Oxidative Stress and Mitochondrial Dysfunction in Kindler Syndrome

Total Page:16

File Type:pdf, Size:1020Kb

Oxidative Stress and Mitochondrial Dysfunction in Kindler Syndrome Zapatero-Solana et al. Orphanet Journal of Rare Diseases (2014) 9:211 DOI 10.1186/s13023-014-0211-8 RESEARCH Open Access Oxidative stress and mitochondrial dysfunction in Kindler syndrome Elisabeth Zapatero-Solana1,2,3,4†, Jose Luis García-Giménez1,5,6†, Sara Guerrero-Aspizua1,2,3,4†, Marta García1,2,3,4, Agustí Toll7, Eulalia Baselga8, Maria Durán-Moreno9, Jelena Markovic1,5,6, Jose Manuel García-Verdugo9, Claudio J Conti3,4, Cristina Has10, Fernando Larcher1,2,3,4, Federico V Pallardó1,5,6* and Marcela Del Rio1,2,3,4* Abstract Background: Kindler Syndrome (KS) is an autosomal recessive skin disorder characterized by skin blistering, photosensitivity, premature aging, and propensity to skin cancer. In spite of the knowledge underlying cause of this disease involving mutations of FERMT1 (fermitin family member 1), and efforts to characterize genotype-phenotype correlations, the clinical variability of this genodermatosis is still poorly understood. In addition, several pathognomonic features of KS, not related to skin fragility such as aging, inflammation and cancer predisposition have been strongly associated with oxidative stress. Alterations of the cellular redox status have not been previously studied in KS. Here we explored the role of oxidative stress in the pathogenesis of this rare cutaneous disease. Methods: Patient-derived keratinocytes and their respective controls were cultured and classified according to their different mutations by PCR and western blot, the oxidative stress biomarkers were analyzed by spectrophotometry and qPCR and additionally redox biosensors experiments were also performed. The mitochondrial structure and functionality were analyzed by confocal microscopy and electron microscopy. Results: Patient-derived keratinocytes showed altered levels of several oxidative stress biomarkers including MDA (malondialdehyde), GSSG/GSH ratio (oxidized and reduced glutathione) and GCL (gamma-glutamyl cysteine ligase) subunits. Electron microscopy analysis of both, KS skin biopsies and keratinocytes showed marked morphological mitochondrial abnormalities. Consistently, confocal microscopy studies of mitochondrial fluorescent probes confirmed the mitochondrial derangement. Imbalance of oxidative stress biomarkers together with abnormalities in the mitochondrial network and function are consistent with a pro-oxidant state. Conclusions: This is the first study to describe mitochondrial dysfunction and oxidative stress involvement in KS. Keywords: Kindlin1, Oxidative stress, Mitochondria, Keratinocytes, Genodermatosis Background KS results from recessive loss-of-function mutations in Kindler Syndrome (KS; OMIM 173650; ORPHA 2908), a the FERMT1 (fermitin family member 1) gene that en- rare heritable skin disorder with a complex phenotype codes the protein kindlin-1, a component of focal adhe- and poorly understood pathogenesis, is characterized sions in epithelial cells [2,3]. This protein mediates clinically by acral skin blisters in infancy and childhood, anchorage between the actin cytoskeleton and the photosensitivity, and progressive poikiloderma [1-3]. extracellular matrix via focal adhesions, playing an im- Additional clinical features include chronic gingival ero- portant role in keratinocyte migration, proliferation and sions, oesophageal and urethral stenosis as well as high adhesion [4-7]. risk of mucocutaneous malignancies [1]. Although genetic mutations in FERMT1 have been identified as the origin of this disease, the complex pheno- type of KS cannot be exclusively explained based on the * Correspondence: [email protected]; [email protected] † adhesive function of kindlin-1. Therefore, the mechanisms Equal contributors 1Centre for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, responsible for clinical features such as photosensitivity Valencia, Spain and cancer are still awaiting to be unveiled [8]. Several Full list of author information is available at the end of the article © 2014 Zapatero-Solana et al.; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Zapatero-Solana et al. Orphanet Journal of Rare Diseases (2014) 9:211 Page 2 of 10 pathognomonic features of KS, not related to skin fra- Europe, Eindhoven, Netherlands) using a digital camera gility such as aging, inflammation and cancer have been (Morada, Soft Imaging System, Olympus, Japan). To iden- strongly associated to oxidative stress [9]. Reactive oxy- tify the ultrastructural differences between patients’ skin gen species (ROS) are produced continuously in tissues specimens and controls, 10 randomized cells from 10 ran- as part of normal cell functions. However, the excessive domized areas of each cell culture were analyzed. Skin bi- production of ROS induces DNA and other macromole- opsies were obtained from control and KS patients and cules damage [9-11]. To counteract the excessive produc- ten randomized mitochondria from eight keratinocytes tion of ROS, mammalian cells have developed several were analyzed for each sample. mechanisms of detoxification, located in specific subcellu- lar compartments [12]. These include non-enzymatic anti- Mutational analysis oxidants such as glutathione (GSH) and enzymes with Intronic primer pairs were designed to amplify individual antioxidant properties (e.g. catalase and superoxide dis- exons and flanking splice sites of the FERMT1 gene. Poly- mutases) [9,13]. Glutathione is one of the main antioxi- merase Chain Reaction (PCR) amplification of FERMT1 dant molecules with a role in ROS detoxification and the gene was performed on genomic DNA as previously de- biochemical systems involved in their synthesis and recov- scribed [2,16]. PCR products were directly sequenced in ery (glutathione reductase and glutathione peroxidase) are both orientations in an ABI Prism 3730 genetic analyzer important to maintain the cell in a physiologic redox sta- (Life Technologies/Applied Biosystems). tus [14,15]. In this study we sought to analyse at both, cellular and molecular levels, the potential derangements of the redox Primary keratinocyte culture status in KS skin and keratinocytes. Using a variety of bio- Skin biopsies were incubated two hours at room chemical, molecular and morphological approaches we temperature with collagenase (Sigma) (0.25% diluted in were able to detect an imbalance of oxidative stress bio- DMEM (Gibco, Life Technologies)). Detached epidermal markers and mitochondrial abnormalities consistent with sheet was then incubated with tryspin solution (Sigma) a pro-oxidant state in KS. Our results provide pathological for 20 minutes at 37°C (four cycles of trypsin were bases for the non-adhesive clinical manifestations of this done). The released keratinocytes were centrifuged at intriguing genodermatosis. 1000 rpm for 7 minutes [17,18]. The cell pellet was resus- pended in keratinocyte medium: 3:1 mixture of Dulbecco’s Methods modified Eagle medium (DMEM) (GIBCO-BRL) and ’ Skin biopsies HAMs F12 (Gibco, Life Technologies), containing 10% Skin biopsies were taken from non-affected areas of KS fetal calf serum replacement (Fetal Clone II, Hyclone- patients’ arm, in which mutations, ages and gender are de- Lonza). This medium was supplemented as previously tailed in (Additional file 1: Table S1). Patient informed described [19,20]. Keratinocytes were plated in T75 consents were obtained in agreement with the collabora- flasks previously seeded with a feeder layer of lethally tive centres, where biopsies and blood samples were ob- irradiated (X-ray; 50 Gy) 3 T3-J2 cells (a gift from Dr J. tained. The Ethics Committee of Fundación Jiménez Díaz Garlick, SUNY, Stony Brook, NY) as previously described (Madrid, Spain) evaluated and approved this research, [21], for western blot and redox biosensors experiments. stating that the procedures followed were in accordance In contrast, for oxidative stress markers, confocal micros- with the institutional ethical standards on human experi- copy and electron microscopy experiments cells were cul- mentation and the project adheres to the Helsinki Guide- tured in Cnt-BM.1 Basal Medium (CellNTec) in feeder lines and further reviews including Seul 2008. layer free conditions. Cells were cultured at 37°C in a humid atmosphere containing 5% CO2 and the culture Electron microscopy medium was changed every other day. Third to fifth pas- For Electron Microscopy, cell cultures were fixed with sages cells were used as indicated for all experiments. 3.5% glutaraldehyde while biopsies were fixed with 2% paraformaldehyde and 2.5% glutaraldehyde solution by Measurement of lipid peroxides immersion. All samples were post-fixed in 2% osmium Lipid peroxides were determined by measuring MDA, and dehydrated through an ascending series of ethanol which is formed from such peroxides. MDA from the concentrations. They were then stained with 2% uranyl samples reacted with thiobarbituric acid (TBA) at 100°C acetate in 70% ethanol for 2 hours and embedded in to form a MDA-TBA adduct. The protein-free extract was Durcupan resin (Fluka BioChemika, Ronkokoma, NY, separated by HPLC (Ultimate 3000 Bionex) on a column USA). Ultrathin sections
Recommended publications
  • IDH2 Deficiency Impairs Cutaneous Wound Healing Via ROS-Dependent
    BBA - Molecular Basis of Disease 1865 (2019) 165523 Contents lists available at ScienceDirect BBA - Molecular Basis of Disease journal homepage: www.elsevier.com/locate/bbadis IDH2 deficiency impairs cutaneous wound healing via ROS-dependent apoptosis T ⁎ Sung Hwan Kim, Jeen-Woo Park School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea ARTICLE INFO ABSTRACT Keywords: Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue that play a Wound healing pivotal role in cutaneous wound healing by synthesizing fibronectin (a component of the extracellular matrix), Apoptosis secreting angiogenesis factors, and generating strong contractile forces. In wound healing, low concentrations of IDH2 reactive oxygen species (ROS) are essential in combating invading microorganisms and in cell-survival signaling. Mitochondria However, excessive ROS production impairs fibroblasts. Mitochondrial NADP+-dependent isocitrate dehy- Mito-TEMPO drogenase (IDH2) is a key enzyme that regulates the mitochondrial redox balance and reduces oxidative stress- induced cell injury through the generation of NADPH. In the present study, the downregulation of IDH2 ex- pression resulted in an increase in cell apoptosis in mouse skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also delayed cutaneous wound healing in mice and impaired dermal fibroblast function. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO alleviated the apoptosis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in cutaneous wound healing in association with mitochondrial ROS. 1. Introduction expression, while also stimulating the proliferation and migration of fibroblasts, leading to the formation of the extracellular matrix (ECM).
    [Show full text]
  • Mitochondria's Role in Skin Ageing
    biology Review Mitochondria’s Role in Skin Ageing Roisin Stout and Mark Birch-Machin * Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; [email protected] * Correspondence: [email protected] Received: 21 December 2018; Accepted: 7 February 2019; Published: 11 May 2019 Abstract: Skin ageing is the result of a loss of cellular function, which can be further accelerated by external factors. Mitochondria have important roles in skin function, and mitochondrial damage has been found to accumulate with age in skin cells, but also in response to solar light and pollution. There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of barrier function during skin ageing increases susceptibility to infection and affects wound healing. Therefore, an understanding of the mechanisms involved is important clinically and also for the development of antiageing skin care products. Keywords: mitochondria; skin; ageing; reactive oxygen species; photoageing 1. Skin Structure Skin is the largest organ of the human body and made up of three distinct layers: the epidermis, the dermis and subcutaneous fat. It functions as a barrier against the environment, providing protection against microbes as well as fluid and temperature homeostasis. The epidermis is a thin layer of densely packed keratinised epithelial cells (keratinocytes) which contains no nerves or blood vessels and relies on the thick dermal layer underneath for metabolism.
    [Show full text]
  • Roles of Mitochondrial Respiratory Complexes During Infection Pedro Escoll, Lucien Platon, Carmen Buchrieser
    Roles of Mitochondrial Respiratory Complexes during Infection Pedro Escoll, Lucien Platon, Carmen Buchrieser To cite this version: Pedro Escoll, Lucien Platon, Carmen Buchrieser. Roles of Mitochondrial Respiratory Complexes during Infection. Immunometabolism, Hapres, 2019, Immunometabolism and Inflammation, 1, pp.e190011. 10.20900/immunometab20190011. pasteur-02593579 HAL Id: pasteur-02593579 https://hal-pasteur.archives-ouvertes.fr/pasteur-02593579 Submitted on 15 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ij.hapres.com Review Roles of Mitochondrial Respiratory Complexes during Infection Pedro Escoll 1,2,*, Lucien Platon 1,2,3, Carmen Buchrieser 1,2,* 1 Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 75015 Paris, France 2 CNRS-UMR 3525, 75015 Paris, France 3 Faculté des Sciences, Université de Montpellier, 34095 Montpellier, France * Correspondence: Pedro Escoll, Email: [email protected]; Tel.: +33-0-1-44-38-9540; Carmen Buchrieser, Email: [email protected]; Tel.: +33-0-1-45-68-8372. ABSTRACT Beyond oxidative phosphorylation (OXPHOS), mitochondria have also immune functions against infection, such as the regulation of cytokine production, the generation of metabolites with antimicrobial proprieties and the regulation of inflammasome-dependent cell death, which seem in turn to be regulated by the metabolic status of the organelle.
    [Show full text]
  • Oxidative Stress, Mitochondrial Dysfunction, and Aging
    University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2012-10 Oxidative stress, mitochondrial dysfunction, and aging Hang Cui University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Cell Biology Commons, and the Physiology Commons Repository Citation Cui H, Kong Y, Zhang H. (2012). Oxidative stress, mitochondrial dysfunction, and aging. Open Access Articles. https://doi.org/10.1155/2012/646354. Retrieved from https://escholarship.umassmed.edu/ oapubs/2303 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Hindawi Publishing Corporation Journal of Signal Transduction Volume 2012, Article ID 646354, 13 pages doi:10.1155/2012/646354 Review Article Oxidative Stress, Mitochondrial Dysfunction, and Aging Hang Cui, Yahui Kong, and Hong Zhang Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Correspondence should be addressed to Hong Zhang, [email protected] Received 15 May 2011; Accepted 3 August 2011 Academic Editor: Paolo Pinton Copyright © 2012 Hang Cui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases.
    [Show full text]
  • ATM-Mediated Mitochondrial Radiation Responses of Human Fibroblasts
    G C A T T A C G G C A T genes Review ATM-Mediated Mitochondrial Radiation Responses of Human Fibroblasts Tsutomu Shimura Department of Environmental Health, National Institute of Public Health 2-3-6 Minami, Wako 351-0197, Saitama, Japan; [email protected]; Tel.: +81-48-458-6261 Abstract: Ataxia telangiectasia (AT) is characterized by extreme sensitivity to ionizing radiation. The gene mutated in AT, Ataxia Telangiectasia Mutated (ATM), has serine/threonine protein kinase activ- ity and mediates the activation of multiple signal transduction pathways involved in the processing of DNA double-strand breaks. Reactive oxygen species (ROS) created as a byproduct of the mito- chondria’s oxidative phosphorylation (OXPHOS) has been proposed to be the source of intracellular ROS. Mitochondria are uniquely vulnerable to ROS because they are the sites of ROS generation. ROS- induced mitochondrial mutations lead to impaired mitochondrial respiration and further increase the likelihood of ROS generation, establishing a vicious cycle of further ROS production and mitochon- drial damage. AT patients and ATM-deficient mice display intrinsic mitochondrial dysfunction and exhibit constitutive elevations in ROS levels. ATM plays a critical role in maintaining cellular redox homeostasis. However, the precise mechanism of ATM-mediated mitochondrial antioxidants remains unclear. The aim of this review paper is to introduce our current research surrounding the role of ATM on maintaining cellular redox control in human fibroblasts. ATM-mediated signal transduction is important in the mitochondrial radiation response. Perturbation of mitochondrial redox control elevates ROS which are key mediators in the development of cancer by many mechanisms, including ROS-mediated genomic instability, tumor microenvironment formation, and chronic inflammation.
    [Show full text]
  • Mitochondrial Oxidative Phosphorylation Defect in the Heart
    www.nature.com/scientificreports OPEN Mitochondrial Oxidative Phosphorylation defect in the Heart of Subjects with Coronary Artery Received: 23 August 2018 Accepted: 6 December 2018 Disease Published: xx xx xxxx Karima Ait-Aissa 1, Scott C. Blaszak1, Gisela Beutner2, Shirng-Wern Tsaih3, Garrett Morgan4, Janine H. Santos5, Michael J. Flister3, David L. Joyce6, Amadou K. S. Camara3,7, David D. Gutterman1, Anthony J. Donato4,8, George A. Porter Jr. 2,9,10 & Andreas M. Beyer1,3 Coronary artery disease (CAD) is a leading cause of death worldwide and frequently associated with mitochondrial dysfunction. Detailed understanding of abnormalities in mitochondrial function that occur in patients with CAD is lacking. We evaluated mitochondrial damage, energy production, and mitochondrial complex activity in human non-CAD and CAD hearts. Fresh and frozen human heart tissue was used. Cell lysate or mitochondria were isolated using standard techniques. Mitochondrial DNA (mtDNA), NAD + and ATP levels, and mitochondrial oxidative phosphorylation capacity were evaluated. Proteins critical to the regulation of mitochondrial metabolism and function were also evaluated in tissue lysates. PCR analysis revealed an increase in mtDNA lesions and the frequency of mitochondrial common deletion, both established markers for impaired mitochondrial integrity in CAD compared to non-CAD patient samples. NAD+ and ATP levels were signifcantly decreased in CAD subjects compared to Non-CAD (NAD+ fold change: non-CAD 1.00 ± 0.17 vs. CAD 0.32 ± 0.12* and ATP fold change: non-CAD 1.00 ± 0.294 vs. CAD 0.01 ± 0.001*; N = 15, P < 0.005). We observed decreased respiration control index in CAD tissue and decreased activity of complexes I, II, and III.
    [Show full text]
  • Mitochondrial Oxidative Stress Caused by Sod2 Deficiency Promotes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central www.impactaging.com AGING, January 2012, Vol. 4. No 1 Research Paper Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin Michael C. Velarde1, James M. Flynn1, Nicholas U. Day 1, Simon Melov1, and Judith Campisi1,2 1 Buck Institute for Research on Aging, Novato, CA 94945, USA 2 Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA Key words: DNA damage, epidermal differentiation, knock‐out mouse model, reactive oxygen species (ROS), superoxide Received: 1/12/12; Accepted: 1/18/12; Published: 1/20/12 Correspondence to: Judith Campisi, PhD; E‐mail: [email protected] Copyright: © Velarde et al. This is an open‐access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract: Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin.
    [Show full text]
  • Sunlight, Diet and Pollution – Effects on Oxidative Stress and Skin Ageing
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Newcastle University E-Prints CATHERINE A BONN1, KHIMARA NAIDOO1, HELENE A HINE2, MARK A BIRCH-MACHIN1* 1. Dermatological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom 2. Croda Europe Ltd, Snaith, East Yorkshire, England, DN14 8PN Sunlight, Diet and Pollution – Effects on Oxidative Stress and Skin Ageing KEYWORDS: Ageing; Skin; Reactive Oxygen Species; Sunlight; Diet; Pollution ABSTRACT Skin is subject to stress from external factors, which have the potential to cause premature ageing. Oxidative stress from the generation of reactive oxygen species has been increasingly implicated as a driving force in skin ageing, leading to loss of skin structure and function. While intrinsic skin ageing driven by genetics is inevitable, our exposure to some of the extrinsic factors that affect the process are under our influence. Sunlight, diet and pollution can all affect the oxidative environment of the skin. This review details the current research into the effects of these factors on oxidative stress in the skin. INTRODUCTION Ageing is a process in which losses of structure and function accumulate over time. This leads to a reduction in the capability of an organism to cope with stress from the environment and function in a normal capacity. This process is observed in all animals, and while humans have extended average lifespan in recent years with modern healthcare knowledge, we are still susceptible to the effects of aging over our lifetime. However, the exact underlying biological causes of the ageing process remain unclear.
    [Show full text]
  • Mitochondrial Oxidative Stress and “Mito-Inflammation”: Actors in the Diseases
    biomedicines Review Mitochondrial Oxidative Stress and “Mito-Inflammation”: Actors in the Diseases Simone Patergnani 1,† , Esmaa Bouhamida 1,†, Sara Leo 1, Paolo Pinton 1,2 and Alessandro Rimessi 1,2,* 1 Department of Medical Sciences and Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy; [email protected] (S.P.); [email protected] (E.B.); [email protected] (S.L.); [email protected] (P.P.) 2 Center of Research for Innovative Therapies in Cystic Fibrosis, University of Ferrara, 44121 Ferrara, Italy * Correspondence: [email protected] † These authors contributed equally to this work. Abstract: A decline in mitochondrial redox homeostasis has been associated with the development of a wide range of inflammatory-related diseases. Continue discoveries demonstrate that mitochondria are pivotal elements to trigger inflammation and stimulate innate immune signaling cascades to intensify the inflammatory response at front of different stimuli. Here, we review the evidence that an exacerbation in the levels of mitochondrial-derived reactive oxygen species (ROS) contribute to mito-inflammation, a new concept that identifies the compartmentalization of the inflammatory process, in which the mitochondrion acts as central regulator, checkpoint, and arbitrator. In particular, we discuss how ROS contribute to specific aspects of mito-inflammation in different inflammatory- related diseases, such as neurodegenerative disorders, cancer, pulmonary diseases, diabetes, and cardiovascular diseases. Taken together, these observations indicate that mitochondrial ROS influence and regulate a number of key aspects of mito-inflammation and that strategies directed to reduce or neutralize mitochondrial ROS levels might have broad beneficial effects on inflammatory-related Citation: Patergnani, S.; Bouhamida, E.; Leo, S.; Pinton, P.; diseases.
    [Show full text]
  • Multiple Roles of Mitochondria in Aging Processes
    Physiol. Res. 65 (Suppl. 5): S519-S531, 2016 https://doi.org/10.33549/physiolres.933538 REVIEW Multiple Roles of Mitochondria in Aging Processes M. CEDIKOVA1,2, P. PITULE2,3, M. KRIPNEROVA4, M. MARKOVA1, J. KUNCOVA1,2 1Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic, 2Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic, 3Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic, 4Department of Biology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic Received March 27, 2016 Accepted October 26, 2016 Summary is defined as an age-dependent or age-progressive decline Aging is a multifactorial process influenced by genetic factors, in the intrinsic physiological function, leading to nutrition, and lifestyle. According to mitochondrial theory of an increase in age-specific mortality rate and a decrease aging, mitochondrial dysfunction is widely considered a major in age-specific reproductive rate (Anton et al. 2015, contributor to age-related processes. Mitochondria are both the Basaria 2013, Fulop et al. 2010). Human aging starts main source and targets of detrimental reactions initiated in after the third decade and is commonly associated with association with age-dependent deterioration of the cellular the accumulation of physical, psychological, and social functions. Reactions leading to increased reactive oxygen species changes leading to general decline in wellness, reduction generation, mtDNA mutations, and oxidation of mitochondrial in mobility (which is critical factor impacting the quality proteins result in subsequent induction of apoptotic events, of life) and the onset of many age-related diseases impaired oxidative phosphorylation capacity, mitochondrial including atherosclerosis, heart disease, hypertension, dynamics, biogenesis and autophagy.
    [Show full text]
  • Mitochondrial Biogenesis and Mitochondrial Reactive Oxygen Species (ROS): a Complex Relationship Regulated by the Camp/PKA Signaling Pathway
    cells Review Mitochondrial Biogenesis and Mitochondrial Reactive Oxygen Species (ROS): A Complex Relationship Regulated by the cAMP/PKA Signaling Pathway Cyrielle Bouchez 1,2 and Anne Devin 1,2,* 1 Université Bordeaux, IBGC, UMR 5095, 33077 Bordeaux CEDEX, France; [email protected] 2 Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, 1, rue Camille Saint Saëns, 33077 Bordeaux CEDEX, France * Correspondence: [email protected]; Tel.: +33-556-999-035; Fax: +33-556-999-040 Received: 28 February 2019; Accepted: 20 March 2019; Published: 27 March 2019 Abstract: Mitochondrial biogenesis is a complex process. It requires the contribution of both the nuclear and the mitochondrial genomes and therefore cross talk between the nucleus and mitochondria. Cellular energy demand can vary by great length and it is now well known that one way to adjust adenosine triphosphate (ATP) synthesis to energy demand is through modulation of mitochondrial content in eukaryotes. The knowledge of actors and signals regulating mitochondrial biogenesis is thus of high importance. Here, we review the regulation of mitochondrial biogenesis both in yeast and in mammalian cells through mitochondrial reactive oxygen species. Keywords: mitochondrial biogenesis; ROS; cAMP signaling; yeast 1. Introduction 1.1. Mitochondrial Oxidative Phosphorylation In eukaryotic cells, energy conversion processes are mandatory for both cell biomass generation and cellular maintenance. Adenosine triphosphate (ATP) is the cellular energy currency, and mitochondria play a crucial role in ATP synthesis thanks to the oxidative phosphorylation system (OXPHOS) located in the mitochondrial inner membrane. The oxidative part of this energy conversion process takes place in the four enzymatic complexes of the mitochondrial respiratory chain and leads to substrates—nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FADH2)—oxidation.
    [Show full text]
  • Mitochondrial Dysfunction and Oxidative Stress in Heart Disease Jessica N
    Peoples et al. Experimental & Molecular Medicine (2019) 51:162 https://doi.org/10.1038/s12276-019-0355-7 Experimental & Molecular Medicine REVIEW ARTICLE Open Access Mitochondrial dysfunction and oxidative stress in heart disease Jessica N. Peoples1,AnitaSaraf2, Nasab Ghazal1,TylerT.Pham3 and Jennifer Q. Kwong1 Abstract Beyond their role as a cellular powerhouse, mitochondria are emerging as integral players in molecular signaling and cell fate determination through reactive oxygen species (ROS). While ROS production has historically been portrayed as an unregulated process driving oxidative stress and disease pathology, contemporary studies reveal that ROS also facilitate normal physiology. Mitochondria are especially abundant in cardiac tissue; hence, mitochondrial dysregulation and ROS production are thought to contribute significantly to cardiac pathology. Moreover, there is growing appreciation that medical therapies designed to mediate mitochondrial ROS production can be important strategies to ameliorate cardiac disease. In this review, we highlight evidence from animal models that illustrates the strong connections between mitochondrial ROS and cardiac disease, discuss advancements in the development of mitochondria-targeted antioxidant therapies, and identify challenges faced in bringing such therapies into the clinic. Introduction permeability transition pore (MPTP), mitochondrial dys- Reactive oxygen species (ROS), including the super- function, and cell death2. Indeed, dysregulated ROS pro- oxide anion, the hydroxyl radical, and hydrogen peroxide, duction and oxidative stress have been implicated in a are critical signaling molecules with important roles in host of cardiac diseases, including cardiac hypertrophy, both cardiac physiology and disease. Both cytosolic heart failure (HF), cardiac ischemia–reperfusion injury sources, including NADPH oxidases (NOX), xanthine (IRI), and diabetic cardiomyopathy (discussed in greater – oxidase, cyclooxygenases, and cytochrome P450 enzymes, detail in refs 3 6).
    [Show full text]