Mitochondrial Disease in Superoxide Dismutase 2 Mutant Mice
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Mt-Atp8 Gene in the Conplastic Mouse Strain C57BL/6J-Mtfvb/NJ on the Mitochondrial Function and Consequent Alterations to Metabolic and Immunological Phenotypes
From the Lübeck Institute of Experimental Dermatology of the University of Lübeck Director: Prof. Dr. Saleh M. Ibrahim Interplay of mtDNA, metabolism and microbiota in the pathogenesis of AIBD Dissertation for Fulfillment of Requirements for the Doctoral Degree of the University of Lübeck from the Department of Natural Sciences Submitted by Paul Schilf from Rostock Lübeck, 2016 First referee: Prof. Dr. Saleh M. Ibrahim Second referee: Prof. Dr. Stephan Anemüller Chairman: Prof. Dr. Rainer Duden Date of oral examination: 30.03.2017 Approved for printing: Lübeck, 06.04.2017 Ich versichere, dass ich die Dissertation ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Hilfsmittel verwendet habe. Weder vorher noch gleichzeitig habe ich andernorts einen Zulassungsantrag gestellt oder diese Dissertation vorgelegt. ABSTRACT Mitochondria are critical in the regulation of cellular metabolism and influence signaling processes and inflammatory responses. Mitochondrial DNA mutations and mitochondrial dysfunction are known to cause a wide range of pathological conditions and are associated with various immune diseases. The findings in this work describe the effect of a mutation in the mitochondrially encoded mt-Atp8 gene in the conplastic mouse strain C57BL/6J-mtFVB/NJ on the mitochondrial function and consequent alterations to metabolic and immunological phenotypes. This work provides insights into the mutation-induced cellular adaptations that influence the inflammatory milieu and shape pathological processes, in particular focusing on autoimmune bullous diseases, which have recently been reported to be associated with mtDNA polymorphisms in the human MT-ATP8 gene. The mt-Atp8 mutation diminishes the assembly of the ATP synthase complex into multimers and decreases mitochondrial respiration, affects generation of reactive oxygen species thus leading to a shift in the metabolic balance and reduction in the energy state of the cell as indicated by the ratio ATP to ADP. -
Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T
Mutation of the Fumarase Gene in Two Siblings with Progressive Encephalopathy and Fumarase Deficiency T. Bourgeron,* D. Chretien,* J. Poggi-Bach, S. Doonan,' D. Rabier,* P. Letouze,I A. Munnich,* A. R6tig,* P. Landneu,* and P. Rustin* *Unite de Recherches sur les Handicaps Genetiques de l'Enfant, INSERM U393, Departement de Pediatrie et Departement de Biochimie, H6pital des Enfants-Malades, 149, rue de Sevres, 75743 Paris Cedex 15, France; tDepartement de Pediatrie, Service de Neurologie et Laboratoire de Biochimie, Hopital du Kremlin-Bicetre, France; IFaculty ofScience, University ofEast-London, UK; and IService de Pediatrie, Hopital de Dreux, France Abstract chondrial enzyme (7). Human tissue fumarase is almost We report an inborn error of the tricarboxylic acid cycle, fu- equally distributed between the mitochondria, where the en- marase deficiency, in two siblings born to first cousin parents. zyme catalyzes the reversible hydration of fumarate to malate They presented with progressive encephalopathy, dystonia, as a part ofthe tricarboxylic acid cycle, and the cytosol, where it leucopenia, and neutropenia. Elevation oflactate in the cerebro- is involved in the metabolism of the fumarate released by the spinal fluid and high fumarate excretion in the urine led us to urea cycle. The two isoenzymes have quite homologous struc- investigate the activities of the respiratory chain and of the tures. In rat liver, they differ only by the acetylation of the Krebs cycle, and to finally identify fumarase deficiency in these NH2-terminal amino acid of the cytosolic form (8). In all spe- two children. The deficiency was profound and present in all cies investigated so far, the two isoenzymes have been found to tissues investigated, affecting the cytosolic and the mitochon- be encoded by a single gene (9,10). -
IDH2 Deficiency Impairs Cutaneous Wound Healing Via ROS-Dependent
BBA - Molecular Basis of Disease 1865 (2019) 165523 Contents lists available at ScienceDirect BBA - Molecular Basis of Disease journal homepage: www.elsevier.com/locate/bbadis IDH2 deficiency impairs cutaneous wound healing via ROS-dependent apoptosis T ⁎ Sung Hwan Kim, Jeen-Woo Park School of Life Sciences and Biotechnology, BK21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Taegu, Republic of Korea ARTICLE INFO ABSTRACT Keywords: Dermal fibroblasts are mesenchymal cells found between the skin epidermis and subcutaneous tissue that play a Wound healing pivotal role in cutaneous wound healing by synthesizing fibronectin (a component of the extracellular matrix), Apoptosis secreting angiogenesis factors, and generating strong contractile forces. In wound healing, low concentrations of IDH2 reactive oxygen species (ROS) are essential in combating invading microorganisms and in cell-survival signaling. Mitochondria However, excessive ROS production impairs fibroblasts. Mitochondrial NADP+-dependent isocitrate dehy- Mito-TEMPO drogenase (IDH2) is a key enzyme that regulates the mitochondrial redox balance and reduces oxidative stress- induced cell injury through the generation of NADPH. In the present study, the downregulation of IDH2 ex- pression resulted in an increase in cell apoptosis in mouse skin through ROS-dependent ATM-mediated p53 signaling. IDH2 deficiency also delayed cutaneous wound healing in mice and impaired dermal fibroblast function. Furthermore, pretreatment with the mitochondria-targeted antioxidant mito-TEMPO alleviated the apoptosis induced by IDH2 deficiency both in vitro and in vivo. Together, our findings highlight the role of IDH2 in cutaneous wound healing in association with mitochondrial ROS. 1. Introduction expression, while also stimulating the proliferation and migration of fibroblasts, leading to the formation of the extracellular matrix (ECM). -
Mitochondrial Protein Quality Control Mechanisms
G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions. -
Mitochondria's Role in Skin Ageing
biology Review Mitochondria’s Role in Skin Ageing Roisin Stout and Mark Birch-Machin * Dermatological Sciences, Institute of Cellular Medicine, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; [email protected] * Correspondence: [email protected] Received: 21 December 2018; Accepted: 7 February 2019; Published: 11 May 2019 Abstract: Skin ageing is the result of a loss of cellular function, which can be further accelerated by external factors. Mitochondria have important roles in skin function, and mitochondrial damage has been found to accumulate with age in skin cells, but also in response to solar light and pollution. There is increasing evidence that mitochondrial dysfunction and oxidative stress are key features in all ageing tissues, including skin. This is directly linked to skin ageing phenotypes: wrinkle formation, hair greying and loss, uneven pigmentation and decreased wound healing. The loss of barrier function during skin ageing increases susceptibility to infection and affects wound healing. Therefore, an understanding of the mechanisms involved is important clinically and also for the development of antiageing skin care products. Keywords: mitochondria; skin; ageing; reactive oxygen species; photoageing 1. Skin Structure Skin is the largest organ of the human body and made up of three distinct layers: the epidermis, the dermis and subcutaneous fat. It functions as a barrier against the environment, providing protection against microbes as well as fluid and temperature homeostasis. The epidermis is a thin layer of densely packed keratinised epithelial cells (keratinocytes) which contains no nerves or blood vessels and relies on the thick dermal layer underneath for metabolism. -
Nerve Tissue-Specific Human Glutamate Dehydrogenase That Is Thermolabile and Highly Regulated by ADP , I *P
Fordham University Masthead Logo DigitalResearch@Fordham Chemistry Faculty Publications Chemistry 1997 Nerve tissue-specific umh an glutamate dehydrogenase that is thermolabile and highly regulated by adp / P. Shashidharan, Donald D. Clarke, Naveed Ahmed, Nicholas Moschonas, and Andreas Plaitakis Department of Neurology, Mount Sinai School of Medicine, New York; Department of Chemistry, Fordham University, Bronx New York, USA; and Department of Biology and School of Health Sciences, University of Crete, Crete, Greece P. Shashidharan Mount Sinai School of Medicine. Department of Neurology, [email protected] Donald Dudley Clarke PhD Fordham University, [email protected] Recommended Citation Shashidharan, P.; Clarke, Donald Dudley PhD; Ahmed, Naveed; and Moschonas, Nicholas, "Nerve tissue-specific umh an glutamate dehydrogenase that is thermolabile and highly regulated by adp / P. Shashidharan, Donald D. Clarke, Naveed Ahmed, Nicholas Moschonas, and Andreas Plaitakis Department of Neurology, Mount Sinai School of Medicine, New York; Department of Chemistry, Fordham University, Bronx New York, USA; and Department of Biology and School of Health Sciences, University of Crete, Crete, Greece" (1997). Chemistry Faculty Publications. 13. https://fordham.bepress.com/chem_facultypubs/13 This Article is brought to you for free and open access by the Chemistry at DigitalResearch@Fordham. It has been accepted for inclusion in Chemistry Faculty Publications by an authorized administrator of DigitalResearch@Fordham. For more information, please contact [email protected]. Naveed Ahmed Mount Sinai School of Medicine. Department of Neurology Nicholas Moschonas University of Crete. Department of Biology Follow this and additional works at: https://fordham.bepress.com/chem_facultypubs Part of the Biochemistry Commons Journal of Neurochemistry Lippincott-Raven Publishers, Philadelphia © 1997 International Society for Neurochemistry Nerve Tissue-Specific Human Glutamate Dehydrogenase that Is Thermolabile and Highly Regulated by ADP , I *P. -
Roles of Mitochondrial Respiratory Complexes During Infection Pedro Escoll, Lucien Platon, Carmen Buchrieser
Roles of Mitochondrial Respiratory Complexes during Infection Pedro Escoll, Lucien Platon, Carmen Buchrieser To cite this version: Pedro Escoll, Lucien Platon, Carmen Buchrieser. Roles of Mitochondrial Respiratory Complexes during Infection. Immunometabolism, Hapres, 2019, Immunometabolism and Inflammation, 1, pp.e190011. 10.20900/immunometab20190011. pasteur-02593579 HAL Id: pasteur-02593579 https://hal-pasteur.archives-ouvertes.fr/pasteur-02593579 Submitted on 15 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License ij.hapres.com Review Roles of Mitochondrial Respiratory Complexes during Infection Pedro Escoll 1,2,*, Lucien Platon 1,2,3, Carmen Buchrieser 1,2,* 1 Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires, 75015 Paris, France 2 CNRS-UMR 3525, 75015 Paris, France 3 Faculté des Sciences, Université de Montpellier, 34095 Montpellier, France * Correspondence: Pedro Escoll, Email: [email protected]; Tel.: +33-0-1-44-38-9540; Carmen Buchrieser, Email: [email protected]; Tel.: +33-0-1-45-68-8372. ABSTRACT Beyond oxidative phosphorylation (OXPHOS), mitochondria have also immune functions against infection, such as the regulation of cytokine production, the generation of metabolites with antimicrobial proprieties and the regulation of inflammasome-dependent cell death, which seem in turn to be regulated by the metabolic status of the organelle. -
Oxidative Stress, Mitochondrial Dysfunction, and Aging
University of Massachusetts Medical School eScholarship@UMMS Open Access Articles Open Access Publications by UMMS Authors 2012-10 Oxidative stress, mitochondrial dysfunction, and aging Hang Cui University of Massachusetts Medical School Et al. Let us know how access to this document benefits ou.y Follow this and additional works at: https://escholarship.umassmed.edu/oapubs Part of the Cell Biology Commons, and the Physiology Commons Repository Citation Cui H, Kong Y, Zhang H. (2012). Oxidative stress, mitochondrial dysfunction, and aging. Open Access Articles. https://doi.org/10.1155/2012/646354. Retrieved from https://escholarship.umassmed.edu/ oapubs/2303 This material is brought to you by eScholarship@UMMS. It has been accepted for inclusion in Open Access Articles by an authorized administrator of eScholarship@UMMS. For more information, please contact [email protected]. Hindawi Publishing Corporation Journal of Signal Transduction Volume 2012, Article ID 646354, 13 pages doi:10.1155/2012/646354 Review Article Oxidative Stress, Mitochondrial Dysfunction, and Aging Hang Cui, Yahui Kong, and Hong Zhang Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA Correspondence should be addressed to Hong Zhang, [email protected] Received 15 May 2011; Accepted 3 August 2011 Academic Editor: Paolo Pinton Copyright © 2012 Hang Cui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aging is an intricate phenomenon characterized by progressive decline in physiological functions and increase in mortality that is often accompanied by many pathological diseases. -
ATM-Mediated Mitochondrial Radiation Responses of Human Fibroblasts
G C A T T A C G G C A T genes Review ATM-Mediated Mitochondrial Radiation Responses of Human Fibroblasts Tsutomu Shimura Department of Environmental Health, National Institute of Public Health 2-3-6 Minami, Wako 351-0197, Saitama, Japan; [email protected]; Tel.: +81-48-458-6261 Abstract: Ataxia telangiectasia (AT) is characterized by extreme sensitivity to ionizing radiation. The gene mutated in AT, Ataxia Telangiectasia Mutated (ATM), has serine/threonine protein kinase activ- ity and mediates the activation of multiple signal transduction pathways involved in the processing of DNA double-strand breaks. Reactive oxygen species (ROS) created as a byproduct of the mito- chondria’s oxidative phosphorylation (OXPHOS) has been proposed to be the source of intracellular ROS. Mitochondria are uniquely vulnerable to ROS because they are the sites of ROS generation. ROS- induced mitochondrial mutations lead to impaired mitochondrial respiration and further increase the likelihood of ROS generation, establishing a vicious cycle of further ROS production and mitochon- drial damage. AT patients and ATM-deficient mice display intrinsic mitochondrial dysfunction and exhibit constitutive elevations in ROS levels. ATM plays a critical role in maintaining cellular redox homeostasis. However, the precise mechanism of ATM-mediated mitochondrial antioxidants remains unclear. The aim of this review paper is to introduce our current research surrounding the role of ATM on maintaining cellular redox control in human fibroblasts. ATM-mediated signal transduction is important in the mitochondrial radiation response. Perturbation of mitochondrial redox control elevates ROS which are key mediators in the development of cancer by many mechanisms, including ROS-mediated genomic instability, tumor microenvironment formation, and chronic inflammation. -
Mitochondrial Oxidative Phosphorylation Defect in the Heart
www.nature.com/scientificreports OPEN Mitochondrial Oxidative Phosphorylation defect in the Heart of Subjects with Coronary Artery Received: 23 August 2018 Accepted: 6 December 2018 Disease Published: xx xx xxxx Karima Ait-Aissa 1, Scott C. Blaszak1, Gisela Beutner2, Shirng-Wern Tsaih3, Garrett Morgan4, Janine H. Santos5, Michael J. Flister3, David L. Joyce6, Amadou K. S. Camara3,7, David D. Gutterman1, Anthony J. Donato4,8, George A. Porter Jr. 2,9,10 & Andreas M. Beyer1,3 Coronary artery disease (CAD) is a leading cause of death worldwide and frequently associated with mitochondrial dysfunction. Detailed understanding of abnormalities in mitochondrial function that occur in patients with CAD is lacking. We evaluated mitochondrial damage, energy production, and mitochondrial complex activity in human non-CAD and CAD hearts. Fresh and frozen human heart tissue was used. Cell lysate or mitochondria were isolated using standard techniques. Mitochondrial DNA (mtDNA), NAD + and ATP levels, and mitochondrial oxidative phosphorylation capacity were evaluated. Proteins critical to the regulation of mitochondrial metabolism and function were also evaluated in tissue lysates. PCR analysis revealed an increase in mtDNA lesions and the frequency of mitochondrial common deletion, both established markers for impaired mitochondrial integrity in CAD compared to non-CAD patient samples. NAD+ and ATP levels were signifcantly decreased in CAD subjects compared to Non-CAD (NAD+ fold change: non-CAD 1.00 ± 0.17 vs. CAD 0.32 ± 0.12* and ATP fold change: non-CAD 1.00 ± 0.294 vs. CAD 0.01 ± 0.001*; N = 15, P < 0.005). We observed decreased respiration control index in CAD tissue and decreased activity of complexes I, II, and III. -
Mitochondrial Enzyme Activities in Liver Biopsies from Patients with Alcoholic Liver Disease
Gut: first published as 10.1136/gut.19.5.341 on 1 May 1978. Downloaded from Gut, 1978, 19, 341-344 Mitochondrial enzyme activities in liver biopsies from patients with alcoholic liver disease W. J. JENKINS AND T. J. PETERS From the Department ofMedicine, Royal Pnvtgraduate Medical School, London W12 OHS SUMMARY The hypothesis that mitochondrial damage is a significant factor in the pathogenesis of alcoholicliverdisease (ALD) was investigated by enzymic analysis ofmitochondrial fractions isolated from needle biopsy specimens from control patients, patients with fatty liver due to chronic alcoholism, and from patients with other forms of liver disease. Enzymes associated with the inner and outer mitochondrial membranes showed normal levels in ALD. Enzymes associated with the mitochondrial matrix, glutamate dehydrogenase, malate dehydrogenase and aspartate amino- transferase showed significantly raised levels in ALD, but the levels in patients with non-alcoholic liver disease were normal. In addition, analysis of the mitochondria by sucrose density gradient centrifugation revealed no differences between control tissue and liver from patients with alcoholic liver disease. These results do not indicate that there is significant mitochondrial damage in ALD. The raised mitochondrial matrix enzymes may represent an adaptive response to the ethanol load. Alcoholic liver disease (ALD) is a major clinical alcoholics the levels of marker enzymes for mito- problem of increasing importance, and alcoholic chondrial inner and outer membranes, and matrix cirrhosis is now the third main cause of death were assayed in liver biopsies from patients with http://gut.bmj.com/ between the ages of 25 and 65 years in the USA ALD, and compared with controls and with patients (Lieber, 1975). -
Mitochondrial Oxidative Stress Caused by Sod2 Deficiency Promotes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central www.impactaging.com AGING, January 2012, Vol. 4. No 1 Research Paper Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin Michael C. Velarde1, James M. Flynn1, Nicholas U. Day 1, Simon Melov1, and Judith Campisi1,2 1 Buck Institute for Research on Aging, Novato, CA 94945, USA 2 Lawrence Berkley National Laboratory, Berkeley, CA 94720, USA Key words: DNA damage, epidermal differentiation, knock‐out mouse model, reactive oxygen species (ROS), superoxide Received: 1/12/12; Accepted: 1/18/12; Published: 1/20/12 Correspondence to: Judith Campisi, PhD; E‐mail: [email protected] Copyright: © Velarde et al. This is an open‐access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited Abstract: Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin.