Open Access Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Atmos. Chem. Phys. Discuss., 14, 10135–10166, 2014 Atmospheric www.atmos-chem-phys-discuss.net/14/10135/2014/ Chemistry doi:10.5194/acpd-14-10135-2014 © Author(s) 2014. CC Attribution 3.0 License. and Physics Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available. The influence of nitrogen oxides on the activation of bromide and chloride in salt aerosol S. Bleicher1, J. C. Buxmann2,*, R. Sander3, T. P. Riedel4, J. A. Thornton4, U. Platt2, and C. Zetzsch1 1Atmospheric Chemistry Research Unit, University of Bayreuth, Bayreuth, Germany 2Institut für Umweltphysik, University of Heidelberg, Heidelberg, Germany 3Air Chemistry Department, Max-Planck Institute for Chemistry, Mainz, Germany 4University of Washington, Seattle, USA *now at: Met Office, Exeter, UK Received: 6 March 2014 – Accepted: 11 March 2014 – Published: 22 April 2014 Correspondence to: C. Zetzsch (
[email protected]) Published by Copernicus Publications on behalf of the European Geosciences Union. 10135 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Abstract Experiments on salt aerosol with different salt contents were performed in a Teflon chamber under tropospheric light conditions with various initial contents of nitrogen oxides (NOx = NO + NO2). A strong activation of halogens was found at high NOx 5 mixing ratios, even in samples with lower bromide contents such as road salts. The ozone depletion by reactive halogen species released from the aerosol, was found to be a function of the initial NOx mixing ratio.