Positron Annihilation on Atoms and Molecules, Ph.D

Total Page:16

File Type:pdf, Size:1020Kb

Positron Annihilation on Atoms and Molecules, Ph.D UNIVERSITY OF CALIFORNIA SAN DIEGO Positron Annihilation on Atoms and Molecules A dissertation submitted in partial satisfaction of the requirements for the degree of Do ctor of PhilosophyinPhysics by Ko ji Iwata Committee in charge Cliord M Surko Chair John M Go o dkind William E Mo erner Lu J Sham John D Simon Copyright Ko ji Iwata All rights reserved The dissertation of Ko ji Iwata is approved and it is acceptable in quality and form for publication on microlm Chairman University of California San Diego iii iv Contents Signature Page iii Table of Contents iv List of Figures ix List of Tables xi Acknowledgments xiii Vita Publications and Fields of Study xv Abstract xviii Intro duction Simple illustration of a p ositron interacting with a molecule Background in p ositron physics Prediction and discovery of the p ositron Positron sources Physics involved in the interaction of a p ositron with a molecule Long range p olarization and dip olecharge interactions Shortrange interactions r a Potential from atomic nuclei Pauli exclusion principle Positronium atom formation Annihilation Interaction of p ositrons with solids liquids and gases Solids Positron mo derators Liquids Gases Outline of dissertation Overview of previous atomic and molecular physics studies us ing p ositrons Densegas and lowpressure exp eriments Densegas exp eriments Lowpressure exp eriments Annihilation rates v Anomalously high annihilation rates Momentum distribution measurements Ion mass sp ectrum measurements Description of the exp eriments Source and mo derator Beamline Positron trap Gashandling system Gases Liquids and solids Annihilation rate measurements ray sp ectral measurements Exp erimental pro cedure Sp ectral analysis Calibration and detector resp onse Annihilation rates Theoretical considerations Longlived resonances Large cross sections from the resonance collision Results Noble gases Inorganic molecules Alkanes and substituted alkanes Alkenes Oxygencontaining hydro carb ons Aromatics and saturated rings Deuterated hydro carb ons Deuterated alkanes Deuterated b enzenes Partially uorinated hydro carb ons Discussion Empirical scaling of annihilation rates Dep endence of annihilation rates on p ositron temp erature Recent theoretical work Semiempirical approach Large scale calculations for molecules Other issues Noble gas atoms Repro ducibil ity of measurements Delo calized b onds in b enzene vi Determination of p ositron annihilation sites in a molecule Current state of annihilation rate studies Concluding remarks on annihilation rate measurements Annihilation ray sp ectra Introduction Momentum distribution measurements Annihilation ray angular correlation measurements Dopplerbroadened ray sp ectral measurements Results Noble gases Helium Neon argon krypton and xenon Previous measurements from other exp eriments Inorganic molecules Hydrogen Other gases Alkanes Alkane alkene and alkyne Aromatics Fully halogenated carb ons Partially uorinated hydro carb ons Other organic molecules Annihilation on innershell electrons Sp ectral analysis b eyond the Gaussian approximation Discussion Concluding Remarks Positron annihilation with innershell electrons in noble gas atoms Introduction Exp eriment Results Concluding remarks for innershell electron annihilation Positron annihilati on in the interstellar media Introduction Positrons in the interstellar media Interstellar molecules Astrophysical p ositron annihilation simulation Description of the exp eriment Exp erimental results vii Summary of p ositron annihilation in the interstellar media Conclusion Summary of this dissertation Future work Concluding remarks App endices A Ion gauge sensitivity calibration for gases and molecular va p ors BTable of physical parameters of atoms and molecules CTable of annihilation ray sp ectra from atoms and molecules References viii List of Figures Schematic diagram a lowenergy p ositron interacting with a molecule Schematic illustration of p ositronium atom formation Schematic diagram of p ositron trapping in a defect Apparatus for measuring annihilation time sp ectra in highpressure exp eriments Schematic drawing of annihilation time sp ectrum in a highpressure exp eriment Annihilation time sp ectrum for helium gas DACAR sp ectra of noble gases Schematic overview of the exp erimental setup Schematic diagram of the source and coldhead assembly Schematic diagram of a PenningMalmb erg trap Schematic diagram of the p ositron trap electro de structure Gas pressure in the third stage of the p ositron trap during a pump out cycle Schematic diagram of the p ositron trap Aschematic diagram of a gashandling system for test substances that exist in gas form at atmospheric pressure Aschematic diagram of a gashandling system for test substances which are in liquid or solid form at atmospheric pressure Annihilation rate data for b enzened ray sp ectrum of the keV line from a Sr source tal values of Z Z plotted against Z Exp erimen e Theoretical and exp erimental values of Z for noble gases e Values of Z and structures of alkenes with six carb ons e Values of Z and structures of cyclohexane and substituted b ezenes e Ratio of Z for deuterated alkanes to those for protonated alkanes e Values of Z and structures of deuterated b enzenes studied e Empirical scaling of Z for nonp olar molecules containing only e single b ond ix Empirical scaling of Z for oxygencontaining hydro carb ons and e small molecules with a dip ole moment andor double b onds Empirical scaling of Z for alkenes ring hydro carb ons and sub e stituted b enzenes Dep endence of annihilation rates of noble gases on p ositron tem p erature Illustration of the momentum of an annihilating electronp ositron pair and the resulting raymomenta Observed sp ectra from H and Ne Annihilation ray sp ectrum from helium atoms Exp erimentally measured ray sp ectra from noble gases ray sp ectrum from p ositron annihilation on molecular hydrogen ray sp ectra for p ositrons annihilating with CO and CO The Gaussian linewidth for alkane molecules ray sp ectrum from p ositron annihilation on uoro ethane Fraction of p ositrons annihilating on uorine atoms in partially uorinated hydro carb ons rayspectrumofH ray sp ectrum of hexane The ray sp ectrum resulting from p ositrons annihilating on xenon atoms The ray sp ectrum resulting from p ositrons annihilating on kryp tonatoms The ray sp ectrum resulting from p ositrons annihilating on ar gon atoms Positron annihilation ray sp ectrum from the Galactic center Positron annihilation ray sp ectrum from the Galactic center using a Ge detector Molecular structures and Z of p olycyclic aromatic hydro carb ons e ray line for p ositrons annihilating on mixture of hydrogen and naphthalene molecules x List of Tables Parameters of the neon and tungsten mo derators and the p ositron trap Values of Z for noble gases e Measured values of Z for inorganic molecules e Measured values of Z for alkanes and substituted alkanes e Measured values of Z for isomers of p entane e Measured values of Z for alkenes e Measured values of Z for alcohols carb oxylic acids and ketones e Measured values of Z for ring molecules and aromatics e Measured values of Z for other large organic molecules e Measured values of Z for protonated and deuterated alkanes e Measured values of Z for deuterated b enzenes e Measured values of Z for partially uorinated hydro carb ons e The ray linewidths for noble gases The ray linewidths for H The ray linewidths for inorganic molecules The ray linewidths for hydro carb ons The ray linewidths for fully halogenated carb ons The ray linewidths for partially uorinated hydro carb ons The ray linewidths for other organic molecules Values of from ts to various mo dels r The annihilation
Recommended publications
  • BABAR Studies Matter-Antimatter Asymmetry in Τ Lepton Decays
    BABAR studies matter-antimatter asymmetry in τττ lepton decays Humans have wondered about the origin of matter since the dawn of history. Physicists address this age-old question by using particle accelerators to recreate the conditions that existed shortly after the Big Bang. At an accelerator, energy is converted into matter according to Einstein’s famous energy-mass relation, E = mc 2 , which offers an explanation for the origin of matter. However, matter is always created in conjunction with the same amount of antimatter. Therefore, the existence of matter – and no antimatter – in the universe indicates that there must be some difference, or asymmetry, between the properties of matter and antimatter. Since 1999, physicists from the BABAR experiment at SLAC National Accelerator Laboratory have been studying such asymmetries. Their results have solidified our understanding of the underlying micro-world theory known as the Standard Model. Despite its great success in correctly predicting the results of laboratory experiments, the Standard Model is not the ultimate theory. One indication for this is that the matter-antimatter asymmetry allowed by the Standard Model is about a billion times too small to account for the amount of matter seen in the universe. Therefore, a primary quest in particle physics is to search for hard evidence for “new physics”, evidence that will point the way to the more complete theory beyond the Standard Model. As part of this quest, BABAR physicists also search for cracks in the Standard Model. In particular, they study matter-antimatter asymmetries in processes where the Standard Model predicts that asymmetries should be very small or nonexistent.
    [Show full text]
  • The Belle-II Experiment at Superkekb
    Gary S. Varner, Hawai’i The Belle-II Experiment at SuperKEKB Gary S. Varner University of Hawai’i at Manoa Boston (Cambridge), July 26, 2011 Luminosity at the B Factories Gary S. Varner, Hawai’i Fantastic performance much beyond design values! Need O(100x) more data Next generation B-factories Gary S. Varner, Hawai’i SuperKEKB + SuperB 40 times higher luminosity KEKB PEP-II Asymmetric B factories Gary S. Varner, Hawai’i √s=10.58 GeV + - B e e z ~ c Υ(4s) B Υ(4s) B ~ 200m BaBar p(e-)=9 GeV p(e+)=3.1 GeV =0.56 Belle p(e-)=8 GeV p(e+)=3.5 GeV =0.42 Belle II p(e-)=7 GeV p(e+)=4 GeV =0.28 Full Reconstruction Method Gary S. Varner, Hawai’i • Fully reconstruct one of the B’s to – Tag B flavor/charge – Determine B momentum – Exclude decay products of one B from further analysis Decays of interest B BXu l , BK e e+(3.5GeV) (8GeV) BD, Υ(4S) B full reconstruction BD etc. (~0.5%) Offline B meson beam! Powerful tool for B decays with neutrinos “Super” B Factory motivation Gary S. Varner, Hawai’i For details on physics opportunities: See Kay Kinoshita talk 17:20 B factories is SM with CKM right? Thursday, July 28 – Section 5I Super B factories How is the SM wrong? Need much more data (two orders!) because the SM worked so well until now Super B factory e+e- machines running at (or near) Y(4s) will have considerable advantages in several classes of measurements, and will be complementary in many more to LHCb and BESIII Recent update of the physics reach with 50 ab-1 (75 ab-1): Physics at Super B Factory (Belle II authors + guests) hep-ex > arXiv:1002 .5012 SuperB Progress Reports: Physics (SuperB authors + guests) hep-ex > arXiv:1008.1541 TSUKUBA Area (Belle) High Energy Ring (HER) for Electron HER LER How to do it? Interaction Region Low Energy Ring (LER) for Positron Gary S.
    [Show full text]
  • Superb Report Intensity Frontier Workshop 1 Introduction
    SuperB Report Intensity Frontier Workshop 1 Introduction The Standard Model (SM) has been very successful in explaining a wide range of electroweak and strong processes with high precision. In the flavor sector, observation of CP violation in B decays at BABAR and Belle, and the extraordinary consistency between the CKM matrix elements, established the SM as the primary source of CP violation in nature (leading to the 2008 Nobel Prize in physics). However, the remarkable success of the SM in describing all known flavor-physics measurements presents a puzzle to the search for New Physics (NP) at the LHC. New particles below the TeV scale should contribute to low-energy processes through virtual loop diagrams and cause observable effects in the flavor sector. The lack of any such effects suggests that either the NP mass scale is much higher than the TeV scale, or that NP flavor-violating operators are suppressed. In either scenario, flavor physics at the intensity frontier is poised to remain a central element of particle physics research in the coming decades. The INFN-sponsored SuperB project [1–3] in Italy is an asymmetric-energy electron- positron collider in the 10 GeV energy region with an initial design average luminosity of 1036 cm−2s−1, which will deliver up to 75 ab−1 in five years of operation (see Fig. 1 for details) to a new SuperB detector derived from the existing BABAR. A new innovative concept in accelerator design, employing very low-emittance beams and a “crab waist” final focus, makes possible this large increase (100-fold) in instantaneous luminosity over present B Factory colliders with no corresponding increase in power consumption, and similar backgrounds for the detector.
    [Show full text]
  • Discovery at the Large Hadron Collider
    Discovery at the Large Hadron Collider Michel Lefebvre University of Victoria ATLAS Canada Collaboration CAP Congress 27 May 2013 Abstract Discovery at the Large Hadron Collider The recent discovery of a new particle is a historic event in our exploration of the fundamental constituents of matter and the interactions between them. To date, the Standard Model of particle physics is extremely successful and accounts for all measured subatomic phenomena. However the postulated Higgs mechanism, from which fundamental particles acquire mass, remains to be verified experimentally. Research at the energy frontier is being carried out at the Large Hadron Collider (LHC), operating at CERN near Geneva since 2010. From 2010 to 2012, the LHC provided proton-proton collisions at a centre of mass energy of 7 to 8 TeV, allowing the exploration of distance scales smaller than a tenth of an attometer. The products of these collisions were successfully recorded by the ATLAS detector, which will be introduced in this lecture, with emphasis on Canadian contributions. The ATLAS physics programme features Standard Model measurements and a rich array of searches for new physics phenomena. The discovery of a new Higgs-like particle and other important results will be presented. The future increase in energy and intensity at the LHC, and the associated ATLAS plans, will also be discussed. These are exciting times indeed for particle physics! Michel Lefebvre, UVic and ATLAS Canada CAP Congress, 27 May 2013 2 Scattering experiment We see through the scatter of
    [Show full text]
  • Introduction to Flavour Physics
    Introduction to flavour physics Y. Grossman Cornell University, Ithaca, NY 14853, USA Abstract In this set of lectures we cover the very basics of flavour physics. The lec- tures are aimed to be an entry point to the subject of flavour physics. A lot of problems are provided in the hope of making the manuscript a self-study guide. 1 Welcome statement My plan for these lectures is to introduce you to the very basics of flavour physics. After the lectures I hope you will have enough knowledge and, more importantly, enough curiosity, and you will go on and learn more about the subject. These are lecture notes and are not meant to be a review. In the lectures, I try to talk about the basic ideas, hoping to give a clear picture of the physics. Thus many details are omitted, implicit assumptions are made, and no references are given. Yet details are important: after you go over the current lecture notes once or twice, I hope you will feel the need for more. Then it will be the time to turn to the many reviews [1–10] and books [11, 12] on the subject. I try to include many homework problems for the reader to solve, much more than what I gave in the actual lectures. If you would like to learn the material, I think that the problems provided are the way to start. They force you to fully understand the issues and apply your knowledge to new situations. The problems are given at the end of each section.
    [Show full text]
  • Heteroisotopic Molecular Behavior. the Valence-Bond Theory of the Positronium Hydride
    Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1197 Heteroisotopic molecular behavior. The Valence-Bond Theory of the Positronium Hydride Fl´avia Rolim, Tathiana Moreira, and Jos´e R. Mohallem Laborat´orio de Atomos´ e Mol´eculas Especiais, Departamento F´ısica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG, Brazil Received on 10 December, 2003 We develop an adiabatic valence-bond theory of the positronium hydride, HPs, as a heteroisotopic diatomic molecule. Typical heteronuclear ionic behaviour comes out at bonding distances, yielded just by finite nuclear mass effects, but some interesting new features appears for short distances as well. 1 Introduction hydride, HPs (H=H+e− + Ps=e+e−), which can be seen as an extreme homonuclear but heteroisotopic isotopomer of In theory of diatomic molecules, the concepts of homo and H2. The large difference between the proton and positron hetero nuclearity have been developed in a natural way, to masses yields a considerable asymmetry, that stimulates us recognize whether a molecule is made up of equal or dif- to investigate how it affects the electronic distribution, in ferent atoms, respectively. Since atoms differ from each comparison with the common heteronuclear case (which other by their atomic charge Z, which is contained in the we call here the Z − M analogy). As a matter of fact, potential energy part of the Hamiltonian operator, the Born- Saito [8] has already pointed out that the electronic den- Oppenheimer (BO) theory of molecules [1], based on a sity of HPs, obtained from four-body correlated calcula- clamped-nuclei electronic Hamiltonian, is sufficient to ac- tions, shows a visual approximate molecular behavior, but count for these features and to explore all the consequences this kind of approach can give no further structural details, of point group symmetries displayed by the electronic wave- however.
    [Show full text]
  • Italy Cancels €1Bn Superb Collider - Physicsworld.Com 30/11/12 20.01
    Italy cancels €1bn SuperB collider - physicsworld.com 30/11/12 20.01 This site uses cookies. By continuing to use this site you agree to our use of cookies. To find out more, see our Privacy and Cookies policy. Italy cancels €1bn SuperB collider Nov 28, 2012 11 comments Path not taken: the planned route of SuperB Physics World can confirm rumours that the Italian government is to withdraw €250m from the €1bn SuperB particle accelerator, which was set to be built at the University of Tor Vergata on the outskirts of Rome. The decision, which effectively cancels the project, was made yesterday when Fernando Ferroni, president of the National Institute for Nuclear Physics (INFN), met Italian science minister Francesco Profumo to discuss funding for the project. "Given the difficult economic conditions of the country, the government is willing to confirm the contribution of €250m but not [for] the project," says a government statement, which was released today and seen by Physics World. As outlined in the statement, the INFN, which was set to build SuperB, will keep the €250m but will now spend the money on other projects. The INFN has already appointed two committees to look at what options it has, which includes converting SuperB into a scaled down "tau-charm factory" (called SuperC) or using the money elsewhere. The committees will report by 20 December, with a decision set for early January. Rumours of the funding cancellation first emerged on the blog A Quantum Diaries Survivor, which is written by the CERN-based researcher Tommaso Dorigo. Mystery of antimatter SuperB was designed to produce beams of electrons and positrons inside a linear accelerator to an energy of 6.7 GeV before injecting them into two rings each more than 1 km in circumference, where they would have then been collided to allow the decay of particles such as B mesons.
    [Show full text]
  • The EN Department
    On behalf of Katy Foraz, Head of the EN Department, Welcome to all of you! The Engineering Department in a Nutshell Katy Foraz Where are we? CERN: founded in 1954: 12 European States “Science for Peace” Today: 23 Member States Employees: ~2 700 staff, 800 fellows Associates: ~12 400 users, 1 300 others Budget (2019) ~ 1 200 MCHF Member States: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Israel, Italy, Netherlands, Norway, Poland, Portugal, Romania, Serbia, Slovak Republic, Spain, Sweden, Switzerland and United Kingdom Associate Members in the Pre-Stage to Membership: Cyprus, Slovenia Associate Member States: Croatia, India, Lithuania, Pakistan, Turkey, Ukraine Applications for Membership or Associate Membership: Brazil, Estonia Observers to Council: Japan, Russia, United States of America; European Union, JINR and UNESCO Welcome to the EN Department 4 Science is getting more and more global Welcome to the EN Department 5 What are we doing? The Missions of CERN . Push forward the frontiers of knowledge e.g. the secrets of the Big Bang … what was the matter like within the first moments of the Universe’s existence? . Develop new technologies for accelerators and detectors Information technology - the Web and the GRID Medicine - diagnosis and therapy . Train the scientists and the engineers of tomorrow . Unite people from different countries and cultures Welcome to the EN Department 7 The next scientific challenge is to understand the very first moments of our Universe after the Big Bang LHC 10-10s Welcome to the EN Department 8 How are we doing what we are doing? The instruments used 1.
    [Show full text]
  • Calculatio~S of Positron and Positronium Scattering
    Symposium on Atomic & Molecular Physics CALCULATIO~SOF POSITRON AND POSITRONIUM SCATTERING H.R.J. Walters and C. Starrett Department of Applied Mathematics and Theoretical Physics, Queen's University, Belfast, BT7 INN, United Kingdom ABSTRACT Progress in the theoretical treatment of positron - atom and positronium - atom scattering within the context of the coupled - pseudostate approximation is described. INTRODUCTION Although I (HRJW) was well acquainted with the works of Aaron and Dick, it was some time before I actually met these giants of Atomic Physics in person. My first encounter with Aaron was in 1976. At that time I had already been impressed by the substantive section that had been devoted to his work in the famous text by Mott and Massey on "The Theory of Atomic Collisions" (ref. 1). Here I had read about "Temkin's Method" for treating the total S-wave electron - hydrogen problem (ref. 2) and his polarized orbital technique (refs. 3, 4). The former was later to be exploited by Poet (ref. 5) to create one of the most important benchmarks for electron scattering by atomic hydrogen, the latter became an ubiquitous approximation which is used to the present day. I had also read his edited compendium on "Autoionization" (ref. 6) and, in particular, his own article in that compendium which had done much to clarify my ideas on the topic. The occasion of the meeting was the local UK ATMOP conference which, in 1976, had come to Belfast. It was a very difficult time, for "The noubles" were then in full swing. Fearful that attendance would be low, Phil Burke had organised a pre - ATMOP workshop that, as it turned out, was attended by a glittering array of international stars, amongst the foremost of whom was Aaron.
    [Show full text]
  • The Dawn of the Post-Naturalness Era Arxiv:1710.07663V1 [Physics.Hist-Ph]
    CERN-TH-2017-205 The Dawn of the Post-Naturalness Era Gian Francesco Giudice CERN, Theoretical Physics Department, Geneva, Switzerland Abstract In an imaginary conversation with Guido Altarelli, I express my views on the status of particle physics beyond the Standard Model and its future prospects. Contribution to the volume \From My Vast Repertoire" { The Legacy of Guido Altarelli. 1 A Master and a Friend Honour a king in his own land; honour a wise man everywhere. | Tibetan proverb [1] Guido Altarelli was an extraordinary theoretical physicist. Not only was Guido one of the heroes of the Standard Model, but he incarnated the very essence of that theory: a perfect synthesis of pure elegance and brilliance. With his unique charisma, he had a great influence on CERN and contributed much in promoting the role of theoretical physics in the life of the laboratory. With the right mixture of vision, authority, and practical common sense, he led the Theory Division from 2000 to 2004. I have always admired Guido for his brilliance, humour, knowledge, leadership, and intellectual integrity. I learned much from his qualities and his example is a precious legacy for me and for all of his colleagues. Guido had a very pragmatic attitude towards scientific theories. He was not attracted arXiv:1710.07663v1 [physics.hist-ph] 18 Oct 2017 by elaborate mathematical constructions, but wanted to understand the essence behind the formalism and get straight to the concept. In physics, I would define him as a conservative revolutionary or as an optimistic skeptical. One episode illustrates the meaning of this definition.
    [Show full text]
  • 13 June 2011 - INFN: the Superb Factory Will Be Built at the University of Rome 'Tor Vergata' 14/06/11 09:59
    13 June 2011 - INFN: The SuperB Factory will be built at the University of Rome 'Tor Vergata' 14/06/11 09:59 Interactions.org - Particle Physics News and Resources A COMMUNICATION RESOURCE FROM THE WORLD'S PARTICLE PHYSICS LABORATORIES Interactions News Wire #25 - 11 Share this page: 13 June 2011 http://www.interactions.org ******************************************* Email this page Source: INFN and University of Rome Tor Vergata Content: Press Release Blink Date Issued: 13 June 2011 Del.icio.us ******************************************* The SuperB Factory will be built at the University of Rome 'Tor Digg Vergata' Furl Google The SuperB Factory, a major international research centre for fundamental and applied physics will be built on the campus of reddit the University of Rome 'Tor Vergata'. The project proposed by the INFN is the first on the list of the 14 flagship projects of the National Research Plan of the Italian Ministry for Education, Universities and Research (MIUR). The announcement was made Simpy last week by Roberto Petronzio, President of the Italian National Institute for Nuclear Physics. 300 physicists from all over the world gathered in Elba island (Italy) for the kick-off meeting of SuperB, which marked a crucial milestone on the road towards Spurl realization of the accelerator. The project involves the construction of a large underground electron-positron collider which will occupy an area of approximately 30 hectares on the University of Rome 'Tor Vergata' campus and be closely linked to the StumbleUpon INFN Frascati National Laboratories, located nearby. The SuperB, which will ultimately cost few hundred million euros, obtained Y! MyWeb funding approval for 250 million euros in the Italian government's CIPE Economic Planning Document.
    [Show full text]
  • Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-Year Measurement of the Isotropic Gamma-Ray Background
    Prepared for submission to JCAP ULB/14-21 Limits on Dark Matter Annihilation Signals from the Fermi LAT 4-year Measurement of the Isotropic Gamma-Ray Background The Fermi LAT Collaboration M. Ackermann1 M. Ajello2 A. Albert3 L. Baldini4 G. Barbiellini5;6 D. Bastieri7;8 K. Bechtol9 R. Bellazzini4 E. Bissaldi10 E. D. Bloom3 R. Bonino11;12 J. Bregeon13 P. Bruel14 R. Buehler1 S. Buson7;8 G. A. Caliandro3;15 R. A. Cameron3 M. Caragiulo16 P. A. Caraveo17 C. Cecchi18;19 E. Charles3 A. Chekhtman20 J. Chiang3 G. Chiaro8 S. Ciprini21;22 R. Claus3 J. Cohen-Tanugi13 J. Conrad23;24;25;26 A. Cuoco24;11;12 S. Cutini21;22 F. D'Ammando27;28 A. de Angelis29 F. de Palma16;30 C. D. Dermer31 S. W. Digel3 P. S. Drell3 A. Drlica-Wagner32 C. Favuzzi33;16 E. C. Ferrara34 A. Franckowiak3;? Y. Fukazawa36 S. Funk3 P. Fusco33;16 F. Gargano16 D. Gasparrini21;22 N. Giglietto33;16 F. Giordano33;16 M. Giroletti27 G. Godfrey3 S. Guiriec34;37 M. Gustafsson38;64? J.W. Hewitt39;40 X. Hou41 T. Kamae3 M. Kuss4 S. Larsson23;24;42 L. Latronico11 F. Longo5;6 F. Loparco33;16 M. N. Lovellette31 P. Lubrano18;19 D. Malyshev3 F. Massaro43 M. Mayer1 M. N. Mazziotta16 P. F. Michelson3 W. Mitthumsiri44 T. Mizuno45 M. E. Monzani3 A. Morselli46 I. V. Moskalenko3 S. Murgia47 M. Negro3;11 R. Nemmen48 E. Nuss13 T. Ohsugi45 M. Orienti27 E. Orlando3 J. F. Ormes49 D. Paneque50;3 J. S. Perkins34 M. Pesce-Rollins4 F. Piron13 G. Pivato4 S. Rain`o33;16 R. Rando7;8 M. Razzano4;51 arXiv:1501.05464v2 [astro-ph.CO] 16 Sep 2015 A.
    [Show full text]