An Experimental Study of Thin Foil Positron Moderators and Positronium Interactions in Gases

Total Page:16

File Type:pdf, Size:1020Kb

An Experimental Study of Thin Foil Positron Moderators and Positronium Interactions in Gases AN EXPERIMENTAL STUDY OF THIN FOIL POSITRON MODERATORS AND POSITRONIUM INTERACTIONS IN GASES A thesis submitted to the University of London for the degree of Doctor of Philosophy Nazrene Zafar Department of Physics and Astronomy University College London February 1990 ProQuest Number: 10797775 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10797775 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ABSTRACT The use of thin single crystal tungsten, W(100), and nickel, Ni(lOO), foils as slow positron moderators in the transmission mode has been investigated. A simple annealing technique has been developed, employing resistive heating in low vacuum conditions of 6x10“2 Torr, to treat the foils of thicknesses in the range 1000-18000A. The maximum efficiencies obtained were (8.8±1.2)xl0^ from a 2000A W(100) foil and (6.511.OJIO"4 from a 5000A Ni(100) film in a system with a base pressure of 10~7 Torr. The considerations required to determine the efficiency, defined as the ratio of the slow positrons emitted to the number of fast positrons striking the foil, have been discussed in the context of the present arrangement. Comparisons show that the results obtained are a factor of 2.5-4.5 lower than calculated yields, however are in good agreement with values from experimental studies using more complex annealing procedures in higher vacuum conditions (>10"® Torr). The full width at half maximum of the energy distribution of the emitted positrons were found to be 1.7eV from W and 0.3eV from Ni compared to 2.8eV from W mesh. The timed positronium beam system developed by Laricchia et al (1988b) has been modified to allow the observation of n=2 state Ps formed in helium and argon gases. The excited state component of the positronium flux was quantified at incident positron energies of 16-52.5eV and found to compose, at maximum, 33% (He) and 42% (Ar) of the total positronium beam without correction for in-flight decay. Comparisons made with theoretical studies indicate that metastable S state positronium may constitute a large proportion of the excited state flux (*70%). Total positronium scattering cross-sections were extracted and the results obtained ranged from (4.5±0.8) to (7.610.8) xlO-20m2 in Ar for positronium energies of 17-41eV and fluctuated about *3xl0_20m2 in He in the regime 7-35eV from a minimum of (2.4±0.8) to a maximum of (3.511.3) xlO-20m2. The assumptions and corrections required to determine these values have been detailed and comparisons have been made with theory and with cross-sections for hydrogen scattering from helium and argon. Possible extensions of both the slow positron moderator and the positronium scattering investigations have been discussed. CONTENTS Page Abstract 2 Figure Captions 5 Table Captions 10 Acknowledgements 11 Chapter 1 Background 13 1.1 Introduction 13 1.2 Basic Properties of the Positron and Positronium 16 1.3 Positron Swarm Experiments 21 1.3.1 Lifetime technique 21 1.3.2 Two photon angular correlation technique 25 1.3.3 Doppler broadening technique 27 1.4 Slow Positron Beam Technique 29 1.4.1 Outline of technique 29 1.4.2 Moderator development 30 1.4.3 Source and moderator considerations 40 1.5 Slow Positron Beam Experiments in Gases 45 1.6 Motivation of the Present Study 56 Chapter 2 Positron Moderation 58 2.1 Introduction 58 2.2 Bulk Processes 60 2.2.1 Slowing down 60 2.2.2 Diffusion 66 2.3 Surface Processes 69 2.3.1 Free positron emission 69 2.3.2 Ps emission, trapping and reflection 76 2.4 Thin Film Moderators 79 2.4.1 Summary of processes 79 2.4.2 Use of thin film moderators 82 2.4.3 Aim of the study 85 Chapter 3 Experimental Study On The Use Of Thin Single Crystal Foils As Primary Transmission Moderators 87 3.1 Introduction 87 3.2 Foil Fabrication 88 3.2.1 W(100) foils 88 3.2.2 Ni(100) foils 89 3.3 Annealing 90 3.3.1 W(100) foils 90 3.3.2 Ni(lOO) foils 92 3.4 Test Beam 94 3.5 Deduction of B+ Flux 98 3.5.1 Source calibration 98 3.5.2 Backscattering coefficient 98 3.5.3 Solid angle effect 99 3.6 Transport Efficiency 100 3.7 Detection Efficiency 101 3.8 Results and Discussion 105 3.8.1 W(100) foils 105 3.8.2 Ni(100) foils 111 3.9 Summary 113 Chapter 4 Positronium Beam Development 120 4.1 Introduction 120 4.2 Positronium Formation In: 121 4.2.1 Solids 121 4.2.2 Gases 125 4.2.3 Gases - excited states 129 4.3 Developments in the Ps Beam Technique 131 4.4 Positronium Scattering 138 4.5 Aim of the study 147 Chapter 5 Experimental Study On The Production Of Positronium And Its Interactions With Atomic Gases 149 5.1 Introduction 149 5.2 Slow positron Production 149 5.3 Time of Flight Method 155 5.3.1 Remoderation and detection 157 5.3.2 Timing electronics 159 5.4 Results and Discussion 161 5.4.1 Preliminaries 161 5.4.2 Lifetime measurements 169 5.4.3 Yield measurements 171 5.4.4 Cross-section measurements 182 5.4.5 Summary 194 Chapter 6 Conclusions 197 References 202 FIGURE CAPTIONS Figure Page 1.1 Feynman diagrams of annihilation into one, two and 17 three photons 1.2 Energy distribution of y-ray emission from o-Ps decay 19 (Ore and Powell, 1949, Chang et ah 1982, 1985) 1.3 Energy level diagrams of hydrogen and positronium 20 1.4 Decay process of “ Na 22 1.5 Schematic diagram of a typical lifetime system 22 and Ar gas lifetime spectrum 1.6 Schematic diagram of ACAR system and spectrum 26 1.7 Two dimensional e' momentum distribution in: 26 (a) single crystal quartz (Manuel, 1981) (b) single crystal Cu (Haghgooie et al, 1978) 1.8 Schematic diagram of system for measuring the Doppler 28 broadening of annihilation radiation 1.9 Comparison of positron yield from a W(110) moderator 29 with the B+ spectrum from a 58Co source (Schultz and Lynn, 1988) 1.10 Schematic diagram of positron beam apparatus using the 34 boron self-moderator (Kauppila et al, 1981) 1.11 Moderator arrangements: (a) backscattering, (b) vane, 42 (c) grid (d) cup - solid Ne, (e) cone and (f) transmission 1.12 Schematic diagram of high brightness e+ beam 44 at Brandeis (Canter et al, 1987) 1.13 Smoothed e^H e total scattering cross-sections 49 (from Charlton, 1985a) 1.14 Values of gt for e+-K and e"-K collisions 49 (Stein et ah 1987) 1.15 Schematic diagram of electrostatic crossed beam apparatus 51 used in differential cross-section measurements (Hyder et ah 1986) 1.16 Schematic diagram of the proposed arrangement for 53 the BNL high intensity e+ beam system incorporating the e+-H experiment (from Lubell, 1987) 1.17 Experimental arrangement of e+-H ionisation cross-section 55 measurement study (Raith et al, 1989) 1.18 Values of e+-H ionisation cross-sections 55 (Raith et al, 1989) 2.1 The interaction of a positron beam of energy <100keV with 59 the near-surface region of a solid (Schultz and Lynn, 1988) 2.2 Positron energy loss, de/dt, versus energy, E in Al 61 (Nieminen and Oliva, 1980) 2.3 Positron implantation profile in Ni using a “ Na source 63 (Hansen et al, 1982) 2.4 Implantation profiles, P’(z) and P(z) of a “Na B+ 65 spectrum in Al, Cu and W (Vehanen and Makinen, 1985) 2.5 Stopping (implantation) profile for 3 and 5keV positrons 65 in semi-infinite Cu (Valkealathi and Nieminen, 1984) 2.6 Potential energy seen by electrons and positrons 70 at a surface ( Mills, 1981a) 2.7 Variation of re-emitted positron energy distribution from 74 Ni(100) and CO with incident energy (Fischer et a/,1986) 2.8 Slow positron yield versus positron workfunction of Cu 74 (Murray and Mills, 1980) 2.9 Normal component of kinetic energy for Ps emitted from 78 A l(lll) (Mills et al, 1983) 2.10 Ps fraction versus temperature for clean and oxygen 78 exposed A l(lll) surfaces (Mills and Pfeiffer, 1985) 2.11 Slow positron remoderation efficiencies versus 81 incident energy in C u(lll) (a) and W(110) (b) (Vehanen and Makinen, 1985) 2.12 (a) Differentiated energy spectrum of forward re-emitted 83 positrons from 2500A W(100) foil at incident energy of 12keV after two cleaning cycles (b) Differentiated energy spectrum of forward re-emitted positrons from 1000A W(100) foil at 5.85keV incident energy (Chen et al, 1985) 3.1 Diagram of "oven" arrangement employed in the annealing 91 procedure 3.2 Schematic diagram of test beam apparatus 93 3.3 Cross section of source and sample arrangement 95 3.4 Exploded view of channeltron holder and associated grids 96 3.5 Block diagram of the timing electronics employed in the 102 deduction of the channeltron efficiency 3.6 Variation of measured and calculated yield with 106 thickness for W foils 3.7 (a) Retarding spectrum of 5000A W(110) foil 109 (b) Differentiated spectrum of 5000A W(110) foil 3.8 Variation of measured and calculated yield with 112 thickness for Ni foils 3.9 (a) Retarding spectrum of 3000A Ni(100) foil 114 (b) Differentiated spectrum of 3000A Ni(100) foil 4.1 Time-of-flight spectra of Ps emission from A l(lll), 123 Cu(100), Ni(100) and Au(100) at 50eV incident e+ energy (Howell et al, 1986) 4.2 Energy spectra of the Ps detected using the 123 beam-foil technique (Mills and Crane, 1985) 4.3 Ps formation cross-sections in (a) He and (b) Ar 126 (Charlton et
Recommended publications
  • Heteroisotopic Molecular Behavior. the Valence-Bond Theory of the Positronium Hydride
    Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1197 Heteroisotopic molecular behavior. The Valence-Bond Theory of the Positronium Hydride Fl´avia Rolim, Tathiana Moreira, and Jos´e R. Mohallem Laborat´orio de Atomos´ e Mol´eculas Especiais, Departamento F´ısica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG, Brazil Received on 10 December, 2003 We develop an adiabatic valence-bond theory of the positronium hydride, HPs, as a heteroisotopic diatomic molecule. Typical heteronuclear ionic behaviour comes out at bonding distances, yielded just by finite nuclear mass effects, but some interesting new features appears for short distances as well. 1 Introduction hydride, HPs (H=H+e− + Ps=e+e−), which can be seen as an extreme homonuclear but heteroisotopic isotopomer of In theory of diatomic molecules, the concepts of homo and H2. The large difference between the proton and positron hetero nuclearity have been developed in a natural way, to masses yields a considerable asymmetry, that stimulates us recognize whether a molecule is made up of equal or dif- to investigate how it affects the electronic distribution, in ferent atoms, respectively. Since atoms differ from each comparison with the common heteronuclear case (which other by their atomic charge Z, which is contained in the we call here the Z − M analogy). As a matter of fact, potential energy part of the Hamiltonian operator, the Born- Saito [8] has already pointed out that the electronic den- Oppenheimer (BO) theory of molecules [1], based on a sity of HPs, obtained from four-body correlated calcula- clamped-nuclei electronic Hamiltonian, is sufficient to ac- tions, shows a visual approximate molecular behavior, but count for these features and to explore all the consequences this kind of approach can give no further structural details, of point group symmetries displayed by the electronic wave- however.
    [Show full text]
  • Positron Annihilation on Atoms and Molecules, Ph.D
    UNIVERSITY OF CALIFORNIA SAN DIEGO Positron Annihilation on Atoms and Molecules A dissertation submitted in partial satisfaction of the requirements for the degree of Do ctor of PhilosophyinPhysics by Ko ji Iwata Committee in charge Cliord M Surko Chair John M Go o dkind William E Mo erner Lu J Sham John D Simon Copyright Ko ji Iwata All rights reserved The dissertation of Ko ji Iwata is approved and it is acceptable in quality and form for publication on microlm Chairman University of California San Diego iii iv Contents Signature Page iii Table of Contents iv List of Figures ix List of Tables xi Acknowledgments xiii Vita Publications and Fields of Study xv Abstract xviii Intro duction Simple illustration of a p ositron interacting with a molecule Background in p ositron physics Prediction and discovery of the p ositron Positron sources Physics involved in the interaction of a p ositron with a molecule Long range p olarization and dip olecharge interactions Shortrange interactions r a Potential from atomic nuclei Pauli exclusion principle Positronium atom formation Annihilation Interaction of p ositrons with solids liquids and gases Solids Positron mo derators Liquids Gases Outline of dissertation Overview of previous atomic and molecular physics studies us ing p ositrons Densegas and lowpressure
    [Show full text]
  • Calculatio~S of Positron and Positronium Scattering
    Symposium on Atomic & Molecular Physics CALCULATIO~SOF POSITRON AND POSITRONIUM SCATTERING H.R.J. Walters and C. Starrett Department of Applied Mathematics and Theoretical Physics, Queen's University, Belfast, BT7 INN, United Kingdom ABSTRACT Progress in the theoretical treatment of positron - atom and positronium - atom scattering within the context of the coupled - pseudostate approximation is described. INTRODUCTION Although I (HRJW) was well acquainted with the works of Aaron and Dick, it was some time before I actually met these giants of Atomic Physics in person. My first encounter with Aaron was in 1976. At that time I had already been impressed by the substantive section that had been devoted to his work in the famous text by Mott and Massey on "The Theory of Atomic Collisions" (ref. 1). Here I had read about "Temkin's Method" for treating the total S-wave electron - hydrogen problem (ref. 2) and his polarized orbital technique (refs. 3, 4). The former was later to be exploited by Poet (ref. 5) to create one of the most important benchmarks for electron scattering by atomic hydrogen, the latter became an ubiquitous approximation which is used to the present day. I had also read his edited compendium on "Autoionization" (ref. 6) and, in particular, his own article in that compendium which had done much to clarify my ideas on the topic. The occasion of the meeting was the local UK ATMOP conference which, in 1976, had come to Belfast. It was a very difficult time, for "The noubles" were then in full swing. Fearful that attendance would be low, Phil Burke had organised a pre - ATMOP workshop that, as it turned out, was attended by a glittering array of international stars, amongst the foremost of whom was Aaron.
    [Show full text]
  • Positronium Hydride and Tetron by Bo Leng a Thesis Submitted in Partial
    Positronium Hydride and Tetron by Bo Leng A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Physics University of Alberta c Bo Leng, 2020 Abstract Variational calculations of the ground state of positronium hydride are performed where the various expectation values including the inter-particle distances and the non-relativistic ground state energy. These calculations have been performed using wave function in Gaussian basis with the basis set of 1000. A good agreement with the corresponding values reported in the literature is found for different parameters. Later, we consider the interactions in a mesonic system, referred here to as ‘tetron’, consisting of two heavy quarks and two lighter antiquarks (which may still be heavy in the scale of QCD), i.e. generally QaQbq¯cq¯d, and study the existence of bound states below the threshold for decay into heavy meson pairs. At a small ratio of the lighter to heavier quark masses an expansion parameter arises for treatment of the binding in such systems. We find that in the limit where all the quarks and antiquarks are so heavy that a Coulomb-like approximation can be applied to the gluon exchange between all of them, such bound states arise when this parameter is below a certain critical value. We find the parametric dependence of the critical mass ratio on the number of colors Nc, and confirm this dependence by numerical calculations. In particular there are no stable tetrons when all constituents have the same mass. We discuss an application of a similar expansion in the large Nc limit to realistic systems where the antiquarks are light and their interactions are nonperturbative.
    [Show full text]
  • Positron-Atom Interactions Studied Using Configuration Interaction Methods
    POSITRON-ATOM INTERACTIONS STUDIED USING CONFIGURATION INTERACTION METHODS Michael William James Bromley A thesis for the degree of Doctor of Philosophy at the Faculty of Science, Information Technology and Education Northern Territory University, Australia Submitted on September 12, 2002. Declaration I hereby declare that the work herein is the result of my own investigations, and all references to ideas and research of others have been specifically acknowledged. I certify that the work embodied in this thesis has not already been accepted in substance for any degree, and is not being currently submitted for any other degree. Abstract The non-relativistic configuration interaction (CI) method is applied to the study of positron interactions with either one or two valence electron atoms possessing a positron-atom bound state. Although the binding energy and other atomic properties are slowly convergent with respect to the angular momenta of the single particle orbitals used to construct the CI wavefunctions, the calculations are sufficiently large to give usefully accurate descriptions of the positronic atom structures. Calculations of the accurately known positron-atom bound states; positronic cop- per (e+Cu), positronic lithium (e+Li), and positronium hydride (PsH) systems were undertaken to develop and refine the numerical procedures. CI calculations confirmed the stability of three other systems; positronic beryllium (e+Be), positronic magnesium (e+Mg), and positronic zinc (e+Zn). The e+Mg calculations independently resolves the disagreement between the University of New South Wales group and a previous computational approach of the Northern Territory University group. Further CI calcu- lations demonstrated the stability of four systems; positronic calcium (e+Ca), copper positride (CuPs), positronic strontium (e+Sr) and positronic cadmium (e+Cd).
    [Show full text]
  • Spontaneous Rearrangement in Anti-Hydride Molecules
    A study of matter-antimatter compounds: spontaneous rearrangement in anti-hydride molecules 著者 Yamashita Takuma 学位授与機関 Tohoku University 学位授与番号 11301甲第18453号 URL http://hdl.handle.net/10097/00125513 博士論文 A study of matter-antimatter compounds: spontaneous rearrangement in anti-hydride molecules (物質・反物質化合物の研究:反水素化分子における自発転位) 山下琢磨 平成30年 Thesis A study of matter-antimatter compounds: spontaneous rearrangement in anti-hydride molecules Takuma Yamashita Department of Chemistry, Tohoku University 2018 1 Contents Chapter 1 Introduction Chapter 2 Theory Chapter 3 Positronic atoms Chapter 4 Hydrogen anti-hydride molecule Chapter 5 Positronium anti-hydride molecule Chapter 6 Summary and Outlook Appendix A Supplemental tables for positronic atoms Appendix B Spin-orbit interaction in positronic alkali atom Appendix C Probability density function for positronium anti-hydride Appendix D Non-adiabatic 4-body scattering calculation Appendix E Computational methods for generalized eigenvalue problem References 2 Acknowledgments The author expresses sincere thanks to Dr. Yasushi Kino for his supervising and kind suggestions throughout the thesis. The author is grateful to Dr. Hirohiko Kono, Dr. Tsutomu Sekine, Dr. Fumi Nagatsugi and Dr. Yutaka Shibata for reviewing the draft of this thesis, and to Dr. Toshitaka Oka for his valuable advice. The author is deeply thankful to Dr. Piotr Froelich (Uppsala University, Sweden) for his continuous encouragement throughout the thesis, kind hospitality in Sweden, and energetic discussion on the projects. The author expresses heartfelt thanks to Dr. Konrad Piszczatowski (Warsaw University, Poland) and Dr. Henrik Stegeby (Uppsala University, Sweden) for starting up the studies of 4-body cal- culation and scattering calculations. Without their helps, the present thesis could not be completed.
    [Show full text]
  • Ground-State Energy and Relativistic Corrections for Positronium Hydride
    PHYSICAL REVIEW A 84, 012509 (2011) Ground-state energy and relativistic corrections for positronium hydride Sergiy Bubin and Kalm´ an´ Varga Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA (Received 28 February 2011; revised manuscript received 14 June 2011; published 19 July 2011) Variational calculations of the ground state of positronium hydride (HPs) are reported, including various expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is estimated to be of the order of 2×10−10, which is a significant improvement over previous nonrelativistic results. DOI: 10.1103/PhysRevA.84.012509 PACS number(s): 31.15.ac, 31.15.xt, 31.30.J−,36.10.−k I. INTRODUCTION One of the goals of the present study is to fill this gap and improve the results obtained in [13]. The interest in studies of small molecules where one or more The positronium hydride belongs to a special class of nuclei are replaced with a positron was originally motivated Coulomb systems. It lies between the H molecule and the fully by the pioneering works of Hylleraas and Ore [1] and 2 nonadiabatic Ps2 molecule, where both nuclei are replaced Ore [2]. These works predicted the dynamical stability of the + with e . Since the mass of one of the “nuclei” in HPs is the positronium molecule (Ps ) and positronium hydride (HPs). 2 same as that of an electron, its motion cannot be considered Since then there has been a large number of theoretical works slow.
    [Show full text]
  • Redalyc.Heteroisotopic Molecular Behavior. the Valence-Bond Theory
    Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Rolim, Flávia; Moreira, Tathiana; Mohallem, José R. Heteroisotopic molecular behavior. The valence-bond theory of the positronium hydride Brazilian Journal of Physics, vol. 34, núm. 3B, september, 2004, pp. 1197-1203 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46434611 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1197 Heteroisotopic molecular behavior. The Valence-Bond Theory of the Positronium Hydride Fl´avia Rolim, Tathiana Moreira, and Jos´e R. Mohallem Laborat´orio de Atomos´ e Mol´eculas Especiais, Departamento F´ısica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG, Brazil Received on 10 December, 2003 We develop an adiabatic valence-bond theory of the positronium hydride, HPs, as a heteroisotopic diatomic molecule. Typical heteronuclear ionic behaviour comes out at bonding distances, yielded just by finite nuclear mass effects, but some interesting new features appears for short distances as well. 1 Introduction hydride, HPs (H=H+e− + Ps=e+e−), which can be seen as an extreme homonuclear but heteroisotopic isotopomer of In theory of diatomic molecules, the concepts of homo and H2. The large difference between the proton and positron hetero nuclearity have been developed in a natural way, to masses yields a considerable asymmetry, that stimulates us recognize whether a molecule is made up of equal or dif- to investigate how it affects the electronic distribution, in ferent atoms, respectively.
    [Show full text]
  • Many-Body Theory Calculations of Positron Binding to Negative Ions
    © International Science Press,Many-bodyISSN: 2229-3159 Theory Calculations of Positron Binding to Negative Ions RESEARCH ARTICLE MANY-BODY THEORY CALCULATIONS OF POSITRON BINDING TO NEGATIVE IONS J.A. LUDLOW* AND G.F. GRIBAKIN Department of Applied Mathematics and Theoretical Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK Abstract: A many-body theory approach developed by the authors [Phys. Rev. A 70 032720 (2004)] is applied to positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium (Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all important many-body correlation effects in the positron problem. Numerical calculations have been performed for positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and 1.809 ns–1, have been obtained for PsH, PsF, PsCl, PsBr and PsI, respectively. PACS Numbers: 36.10.Dr, 71.60.+z, 78.70.Bj, 82.30.Gg. 1. INTRODUCTION ubiquity of such states is only becoming clear now (Dzuba A many-body theory approach developed by the authors et al. 1995, Ryzhikh and Mitroy 1997, Mitroy et al. 2001, (Gribakin and Ludlow 2004) takes into account all main 2002, Danielson 2009). On the other hand, it has been correlation effects in positron-atom interactions. These known for many decades that positrons bind to negative are: polarization of the atomic system by the positron, ions.
    [Show full text]
  • Many-Body Theory Calculations of Positron Binding to Negative Ions
    Many-body theory calculations of positron binding to negative ions J A Ludlow† and G F Gribakin Department of Applied Mathematics and Theoretical Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK E-mail: [email protected], [email protected] Abstract. A many-body theory approach developed by the authors [Phys. Rev. A 70 032720 (2004)] is applied to positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium (Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all important many-body correlation effects in the positron problem. Numerical calculations have been performed for positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and 1.809 ns−1, have been obtained for PsH, PsF, PsCl, PsBr and PsI, respectively. PACS numbers: 36.10.Dr, 71.60.+z, 78.70.Bj, 82.30.Gg arXiv:1002.3125v1 [physics.atom-ph] 16 Feb 2010 † Present address: Department of Physics, Auburn University, Auburn, AL 36849, USA Positron binding to negative ions 2 1. Introduction A many-body theory approach developed by the authors (Gribakin and Ludlow 2004) takes into account all main correlation effects in positron-atom interactions. These are polarization of the atomic system by the positron, virtual positronium formation and enhancement of the electron-positron contact density due to their Coulomb attraction.
    [Show full text]
  • Positronium – Hydrogen Like and Unlike*
    CROATICA CHEMICA ACTA CCACAA, ISSN 0011-1643, e-ISSN 1334-417X Croat. Chem. Acta 82 (4) (2009) 791–800. CCA-3373 Author’s review Positronium – Hydrogen Like and Unlike* Milan Randić** National Institute of Chemistry, Ljubljana, Slovenia (E-mail: [email protected]) RECEIVED SEPTEMBER 2, 2008; REVISED JANUARY 13, 2009; ACCEPTED MARCH 30, 2009 On the occasion of the 2008 Brijuni Conference on Hydrogen – the most abundant atomic species in the Universe, it seems fitting to draw attention of the participants of this conference, as well as chemists at large, to Positronium – one of the least abundant atom-like species in the Universe, if for no other reasons then because it was theoretically predicted by a Croatian scientist, Stjepan Mohorovičić some 75 years ago, about 100 miles away, in the city of Zagreb, the capitol of the Republic of Croatia. Abstract. A brief review on positronium, Ps, hydrogen-like system built from positron and electron, is out- lined from its beginning in 1935, the first theoretical study on this relatively stable matter-antimatter sys- tem by Stjepan Mohorovičić, to the most recent works on positronim hydride PsH, and positronium mole- cule Ps2, analogue of hydrogen molecule. Mohorovičić calculated spectra of Ps and was even looking for it in the sky searching for its spectrum, but experimental observations of positronium Lyman-α radiation Lyα λ2430 line waited for another 40 years before being successful identified in a laboratory in 1975 by Canter and collaborators. It took another ten years for astronomical observation of the presence of posi- tronium in outer space in 1984 by McClintock, who observed Lyα λ2430 line in spectra of Crab Nebula, 50 years after the attempts of S.
    [Show full text]
  • Positronium Physics Slides.Pdf
    SMI – STEFAN MEYER INSTITUTE Positronium Physics D. J. Murtagh For the AVA School on Precision Studies 24th March 2020 SMI – STEFAN MEYER INSTITUTE Overview •In this lecture, I will introduce the field of Positronium physics from a historical perspective •I will cover what you need to gain an understanding of positronium enabling you to go forward and explore this field for yourself •At the end I will link to reviews which you can use as resources going forward SMI – STEFAN MEYER INSTITUTE Start with the end • Positronium is the end point of the life of most positrons in vacuua, the direct annihilation cross-section is generally considered to be negligible 1 • Observations of gamma rays around positron annihilation peak (511 keV) in From A. Ore and J. L. Powell the interstellar medium find a Physical Review 75 1696 (1949) positronium fraction of ~0.90 2 • For some perspective approximately 10 billion kg of positrons annihilate in the Milky Way every second 90% of which is via Ps formation 3 1. Van Reeth, P. Laricchia, G. and Humberston., J. W Physica Scripta, 71 C9 (2005). 2. T. Siegert, R. Diehl, G. Khachatryan, M. G. H. Krause, F. Guglielmetti, J. Greiner, A. W. Strong and X. Zhang Astronomy and Astrophysics 586 A84 (2016) 3. Prantzos, N., Boehm, C., Bykov, A.M., Diehl, R., Ferrière, K., Guessoum, N., Jean, P., Knoedlseder, J., Marcowith, A., Moskalenko, I.V., Strong, A., Weidenspointner, G., Rev. Mod. Phys. 83, 1001 (2011) SMI – STEFAN MEYER INSTITUTE Prediction • Dirac (1930) and Weyl (1931) predict that a particle with the same mass as the electron but with a positive charge should exist • Anderson (1932a,b 1933)observes said positive electron in a cloud chamber • Blackett and Occhialini (1933) confirm the charge to mass ratio • Mohorovičić (1934) predicted the existence of a bound state of the 1.
    [Show full text]