. Regardless of the effective date of this Chapter, the implementation (operative) date will be 180 days after its effective date. Prior to that date, the provisions of 92 NAC 92 effective July 7, 2015 shall remain in effect. School buses and activity buses manufactured on or after this Chapter’s implementation date shall meet or exceed the equipment standards in Section 005. See also “Vehicle Purchase and Use” at subsection 003.01. Regulations concerning small vehicle equipment (Section 006), additional required equipment for vehicles used with mobile seating devices (Section 007), and vehicle inspection criteria (Sections 008–011) apply as of the implementation date regardless of the date of manufacture of such vehicles. 1 TITLE 92 CHAPTER 92 002 Definitions. 002.01 Activity Bus means a motor vehicle with motive power, except a trailer, designed or modified by the manufacturer, distributor or dealer for carrying eleven (11) or more passengers, excluding the driver, meeting or exceeding this Chapter (except as provided in to subsection 003.02 of this Chapter) which at any time would be used to carry school children and school personnel exclusively on a school activity trip from a given location to a second location without stopping to load or unload children or control traffic on public highways, provided that such transportation service is sponsored and approved by the local school governing board. This includes Multi- Function School Activity Bus as defined in 49 CFR 571.3 and does not preclude the use of a school bus as an activity bus. 002.02 Activity Trip means the transportation of children, pupils and school personnel to and from a given location to a second or subsequent location or locations without stopping to load or unload the passengers on the public highways for the purpose of transporting the passengers to any activity or event sanctioned, authorized or sponsored by the school district or the local school’s governing board. 002.03 Motor Coach Bus means a vehicle not designed primarily for the transportation of school children to and from school and school related activities, but as a commercial motor vehicle as a part of the operation of a common or contract carrier, as those terms are defined in Section 75-302 R.R.S., with a Gross Vehicle Weight of greater than 33,000 lbs., with a semi-monocoque/monocoque unitized body construction and which has high back seats, under-the-floor storage, and is designed to seat at least 32 passengers. For purposes of this Section, monocoque means a design where the skin or shell of the vehicle acts as a single unit with the supporting frame and semi- monocoque means a design where the skin or shell of the vehicle acts, to some extent, as a single unit with the supporting frame. Such buses are also commonly known as “over-the-road coaches.” 002.04 Federal Motor Vehicles Safety Standards (FMVSS) means the construction standards developed and enforced by the National Highway Traffic Safety Administration (NHTSA) that apply to all new motor vehicles and items of motor vehicle safety equipment and must conform with 49 CFR Part 571. 002.05 Route means a designated course regularly traveled by a pupil transportation vehicle to pick up students from home or pickup
Recommended publications
  • Modify Or Repair Chassis/Frame and Associated Components Workbook (AUM8101A)
    Modify or Repair Chassis/Frame and Associated Components Workbook (AUM8101A) AUT035 AUM8101A Modify or Repair Chassis/Frame and Associated Components Workbook Copyright and Terms of Use © Department of Training and Workforce Development 2016 (unless indicated otherwise, for example ‘Excluded Material’). The copyright material published in this product is subject to the Copyright Act 1968 (Cth), and is owned by the Department of Training and Workforce Development or, where indicated, by a party other than the Department of Training and Workforce Development. The Department of Training and Workforce Development supports and encourages use of its material for all legitimate purposes. Copyright material available on this website is licensed under a Creative Commons Attribution 4.0 (CC BY 4.0) license unless indicated otherwise (Excluded Material). Except in relation to Excluded Material this license allows you to: Share — copy and redistribute the material in any medium or format Adapt — remix, transform, and build upon the material for any purpose, even commercially provided you attribute the Department of Training and Workforce Development as the source of the copyright material. The Department of Training and Workforce Development requests attribution as: © Department of Training and Workforce Development (year of publication). Excluded Material not available under a Creative Commons license: 1. The Department of Training and Workforce Development logo, other logos and trademark protected material; and 2. Material owned by third parties that has been reproduced with permission. Permission will need to be obtained from third parties to re-use their material. Excluded Material may not be licensed under a CC BY license and can only be used in accordance with the specific terms of use attached to that material or where permitted by the Copyright Act 1968 (Cth).
    [Show full text]
  • Carbon Fiber Monocoque Dan Brown [email protected]
    The University of Akron IdeaExchange@UAkron Williams Honors College, Honors Research The Dr. Gary B. and Pamela S. Williams Honors Projects College Spring 2019 Carbon Fiber Monocoque Dan Brown [email protected] Leland Hoffman [email protected] Please take a moment to share how this work helps you through this survey. Your feedback will be important as we plan further development of our repository. Follow this and additional works at: https://ideaexchange.uakron.edu/honors_research_projects Part of the Computer-Aided Engineering and Design Commons, Manufacturing Commons, and the Other Materials Science and Engineering Commons Recommended Citation Brown, Dan and Hoffman, Leland, "Carbon Fiber Monocoque" (2019). Williams Honors College, Honors Research Projects. 930. https://ideaexchange.uakron.edu/honors_research_projects/930 This Honors Research Project is brought to you for free and open access by The Dr. Gary B. and Pamela S. Williams Honors College at IdeaExchange@UAkron, the institutional repository of The nivU ersity of Akron in Akron, Ohio, USA. It has been accepted for inclusion in Williams Honors College, Honors Research Projects by an authorized administrator of IdeaExchange@UAkron. For more information, please contact [email protected], [email protected]. ASME Report Cover Page & Vehicle Description Form Human Powered Vehicle Challenge Competition Location: ____ Pomona, CA_______ Competition Date: ___March 15th - March 17th___ This required document for all teams is to be incorporated in to your Design Report. Please Observe
    [Show full text]
  • Design and Analysis of a 3-Wheleer Integrated Monocoque Chassis 1 2 3 G
    ISSN 2319-8885 Vol.05,Issue.05, February-2016, Pages:0984-0989 www.ijsetr.com Design and Analysis of a 3-Wheleer Integrated Monocoque Chassis 1 2 3 G. SAWAN KUMAR , SHUVENDRA MOHAN , G. SARVOTHAM YADAV 1B.Tech Scholar, Dept of Aeronautical, SVIET, Hyderabad, TS, India, E-mail: [email protected]. 2M.Tech Scholar, Dept of Aeronautical, IARE, Hyderabad, TS, India, E-mail: [email protected]. 3M.S Scholar, Dept of Mechanical, Southern University A & M, Louisiana-USA, E-mail: [email protected]. Abstract: In this project, the design and development of integrated chassis of three wheeler prototype vehicle chassis is done, to convert the three wheeler passenger vehicle chassis into a load carrier chassis with the aim of reducing the tooling cost and increasing the rate of production. For this, the analysis is carried out by using Finite Element Analysis (FEA). The parameters checked in the analysis are the displacement of the chassis structure and stresses under static condition. The modeling of new chassis is done by using PRO-E and FEA by using ANSYS. Specifications of materials selection become a priority in order to construct the new chassis, based on the results of FEA we selected CRS-D grade (Cold Rolled Steel) of thickness 1.6mm. The best design with minimum self-weight, maximum load capacity and minimum deflection under static loading was then identified based on the results obtained through FEA. Keywords: FEA, CRS-D, Monocoque. I. INTRODUCTION Advantages: Chassis is a French term and was initially used to denote The half-axles have better contact with ground when the frame parts or basic structure of the Vehicle.
    [Show full text]
  • Orbea 1 2 /2015 Index
    ORBEA 1 2 /2015 INDEX INDEX INTRODUCTION ABOUT P. 04 ORBEA P. 06 BY JON FERNÁNDEZ. ORIGINS, PROCESS. ORBEA 3 ORBEA EQUIPMENT BICYCLES P. 326 P. 26 NEW RANGE HELMETS, APPAREL OF PRODUCTS. AND HYDRA. 4 /2015 PREFACEINTRODUCTION INTRODUCTION YESTERDAY, TODAY AND TOMORROW. Since its inception more than 170 years ago, Orbea has been associated with an indefatigable quest: adaptation and self-improvement. These traits have brought us to where we are now, earning us international renown and presence in more than 65 countries. This could only be possible with the joint efforts and trust of the people who make Orbea, and with a series of values that have created unity, strength and capability. Our catalog reflects this as a tool where we share our personality, our know-how and solutions – a tool that shows our love of sports and our eagerness to be what we imagined we could be. This catalog reflects our passion in providing innovative global solutions and lifetime warranty as proof that we know we’re offering top-quality products. At Orbea we create experiences for you to feel, enjoy, discover and do better. But, above all, we want to be by your side, experiencing with you and meeting your needs in order to improve and always give you the best. JON FERNÁNDEZ. Orbea General Manager. ORBEA 5 6 /2015 ABOUT ORBEA ORBEA 7 ABOUT ORBEA 8 /2015 ABOUT ORBEA HISTORY ORIGINS Orbea was established in 1840 as a family-run A few years later, the economic crisis brought Orbea Later, with the emergence of mountain biking, Orbea company making rlvers, cartridge guns and to the brink of bankruptcy.
    [Show full text]
  • Advanced Components for Electric and Hybrid Electric Vehicles
    M m III Hi 1 MIST ^^^^^^1 jljlll 1 iV PUBLICATIONS A11104 EfifilfiT United States Department of Commerce Technology Administration National Institute of Standards and Technology NIST Special Publication 860 Advanced Components for Electric and Hybrid Electric Vehicles Workshop Proceedings October 27-28, 1993 Gaithersburg, Maryland K. L. Stricklett, Editor 7he National Institute of Standards and Technology was established in 1988 by Congress to "assist industry in the development of technology . needed to improve product quality, to modernize manufacturing processes, to ensure product reliability . and to facilitate rapid commercialization ... of products based on new scientific discoveries." NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry's competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency's basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government. As an agency of the U.S. Commerce Department's Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering and performs related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST's research facilities are located at Gaithersburg,
    [Show full text]
  • Commercial Vehicle Inspection Manual
    COMMERCIAL VEHICLE INSPECTION MANUAL Version 2.0 October 2016 COMMERCIAL VEHICLE INSPECTIONS IN ALBERTA CANADIAN MOTOR TRANSPORT ADMINISTRATORS 2014 NATIONAL SAFETY CODE STANDARD 11, PART B (Periodic Commercial Motor Vehicle Inspections – PMVI) FOR COMMERCIAL VEHICLE INSPECTIONS OF: TRUCK/TRUCK TRACTOR, LIGHT TRUCK, CONVERTER, TRAILER, SCHOOL BUS, COMMERCIAL BUS, MOTOR COACH ALBERTA TRANSPORTATION Version 2.0 Copyright This compilation and arrangement of mandatory periodic Commercial Vehicle Inspection, Vehicle Inspection Manual, has been reproduced by Alberta Transportation under agreement with the Canadian Council of Motor Transport Administrators (CCMTA). Materials contained in this publication are subject to copyright. Neither the manual nor any part thereof may be reproduced in whole or in part without prior written permission from Alberta Transportation and/or the CCMTA. INFORMATION FOR INSPECTION TECHNICIANS Thank you for participating in Alberta’s Commercial Vehicle Inspection Program. Alberta has adopted the Canadian Council of Motor Transport Administrators 2014 National Safety Code STANDARD 11, Part B (NSC11B) for the Periodic Commercial Motor Vehicle Inspections of vehicles in Alberta. The NSC11B is part of Alberta’s Commercial Vehicle Inspection manual. The usage of the NSC11B is legislated by Alberta’s Vehicle Inspection Regulation, section 22, Adoption of manuals. The purpose of the NSC11B is to establish mechanical vehicle inspection criteria for trucks, trailers, and buses. It provides a description of the vehicle inspection criteria and procedures to ensure that quality inspections are performed. The NSC11B has been adopted across Canada and harmonizes every inspection to the same criteria. The result of this harmonization is that every province recognizes other jurisdiction’s inspections on commercial vehicles.
    [Show full text]
  • Vespa Range Brochure Copy
    Technical Specifications Vespa TECHNOLOGY AND POWER 150cc Engine Power 7.4 kW @ 6750 rpm and Torque 10.9Nm @ 5000 rpm. 3 Valve, Aluminium Cylinder Head, Overhead Cam And Roller Rocker Arm, Map Sensing and Variable Spark Timing Management. Engine Also available in 125cc Engine Power 7.1 kW @ 7250 rpm and Torque 9.9Nm @ 6250 rpm. 3 Valve, Aluminium Cylinder Head, Overhead Cam and Roller Rocker Arm, MAP Sensing and Variable Spark Timing Management. Transmission Continuous Variable Transmission. Body Construction Monocoque Full-Steel Body Construction. Overall Dimensions (LxBxH) - 1770 x 690 x 1140. Aircraft derived single side arm Front Suspension with Anti-Dive characteristics. Suspension Rear suspension with Dual-Effect Hydraulic Shock Absorber. Electricals 3 - Phase Electrical System and auto ignition. SAFETY For SXL and VXL : 200 mm Ventilated Front Disc Brake and 140 mm Rear Drum Brake. Brakes For LX and Notte : 150 mm Front Drum Brake and 140 mm Rear Drum Brake. For SXL and VXL : Broader Tubeless Tyres With Front Tyre Size 110/70-11" and Tyres Rear Tyre Size 120/70-10". For LX and Notte : Broader Tube Tyres With Front and Rear Tyre Size 90/100-10". Link spring mechanism between engine and frame provide amazing balance by balancing Stability of mechanical trail and the stabilizing torque which offers low speed balance, accurate steering and high speed stability. CBS Combined Braking System introduced in 125cc models. ABS Anti-Lock Braking System introduced in 150cc models. Connectivity Optional Follow us on twitter.com/Vespa_in | Find us on facebook.com/vespaindia | SMS ‘vespa’ to 56677 | Toll free 18001088784 Features and specifications may differ from those shown and listed here.
    [Show full text]
  • All-New 2015 Alfa Romeo 4C Spider Delivers Race-Inspired
    Contact: General Media Inquiries Rick Deneau World-premiere: All-new 2015 Alfa Romeo 4C Spider Delivers Race-inspired Performance, Advanced Technologies, Seductive Italian Style, and now an Even More Exhilarating Driving Experience With Open-air Freedom Production version of the all-new 2015 Alfa Romeo 4C Spider, revealed at the 2015 North American International Auto Show, will arrive at dealerships this summer All-new 2015 Alfa Romeo 4C Spider’s open-air performance cockpit and mid-engine proportions draw from more than 100 years of groundbreaking and functional Italian design Unique carbon fiber windshield frame and available carbon fiber “halo” highlight 4C Spider’s ultralight carbon fiber monocoque and aluminum chassis structures, which enable an incredible power-to-weight ratio and supercar-level performance Innovative and unique technological solutions: all-aluminum 1750 cc direct-injection, dual intercooled, advanced turbocharged engine with dual variable-valve timing paired to the blistering fast Alfa TCT (twin- clutch transmission) and Alfa DNA selector with four adjustable drive modes All-new available Akrapovic dual-mode exhaust system features dual, center-mounted tips with carbon fiber surround and signature Alfa resonant sound (late availability) Handcrafted in Modena, Italy, Alfa Romeo 4C Spider combines two excellences – the performance engineering of Alfa Romeo and the craftsmanship of Maserati manufacturing All-new 2015 Alfa Romeo 4C Spider arrives in U.S. and Canadian dealerships this summer January 12, 2015, Auburn
    [Show full text]
  • Bugatti Chiron
    Bugatti Chiron The Chiron is the ultimate super sports car With the Chiron, Bugatti has made the best even better The Chiron is the world’s first production sports car with 1,500 HP With torque of 1,600 Nm between 2,000 and 6,000 rpm, the Chiron offers maximum performance with outstanding control in all speed ranges Maximum speed: 420 km/h, limited for road travel Acceleration: from 0 to 100 km/h in 2.4 seconds The Chiron is limited to a series of 500 units Base price: €2.5 million net (US market US$2.998 million including shipping, duties, taxes and charges) More than 300 vehicles are sold 70 customers cars were produced and delivered in 2017 Unique market position thanks to the unprecedented combination of ultimate performance with exclusive design and comfort The Chiron embodies Bugatti’s new design language 1 BUGATTI Bugatti unveiled the Chiron1 as a world premiere at the 2016 Geneva International Motor Show. The Chiron is the latest generation of the ultimate super sports car and is a completely new development. The sports car manufacturer from Molsheim, with its long tradition, has taken the unique features of a modern Bugatti to a new level and developed a high-performance machine that has become significantly better in every respect. With a power output of 1,500 HP, unprecedented for production vehicles, an exceptionally high torque value of 1,600 Nm between 2,000 and 6,000 rpm and a wide variety of technical innovations, the Chiron sets new standards in every respect.
    [Show full text]
  • 07Hondas2000
    07HondaS2000 Experience 50 years of race wins in a few rapid seconds. specifications & f e a t u r e s Engineering Safety EPA Mileage Estimates1/Fuel Capacity Engine Type In-Line 4-Cylinder Front 3-Point Seat Belts with Automatic Tensioning System • City/Highway 20/26 Engine Block/Cylinder Head Aluminum-Alloy Driver’s and Passenger’s Seat Belt Reminder • Crankcase (qt.) 5.95.9 Fiber-Reinforced Metal (FRM) Cylinder Walls • Dual Front Airbags (SRS) • Coolant System (qt.) 8.08.0 Displacement (cc) 21572157 Daytime Running Lights (DRL) • Fuel (gal.) 13.213.2 Horsepower @ rpm (SAE net, Rev 8/04) * 237 @ 7800 Side-Impact Door Beams • Required Fuel Premium Unleaded Torque (lb.-ft. @ rpm) * 162 @ 6800 Anti-Lock Braking System (ABS) • Seating Redline (rpm) 80008000 Vehicle Stability AssistT (VSAR) with Traction Control • Driver’s Seat with 4-Way Manual Adjustment • Bore and Stroke (mm) 87.087.0 x 90.790.7 Brake Assist • Leather-Trimmed Seats • Compression Ratio 11.1:1 Immobilizer Theft-Deterrent System • Audio System Valve Train 16-Valve DOHC VTECR Exterior Features AM/FM/XM ReadyR2/CD Audio System with 8 Speakers • Multi-Point Fuel Injection • Remote Entry System with Trunk Release • Including 4 Integrated Roll Bar Speakers Drive-by-WireT Throttle System • Electrically Powered Soft Top • Instrumentation Rear-Wheel Drive • Glass Rear Window with Defroster • Digital Instrument Panel with Clock • CARB Emissions Rating LEV-2 Dual-Outlet Exhaust • Tachometer • Direct Ignition System with Immobilizer • Body-Colored Power Side Mirrors • Digital Odometer
    [Show full text]
  • Chassis & Suspension
    Applications – Chassis & Suspension Introduction The chassis is considered to be one of the significant structures of an automobile. It is the frame which holds both the car body and the power train. Various mechanical parts like the engine and the drive train, the axle assemblies including the wheels, the suspension parts, the brakes, the steering components, etc., are bolted onto the chassis. The chassis provides the strength needed for supporting the different vehicular components as well as the payload and helps to keep the automobile rigid and stiff. Consequently, the chassis is also an important component of the overall safety system. Furthermore, it ensures low levels of noise, vibrations and harshness throughout the automobile. Suspension is the term given to the system of springs, shock absorbers and linkages that connects the vehicle to its wheels. The suspension system serves a dual purpose. It contributes to the car's road performance, the braking characteristics for good active safety and the driving pleasure. It also keeps the vehicle occupants comfortable and reasonably well isolated from road noise, bumps, and vibrations. Chassis design concepts Originally, automobile designs used the body-on-frame construction where a load-bearing chassis consisting of a ladder frame, the powertrain, and the suspension formed the base vehicle which then supported a non-load-bearing body. In the beginning used on almost all vehicles, the ladder frame has been gradually phased out on passenger cars around the 1940s in favor of perimeter frames. In the second half of the last century, the frame chassis design was more and more displaced by monocoque constructions, integrating the body and chassis into a single unit.
    [Show full text]
  • Shell Eco-Marathon 2020 Official Rules Chapter I
    SHELL ECO-MARATHON 2020 OFFICIAL RULES CHAPTER I SHELL ECO-MARATHON 2020 OFFICIAL RULES. CHAPTER I FOREWORD Dear Shell Eco-marathon Participants, Welcome to the 2020 competition season! This year we are celebrating the 35th anniversary of Shell Eco-marathon as a formal competition! For those of you who are new, Shell Eco-marathon is a unique global programme where students design, build, and drive ultra-energy-efficient cars. As students around the world collaborate to find innovative solutions to improve energy efficiency, this reflects Shell's broader purpose and commitment to power progress together with more and cleaner energy solutions. Within Shell Eco-marathon, there are two vehicle classes: Prototype and Urban Concept, and three energy categories: internal combustion engine, battery-electric, and hydrogen fuel cell. Each team competes for an on-track award by their vehicle class and category, and we also encourage each team to apply for multiple off-track awards. In addition to the traditional Shell Eco-marathon competitions, we are working with Southwest Research Institute to develop a new Autonomous competition. In 2020, Shell Eco-marathon Asia will remain in Malaysia, Shell Eco-marathon Americas will remain in California, and Shell Eco-marathon Europe will remain in London. The Drivers’ World Championship will once again provide an opportunity for Urban Concept teams, who achieve maximum energy efficiency with their cars, to match this with the speed, skill and strategy of the driver in a race. There will also be at least three Shell Eco-marathon Challenger events, including events in Brazil, South Africa, and China.
    [Show full text]