On the Nature of the Positronic Bond

Total Page:16

File Type:pdf, Size:1020Kb

On the Nature of the Positronic Bond On the nature of the positronic bond Mohammad Goli1 and Shant Shahbazian2 1School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5531, Iran, E-mail: [email protected] 2Department of Physics, Shahid Beheshti University, G. C., Evin, Tehran, Iran, 19839, P.O. Box 19395-4716. Tel/Fax: 98-21-22431661, E-mail: [email protected] Abstract Recently it has been proposed that the positron, the anti-particle analog of the electron, is capable of forming an anti-matter bond in a composite system of two hydride anions and a positron [Angew. Chem. Int. Ed. 57, 8859–8864 (2018)]. In order to dig into the nature of this novel bond the newly developed multi-component quantum theory of atoms in molecules (MC-QTAIM) is applied to this positronic system. The topological analysis reveals that this species is composed of two atoms in molecules, each containing a proton and half of the electronic and the positronic populations. Further analysis elucidates that the electron exchange phenomenon is virtually non-existent between the two atoms and no electronic covalent bond is conceivable in between. On the other hand, it is demonstrated that the positron density enclosed in each atom is capable of stabilizing interactions with the electron density of the neighboring atom. This electrostatic interaction suffices to make the whole system bonded against all dissociation channels. Thus, the positron indeed acts like an anti-matter glue between the two atoms. Keywords: Positron, atoms in molecules; bond theory; topological analysis, exotic molecules 1 Introduction The chemistry of exotic species, i.e. molecules containing exotic elementary particles like positron or positively/negatively charged muons, has a venerable history,[1] and in recent years the fields of the muonic,[2,3] and the positronic,[4,5] chemistries became mature subdisciplines of the exotic chemistry. Particularly, understanding positron’s interaction with molecules and the concomitant positron-electron annihilation process are of great interest. Beyond the academic curiosity, the annihilation process is the basis of the Positron Emission Tomography as a powerful medicinal imaging technique.[6] Accordingly, a large body of experimental,[7–10] and theoretical and computational,[11–31] studies have been conducted recently on polyatomic and diatomic,[32–39] positronic species in order to trace the sticking site of the positron. These studies reveal that in general the positronic density is very diffuse and is not centered between bonds but behind the most electronegative atom of the molecule (the cases with two or more atoms with equal electronegativity are more complicated).[20] It is usually perceived that the positron does not participate directly in forming the chemical bonds. Only through the reorganization of electronic structure, which seems to be marginal in general, positron may indirectly affect the bonds between atoms. However, in some very simple positronic species like positronium hydride,[40–43] positronic water,[44,45] and di-positronium,[46–48] there are evidence that the positron is actively participating in bonding interactions. By the way, it is hard to contemplate these species as composed of discernable atoms in molecules, so their classification as molecules is ambivalent and the chemical nature of bonding in these species yet seems to be obscure. 2 With such background in mind, the recently published paper by Charry, Varella and Reyes (hereafter denoted as CVR) claiming the first unambiguous positronic bond is quite striking.[49] Armed with their newly developed ab initio code, LOWDIN,[50,51] which is capable of dealing with multi-component quantum systems, the authors solved Schrödinger’s equation for +−2 species. The potential energy surface was derived eH, 2 with sufficient accuracy in order to claim its stability relative to all possible channels of dissociation. Interestingly, by deriving the positron’s density and comparing it to the + + electronic density of some well-known species, e.g. H 2 and Li2 , the authors provided some evidence that the positron is the main bonding agent acting as a glue between the two hydride ions. Based on these findings, it seems reasonable to symbolize this species − + − as H,, e H . The fact that the positron’s density is maximum between the two hydrides was interpreted by CVR as a manifestation of a one-positron covalent bond. Our aim in this communication is to verify detailed nature of the proposed positronic bond. Results and discussion In order to consider the positronic bond we employ the recently developed multi- component quantum theory of atoms in molecules (MC-QTAIM),[52–59] which is an extended version of the QTAIM proposed originally by Bader and coworkers.[60] The MC-QTAIM is the only available chemical theory specially designed to deal with the bonding analysis of the exotic species. The MC-QTAIM analysis is done taking into the number density and property densities of all types of quantum particles (not just those of electrons’). Using ab initio derived multi-component wavefunction of an exotic species, through a well-defined and unique machinery, which is system-independent and automated, the MC-QTAIM analysis derives the AIM and their properties. These 3 properties may then be used to access the bonding modes of the AIM in the exotic molecule as has been previously done in the case of the positronic,[61–63] and the muonic,[64–68] species. Particularly, the previous MC-QTAIM analysis of the positronic species revealed that the positron is not capable of accumulating enough electrons around itself to form an independent atomic basin.[62] In all the considered species the positron retains in the basin of the most electronegative atom except from the case of cyanide anion,CN − , where the positron’s population was almost evenly distributed in both atomic basins.[62] In present analysis we employ the MC-QTAIM trying to reveal the detailed nature of the AIM structure as well as the bonding mode of . Let us first very briefly discuss the energetics and stability of where − + − CVRH considered,, e H this species at various multi-component ab initio levels. The used computational levels were the MC-HF, the MC-MP2 and the MC-CI, combined with the standard correlation consistent basis sets for both electrons and the positron (hereafter the first basis set in the parenthesis is for electrons and the second one is for the positron).[49,50] At the highest ab initio levels, i.e. MC-CISDTQ/(aug-cc-pVDZ/aug-cc- pVDZ) and MC-CISDTQ/(aug-cc-pVTZ/aug-cc-pVTZ), the computed binding energies (BEs) relative to dissociation to the positronium hydride and the hydride ion, were ~55 and ~66 kJ.mol-1, respectively.[49] We employed the same basis sets and the NEO computer code,[69,70] with some modifications, to compute BEs at the MC-HF level. At fixed 3.2 Å inter-nuclear distance, derived as the equilibrium point at the MC-CISDTQ level,[49] the BEs are ~36 (aug-cc-pVDZ/aug-cc-pVDZ) and ~49 (aug-cc-pVTZ/aug-cc- pVTZ) kJ.mol-1 (for details see Tables S1 in the supporting information). These are not very accurate values compared to those computed at the highest correlated level. But, 4 clearly demonstrate that even at the MC-HF level the system is bound and the computed BEs recover more than 65% (aug-cc-pVDZ/aug-cc-pVDZ) and 75% (aug-cc-pVTZ/aug- cc-pVTZ) of the exact BEs. This observation justifies employing the MC-HF wavefunction for further bonding analysis, as also used by CVR,[49] since the energetic origins of the binding must be present also at this computational level. The whole MC-QTAIM analysis was done using MC-HF/(aug-cc-pVTZ/aug-cc- pVTZ) wavefunction produced during the ab initio calculations. At first, the electronic, the positronic and the Gamma densities were produced.[52] The Gamma density for the positronic systems is simply the sum of the electronic and the positronic densities,[61–63] and is the basic scalar field used for the topological analysis and deducing the AIM boundaries within the context of the MC-QTAIM analysis. Figure 1 depicts these densities and the minus of the Laplacian of the positronic density, which acts like a magnifying glass, revealing the concentration and depletion of the positronic density. In line with the results reported by CVR the positronic density is concentrated in the middle of the two nuclei and depleted around each nucleus. The topological analysis of the Gamma density reveals two (3, -3) critical points (CPs) at the nuclei and a (3, -1) CP at the middle of the two nuclei. This topological structure, depicted in panel (e) of the figure, is the typical of diatomic molecules.[60] The concentration of the positronic density is not enough to shape a local maximum in the Gamma density at the middle of the two nuclei. Thus, the positron is not capable of forming its own atomic basin in this molecule (even adding a number of extra basis functions to the positronic basis set at the midpoint between the nuclei did not alter this pattern). As discussed recently in details,[71–73] not 5 the analysis of the topological structure nor the amounts of various property densities at (3, -1) CPs are safe grounds to decipher the nature of AIM interactions. Figure 1. The relief maps of (a) the positronic density, (b) the Laplacian of the positronic density, (c) the electronic density, and − + − (d) the Gamma density of H,, e H computed at the MC-HF/(aug-cc-pVTZ/aug-cc-pVTZ) level (the qualitative aspects of these plots are independent from the used basis sets). The red and black spheres in panel (d) are (3, -3) and (3, -1) CPs of the Gamma density, respectively, while the white thread is duo of gradient paths connecting (3, -3) CPs to (3, -1) CP.
Recommended publications
  • Heteroisotopic Molecular Behavior. the Valence-Bond Theory of the Positronium Hydride
    Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1197 Heteroisotopic molecular behavior. The Valence-Bond Theory of the Positronium Hydride Fl´avia Rolim, Tathiana Moreira, and Jos´e R. Mohallem Laborat´orio de Atomos´ e Mol´eculas Especiais, Departamento F´ısica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG, Brazil Received on 10 December, 2003 We develop an adiabatic valence-bond theory of the positronium hydride, HPs, as a heteroisotopic diatomic molecule. Typical heteronuclear ionic behaviour comes out at bonding distances, yielded just by finite nuclear mass effects, but some interesting new features appears for short distances as well. 1 Introduction hydride, HPs (H=H+e− + Ps=e+e−), which can be seen as an extreme homonuclear but heteroisotopic isotopomer of In theory of diatomic molecules, the concepts of homo and H2. The large difference between the proton and positron hetero nuclearity have been developed in a natural way, to masses yields a considerable asymmetry, that stimulates us recognize whether a molecule is made up of equal or dif- to investigate how it affects the electronic distribution, in ferent atoms, respectively. Since atoms differ from each comparison with the common heteronuclear case (which other by their atomic charge Z, which is contained in the we call here the Z − M analogy). As a matter of fact, potential energy part of the Hamiltonian operator, the Born- Saito [8] has already pointed out that the electronic den- Oppenheimer (BO) theory of molecules [1], based on a sity of HPs, obtained from four-body correlated calcula- clamped-nuclei electronic Hamiltonian, is sufficient to ac- tions, shows a visual approximate molecular behavior, but count for these features and to explore all the consequences this kind of approach can give no further structural details, of point group symmetries displayed by the electronic wave- however.
    [Show full text]
  • Positron Annihilation on Atoms and Molecules, Ph.D
    UNIVERSITY OF CALIFORNIA SAN DIEGO Positron Annihilation on Atoms and Molecules A dissertation submitted in partial satisfaction of the requirements for the degree of Do ctor of PhilosophyinPhysics by Ko ji Iwata Committee in charge Cliord M Surko Chair John M Go o dkind William E Mo erner Lu J Sham John D Simon Copyright Ko ji Iwata All rights reserved The dissertation of Ko ji Iwata is approved and it is acceptable in quality and form for publication on microlm Chairman University of California San Diego iii iv Contents Signature Page iii Table of Contents iv List of Figures ix List of Tables xi Acknowledgments xiii Vita Publications and Fields of Study xv Abstract xviii Intro duction Simple illustration of a p ositron interacting with a molecule Background in p ositron physics Prediction and discovery of the p ositron Positron sources Physics involved in the interaction of a p ositron with a molecule Long range p olarization and dip olecharge interactions Shortrange interactions r a Potential from atomic nuclei Pauli exclusion principle Positronium atom formation Annihilation Interaction of p ositrons with solids liquids and gases Solids Positron mo derators Liquids Gases Outline of dissertation Overview of previous atomic and molecular physics studies us ing p ositrons Densegas and lowpressure
    [Show full text]
  • Calculatio~S of Positron and Positronium Scattering
    Symposium on Atomic & Molecular Physics CALCULATIO~SOF POSITRON AND POSITRONIUM SCATTERING H.R.J. Walters and C. Starrett Department of Applied Mathematics and Theoretical Physics, Queen's University, Belfast, BT7 INN, United Kingdom ABSTRACT Progress in the theoretical treatment of positron - atom and positronium - atom scattering within the context of the coupled - pseudostate approximation is described. INTRODUCTION Although I (HRJW) was well acquainted with the works of Aaron and Dick, it was some time before I actually met these giants of Atomic Physics in person. My first encounter with Aaron was in 1976. At that time I had already been impressed by the substantive section that had been devoted to his work in the famous text by Mott and Massey on "The Theory of Atomic Collisions" (ref. 1). Here I had read about "Temkin's Method" for treating the total S-wave electron - hydrogen problem (ref. 2) and his polarized orbital technique (refs. 3, 4). The former was later to be exploited by Poet (ref. 5) to create one of the most important benchmarks for electron scattering by atomic hydrogen, the latter became an ubiquitous approximation which is used to the present day. I had also read his edited compendium on "Autoionization" (ref. 6) and, in particular, his own article in that compendium which had done much to clarify my ideas on the topic. The occasion of the meeting was the local UK ATMOP conference which, in 1976, had come to Belfast. It was a very difficult time, for "The noubles" were then in full swing. Fearful that attendance would be low, Phil Burke had organised a pre - ATMOP workshop that, as it turned out, was attended by a glittering array of international stars, amongst the foremost of whom was Aaron.
    [Show full text]
  • Positronium Hydride and Tetron by Bo Leng a Thesis Submitted in Partial
    Positronium Hydride and Tetron by Bo Leng A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Physics University of Alberta c Bo Leng, 2020 Abstract Variational calculations of the ground state of positronium hydride are performed where the various expectation values including the inter-particle distances and the non-relativistic ground state energy. These calculations have been performed using wave function in Gaussian basis with the basis set of 1000. A good agreement with the corresponding values reported in the literature is found for different parameters. Later, we consider the interactions in a mesonic system, referred here to as ‘tetron’, consisting of two heavy quarks and two lighter antiquarks (which may still be heavy in the scale of QCD), i.e. generally QaQbq¯cq¯d, and study the existence of bound states below the threshold for decay into heavy meson pairs. At a small ratio of the lighter to heavier quark masses an expansion parameter arises for treatment of the binding in such systems. We find that in the limit where all the quarks and antiquarks are so heavy that a Coulomb-like approximation can be applied to the gluon exchange between all of them, such bound states arise when this parameter is below a certain critical value. We find the parametric dependence of the critical mass ratio on the number of colors Nc, and confirm this dependence by numerical calculations. In particular there are no stable tetrons when all constituents have the same mass. We discuss an application of a similar expansion in the large Nc limit to realistic systems where the antiquarks are light and their interactions are nonperturbative.
    [Show full text]
  • Positron-Atom Interactions Studied Using Configuration Interaction Methods
    POSITRON-ATOM INTERACTIONS STUDIED USING CONFIGURATION INTERACTION METHODS Michael William James Bromley A thesis for the degree of Doctor of Philosophy at the Faculty of Science, Information Technology and Education Northern Territory University, Australia Submitted on September 12, 2002. Declaration I hereby declare that the work herein is the result of my own investigations, and all references to ideas and research of others have been specifically acknowledged. I certify that the work embodied in this thesis has not already been accepted in substance for any degree, and is not being currently submitted for any other degree. Abstract The non-relativistic configuration interaction (CI) method is applied to the study of positron interactions with either one or two valence electron atoms possessing a positron-atom bound state. Although the binding energy and other atomic properties are slowly convergent with respect to the angular momenta of the single particle orbitals used to construct the CI wavefunctions, the calculations are sufficiently large to give usefully accurate descriptions of the positronic atom structures. Calculations of the accurately known positron-atom bound states; positronic cop- per (e+Cu), positronic lithium (e+Li), and positronium hydride (PsH) systems were undertaken to develop and refine the numerical procedures. CI calculations confirmed the stability of three other systems; positronic beryllium (e+Be), positronic magnesium (e+Mg), and positronic zinc (e+Zn). The e+Mg calculations independently resolves the disagreement between the University of New South Wales group and a previous computational approach of the Northern Territory University group. Further CI calcu- lations demonstrated the stability of four systems; positronic calcium (e+Ca), copper positride (CuPs), positronic strontium (e+Sr) and positronic cadmium (e+Cd).
    [Show full text]
  • Spontaneous Rearrangement in Anti-Hydride Molecules
    A study of matter-antimatter compounds: spontaneous rearrangement in anti-hydride molecules 著者 Yamashita Takuma 学位授与機関 Tohoku University 学位授与番号 11301甲第18453号 URL http://hdl.handle.net/10097/00125513 博士論文 A study of matter-antimatter compounds: spontaneous rearrangement in anti-hydride molecules (物質・反物質化合物の研究:反水素化分子における自発転位) 山下琢磨 平成30年 Thesis A study of matter-antimatter compounds: spontaneous rearrangement in anti-hydride molecules Takuma Yamashita Department of Chemistry, Tohoku University 2018 1 Contents Chapter 1 Introduction Chapter 2 Theory Chapter 3 Positronic atoms Chapter 4 Hydrogen anti-hydride molecule Chapter 5 Positronium anti-hydride molecule Chapter 6 Summary and Outlook Appendix A Supplemental tables for positronic atoms Appendix B Spin-orbit interaction in positronic alkali atom Appendix C Probability density function for positronium anti-hydride Appendix D Non-adiabatic 4-body scattering calculation Appendix E Computational methods for generalized eigenvalue problem References 2 Acknowledgments The author expresses sincere thanks to Dr. Yasushi Kino for his supervising and kind suggestions throughout the thesis. The author is grateful to Dr. Hirohiko Kono, Dr. Tsutomu Sekine, Dr. Fumi Nagatsugi and Dr. Yutaka Shibata for reviewing the draft of this thesis, and to Dr. Toshitaka Oka for his valuable advice. The author is deeply thankful to Dr. Piotr Froelich (Uppsala University, Sweden) for his continuous encouragement throughout the thesis, kind hospitality in Sweden, and energetic discussion on the projects. The author expresses heartfelt thanks to Dr. Konrad Piszczatowski (Warsaw University, Poland) and Dr. Henrik Stegeby (Uppsala University, Sweden) for starting up the studies of 4-body cal- culation and scattering calculations. Without their helps, the present thesis could not be completed.
    [Show full text]
  • Ground-State Energy and Relativistic Corrections for Positronium Hydride
    PHYSICAL REVIEW A 84, 012509 (2011) Ground-state energy and relativistic corrections for positronium hydride Sergiy Bubin and Kalm´ an´ Varga Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA (Received 28 February 2011; revised manuscript received 14 June 2011; published 19 July 2011) Variational calculations of the ground state of positronium hydride (HPs) are reported, including various expectation values, electron-positron annihilation rates, and leading relativistic corrections to the total and dissociation energies. The calculations have been performed using a basis set of 4000 thoroughly optimized explicitly correlated Gaussian basis functions. The relative accuracy of the variational energy upper bound is estimated to be of the order of 2×10−10, which is a significant improvement over previous nonrelativistic results. DOI: 10.1103/PhysRevA.84.012509 PACS number(s): 31.15.ac, 31.15.xt, 31.30.J−,36.10.−k I. INTRODUCTION One of the goals of the present study is to fill this gap and improve the results obtained in [13]. The interest in studies of small molecules where one or more The positronium hydride belongs to a special class of nuclei are replaced with a positron was originally motivated Coulomb systems. It lies between the H molecule and the fully by the pioneering works of Hylleraas and Ore [1] and 2 nonadiabatic Ps2 molecule, where both nuclei are replaced Ore [2]. These works predicted the dynamical stability of the + with e . Since the mass of one of the “nuclei” in HPs is the positronium molecule (Ps ) and positronium hydride (HPs). 2 same as that of an electron, its motion cannot be considered Since then there has been a large number of theoretical works slow.
    [Show full text]
  • Redalyc.Heteroisotopic Molecular Behavior. the Valence-Bond Theory
    Brazilian Journal of Physics ISSN: 0103-9733 [email protected] Sociedade Brasileira de Física Brasil Rolim, Flávia; Moreira, Tathiana; Mohallem, José R. Heteroisotopic molecular behavior. The valence-bond theory of the positronium hydride Brazilian Journal of Physics, vol. 34, núm. 3B, september, 2004, pp. 1197-1203 Sociedade Brasileira de Física Sâo Paulo, Brasil Available in: http://www.redalyc.org/articulo.oa?id=46434611 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Brazilian Journal of Physics, vol. 34, no. 3B, September, 2004 1197 Heteroisotopic molecular behavior. The Valence-Bond Theory of the Positronium Hydride Fl´avia Rolim, Tathiana Moreira, and Jos´e R. Mohallem Laborat´orio de Atomos´ e Mol´eculas Especiais, Departamento F´ısica, ICEx, Universidade Federal de Minas Gerais, PO Box 702, 30123-970, Belo Horizonte, MG, Brazil Received on 10 December, 2003 We develop an adiabatic valence-bond theory of the positronium hydride, HPs, as a heteroisotopic diatomic molecule. Typical heteronuclear ionic behaviour comes out at bonding distances, yielded just by finite nuclear mass effects, but some interesting new features appears for short distances as well. 1 Introduction hydride, HPs (H=H+e− + Ps=e+e−), which can be seen as an extreme homonuclear but heteroisotopic isotopomer of In theory of diatomic molecules, the concepts of homo and H2. The large difference between the proton and positron hetero nuclearity have been developed in a natural way, to masses yields a considerable asymmetry, that stimulates us recognize whether a molecule is made up of equal or dif- to investigate how it affects the electronic distribution, in ferent atoms, respectively.
    [Show full text]
  • Many-Body Theory Calculations of Positron Binding to Negative Ions
    © International Science Press,Many-bodyISSN: 2229-3159 Theory Calculations of Positron Binding to Negative Ions RESEARCH ARTICLE MANY-BODY THEORY CALCULATIONS OF POSITRON BINDING TO NEGATIVE IONS J.A. LUDLOW* AND G.F. GRIBAKIN Department of Applied Mathematics and Theoretical Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK Abstract: A many-body theory approach developed by the authors [Phys. Rev. A 70 032720 (2004)] is applied to positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium (Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all important many-body correlation effects in the positron problem. Numerical calculations have been performed for positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and 1.809 ns–1, have been obtained for PsH, PsF, PsCl, PsBr and PsI, respectively. PACS Numbers: 36.10.Dr, 71.60.+z, 78.70.Bj, 82.30.Gg. 1. INTRODUCTION ubiquity of such states is only becoming clear now (Dzuba A many-body theory approach developed by the authors et al. 1995, Ryzhikh and Mitroy 1997, Mitroy et al. 2001, (Gribakin and Ludlow 2004) takes into account all main 2002, Danielson 2009). On the other hand, it has been correlation effects in positron-atom interactions. These known for many decades that positrons bind to negative are: polarization of the atomic system by the positron, ions.
    [Show full text]
  • Many-Body Theory Calculations of Positron Binding to Negative Ions
    Many-body theory calculations of positron binding to negative ions J A Ludlow† and G F Gribakin Department of Applied Mathematics and Theoretical Physics, Queen’s University Belfast, Belfast BT7 1NN, Northern Ireland, UK E-mail: [email protected], [email protected] Abstract. A many-body theory approach developed by the authors [Phys. Rev. A 70 032720 (2004)] is applied to positron bound states and annihilation rates in atomic systems. Within the formalism, full account of virtual positronium (Ps) formation is made by summing the electron-positron ladder diagram series, thus enabling the theory to include all important many-body correlation effects in the positron problem. Numerical calculations have been performed for positron bound states with the hydrogen and halogen negative ions, also known as Ps hydride and Ps halides. The Ps binding energies of 1.118, 2.718, 2.245, 1.873 and 1.393 eV and annihilation rates of 2.544, 2.482, 1.984, 1.913 and 1.809 ns−1, have been obtained for PsH, PsF, PsCl, PsBr and PsI, respectively. PACS numbers: 36.10.Dr, 71.60.+z, 78.70.Bj, 82.30.Gg arXiv:1002.3125v1 [physics.atom-ph] 16 Feb 2010 † Present address: Department of Physics, Auburn University, Auburn, AL 36849, USA Positron binding to negative ions 2 1. Introduction A many-body theory approach developed by the authors (Gribakin and Ludlow 2004) takes into account all main correlation effects in positron-atom interactions. These are polarization of the atomic system by the positron, virtual positronium formation and enhancement of the electron-positron contact density due to their Coulomb attraction.
    [Show full text]
  • Positronium – Hydrogen Like and Unlike*
    CROATICA CHEMICA ACTA CCACAA, ISSN 0011-1643, e-ISSN 1334-417X Croat. Chem. Acta 82 (4) (2009) 791–800. CCA-3373 Author’s review Positronium – Hydrogen Like and Unlike* Milan Randić** National Institute of Chemistry, Ljubljana, Slovenia (E-mail: [email protected]) RECEIVED SEPTEMBER 2, 2008; REVISED JANUARY 13, 2009; ACCEPTED MARCH 30, 2009 On the occasion of the 2008 Brijuni Conference on Hydrogen – the most abundant atomic species in the Universe, it seems fitting to draw attention of the participants of this conference, as well as chemists at large, to Positronium – one of the least abundant atom-like species in the Universe, if for no other reasons then because it was theoretically predicted by a Croatian scientist, Stjepan Mohorovičić some 75 years ago, about 100 miles away, in the city of Zagreb, the capitol of the Republic of Croatia. Abstract. A brief review on positronium, Ps, hydrogen-like system built from positron and electron, is out- lined from its beginning in 1935, the first theoretical study on this relatively stable matter-antimatter sys- tem by Stjepan Mohorovičić, to the most recent works on positronim hydride PsH, and positronium mole- cule Ps2, analogue of hydrogen molecule. Mohorovičić calculated spectra of Ps and was even looking for it in the sky searching for its spectrum, but experimental observations of positronium Lyman-α radiation Lyα λ2430 line waited for another 40 years before being successful identified in a laboratory in 1975 by Canter and collaborators. It took another ten years for astronomical observation of the presence of posi- tronium in outer space in 1984 by McClintock, who observed Lyα λ2430 line in spectra of Crab Nebula, 50 years after the attempts of S.
    [Show full text]
  • Positronium Physics Slides.Pdf
    SMI – STEFAN MEYER INSTITUTE Positronium Physics D. J. Murtagh For the AVA School on Precision Studies 24th March 2020 SMI – STEFAN MEYER INSTITUTE Overview •In this lecture, I will introduce the field of Positronium physics from a historical perspective •I will cover what you need to gain an understanding of positronium enabling you to go forward and explore this field for yourself •At the end I will link to reviews which you can use as resources going forward SMI – STEFAN MEYER INSTITUTE Start with the end • Positronium is the end point of the life of most positrons in vacuua, the direct annihilation cross-section is generally considered to be negligible 1 • Observations of gamma rays around positron annihilation peak (511 keV) in From A. Ore and J. L. Powell the interstellar medium find a Physical Review 75 1696 (1949) positronium fraction of ~0.90 2 • For some perspective approximately 10 billion kg of positrons annihilate in the Milky Way every second 90% of which is via Ps formation 3 1. Van Reeth, P. Laricchia, G. and Humberston., J. W Physica Scripta, 71 C9 (2005). 2. T. Siegert, R. Diehl, G. Khachatryan, M. G. H. Krause, F. Guglielmetti, J. Greiner, A. W. Strong and X. Zhang Astronomy and Astrophysics 586 A84 (2016) 3. Prantzos, N., Boehm, C., Bykov, A.M., Diehl, R., Ferrière, K., Guessoum, N., Jean, P., Knoedlseder, J., Marcowith, A., Moskalenko, I.V., Strong, A., Weidenspointner, G., Rev. Mod. Phys. 83, 1001 (2011) SMI – STEFAN MEYER INSTITUTE Prediction • Dirac (1930) and Weyl (1931) predict that a particle with the same mass as the electron but with a positive charge should exist • Anderson (1932a,b 1933)observes said positive electron in a cloud chamber • Blackett and Occhialini (1933) confirm the charge to mass ratio • Mohorovičić (1934) predicted the existence of a bound state of the 1.
    [Show full text]