An Identification Guide to the Mosquitoes of Utah

Total Page:16

File Type:pdf, Size:1020Kb

An Identification Guide to the Mosquitoes of Utah UNIVERSITY OF UTAH BIOLOGICAL SERIES Vol. XII June, 1961 No. 3 AN IDENTIFICATION GUIDE TO THE MOSQUITOES OF UTAH BY LEW IS T. NIELSEN and DON M. REES Department of Zoology and Entomology * Published by UNIVERSITY OF UTAH S a lt L a k e C i t y , Utah UNIVERSITY OF UTAH BIOLOGICAL SERIES Editors: W il l ia m H. B e h l e , Chairman; S e v il l e F l o w e r s , M argare S c h e l l , R ic h a r d W . V a n N o r m a n , R o b e r t K . V ic k e r y Volume 12, No. 3, pp. 63, figures 1-57 Submitted by editors — June 8, 1961 Issued June, 1961 Price, $2.00 CONTENTS MAP ......................................................................................................................................... iv INTRODUCTION ................................................................................................................. v Acknowledgments ......................................................................................................... v TAXONOMIC TREATMENT ........................................................................................... 1 Table I— List of Utah Mosquitoes, Their Systematic Position and Relative Abundance .................................................................................... 2 Keys to the genera of Utah mosquitoes.................................................................... 4 Adult females ......................................................................................................... 4 Fourth instar larvae............................................................................................. 4 Keys to the Anopheles species.................................................................................... 9 Anopheles ............................................................................................................... 9 earlei................................................................................................. 9 franciscans ........................................................................................ 11 freeborni............................................................................................ 11 Keys to mountain Aedes species................................................................................ 12 Keys to valley and plains Aedes species.................................................................... 15 Aedes atropalpus................................................................................................... 20 campestris.................................................................................................. 20 cataphylla ................................................................................................... 21 cinereus ....................................................................................................... 21 communis ................................................................................................... 22 dorsalis......................................................................................................... 23 excrucians ................................................................................................... 23 fitchii ............................................._........................................................... 24 flavescens ................................................................................................... 25 hexodontus ................................................................................................ 25 impiger......................................................................................................... 26 implicatus ...............................................- ................................................. 27 increpitus..................................................................................................... 27 intrudens ..................................................................................................... 28 melanimon.................................................................................................. 28 nigromaculis ............................................................................................... 29 niphadopsis ............................................................................................... 30 pullatus ....................................................................................................... 30 schizopinax ................................................................................................. 31 spencerii...............................................- ..................................................... 32 sticticus ...................................................................................................... 32 varipalpus ................................................................................................... 33 vexans........................................................................................................... 33 Mansonia perturbans .......................................................................................... 34 Psorophora signipennis ..................................................................................... 34 Keys to the Culex species............................................................................................. 44 Culex apicalis.... ................................................................................................... 46 erythrothorax...............- ............................................................................ 46 pipiens ...........................- ............................................................................ 46 quinque fasciatus....................................................................................... 47 restuans ...................................................- ................................................. 47 salinarius............................................. - ..................................................... 48 tarsalis ...........................- ............................................................................ 48 territans....................................................................................................... 49 Keys to the Culiseta species ....................................................................................... 54 Culiseta impatiens ........................................- ..................................................... 55 incidens .............................- .................................................................... 55 inomata ................................................................................................... 56 minnesotae .........................................- ................................................. 56 LECTEI) REFERENCES ............................................................................................. 57 iii I MONTPEJ,lEK'« I <PARIS*( B. L. HOT SPRINGS | ST CHARLES • p r e s t o n ) FISH H A V E N ^ m ! SNOWV1LLE* CLARKSTON • ) t.AKOTA.^J-.IJ > ' V - . CARDEN CITY )-*CACHe J • / iueai/bEACM»^/ ) f c J I V *LAKETOWN * . ? / f r COLL1NSTON M t KELTON• T R E M o f t o N V AU ^ L^AK RA>!DOLP" • UTAH ' PROMONTORY WELLSVILLE • • PROVIDENCE E L -y ’D '.E - R coW f iC A C H E ;/ R I C.H . \ 's 'l f B E A R RW ER / £ Y. 4? - (v v •BRIGI1AM . - I f • EVANSTON OGDEN#**: y * WASATCH CASTLE ROCK EMERY A ECHO I------- >UNTIVUJK 3& C WjSff cqalvilleX S U WwANSHIP 7)1 \ 1 ! '••\N-i4ROCKPORT SALT LAKE CITY *-u , ^ '.TIMPIE*-V: . '•CARFIELD *4.. i GRANTSV1LLE* t S A LS'T \ , V ■' 5 CARFJELp BEACH V MURRAY* >• V / V . ’ tl-V \. L A K v E v f * v - 1^ ' ‘ r,JO SEPA* ?' <? *T < -F.‘ MlDVALE«Pyr-'^N*CHARLESTON >BlNGHAM>r I J \ (WASATCH ORRS* SALT SPRINGS isf | • LEHI ^ v VERNAL#' \ |r AMERICAN FORK fit s * PLEASANT CROVE t GOLD HILL sv \ . ( r <X*fT' SPRINCVILLE \ /"-N . • SPANISH FORK _ * n s n SPRINGS TUCKER• ’ CALLAO TROUT CREF.K I * NEPH1 • PRICE • MOUNDS • EPHRAIIk \ MANT!« i- y: , ^ PETE >< c i STERLING* $ * / - ( •GUNNISOK*/ SALINA • FILLMORE 3KEEN RIVER :y« S' e v i^-v^ * S'J m RICHFIELD " ' ' •GLENVVOOD !, f UL • LOA HANKSVILLE ^^BEAVEK I a t E TORREY '^F^UTA- CAINEVILLE1 V ___> ..-*2?' ^JUNCTION • NOTOM' • PAROWAN Color1 CEDAR CITY* 'ZIO N PARK I INTRODUCTION The first detailed report on the mosquito fauna of Utah was published by pees (1943). In this bulletin Rees reported the occurrence in the state of 31 s p e c ie s , representing 4 genera, and discussed their biology, distribution, life history and importance. Subsequent publications by Rees (1944), Rees and Nielsen (1951, 1955), Nielsen and Rees (1959) and Richards et al. (1956) have added to the knowl- gdge of the mosquito fauna of this state. A total of 45 species has been reported in the literature as occurring in Utah. Of this number five are records which the authors consider invalid or of uncertain status. These are discussed by Nielsen and Rees (1959). At present the known Utah mosquito fauna consists of 40 species, represent­ ing 6 genera. A list of the Utah species with their relative abundance is presented in Table I. The primary purpose of the present work is to provide an up-to-date iden­ tification guide to the mosquitoes of Utah. The emphasis in preparing this guide has been taxonomic and every effort has been made to utilize the most u s e fu l characters known to the authors. A selected list of references contain­ ing information of value to anyone interested in the identification of Utah mosquito species is included in the bibliography.
Recommended publications
  • Mosquito Species Identification Using Convolutional Neural Networks With
    www.nature.com/scientificreports OPEN Mosquito species identifcation using convolutional neural networks with a multitiered ensemble model for novel species detection Adam Goodwin1,2*, Sanket Padmanabhan1,2, Sanchit Hira2,3, Margaret Glancey1,2, Monet Slinowsky2, Rakhil Immidisetti2,3, Laura Scavo2, Jewell Brey2, Bala Murali Manoghar Sai Sudhakar1, Tristan Ford1,2, Collyn Heier2, Yvonne‑Marie Linton4,5,6, David B. Pecor4,5,6, Laura Caicedo‑Quiroga4,5,6 & Soumyadipta Acharya2* With over 3500 mosquito species described, accurate species identifcation of the few implicated in disease transmission is critical to mosquito borne disease mitigation. Yet this task is hindered by limited global taxonomic expertise and specimen damage consistent across common capture methods. Convolutional neural networks (CNNs) are promising with limited sets of species, but image database requirements restrict practical implementation. Using an image database of 2696 specimens from 67 mosquito species, we address the practical open‑set problem with a detection algorithm for novel species. Closed‑set classifcation of 16 known species achieved 97.04 ± 0.87% accuracy independently, and 89.07 ± 5.58% when cascaded with novelty detection. Closed‑set classifcation of 39 species produces a macro F1‑score of 86.07 ± 1.81%. This demonstrates an accurate, scalable, and practical computer vision solution to identify wild‑caught mosquitoes for implementation in biosurveillance and targeted vector control programs, without the need for extensive image database development for each new target region. Mosquitoes are one of the deadliest animals in the world, infecting between 250–500 million people every year with a wide range of fatal or debilitating diseases, including malaria, dengue, chikungunya, Zika and West Nile Virus1.
    [Show full text]
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Operations and Disease Surveillance
    VECTOR CONTROL DISTRICT COUNTY OF SANTA CLARA MONTHLY REPORT MAY 2020 SAVE WATER. NOT MOSQUITOES. DON’T CREATE MOSQUITO HABITAT BY ACCIDENT. Over watering lawns and plants is a large contributor to mosquito breeding. Help fight the bite by: • Fixing leaky faucets and broken sprinklers. • Only apply as much waster as your plants and soil need. Visit SCCVector.org for more information. IN THIS ISSUE MANAGER'S MESSAGE 2 SERVICES AVAILABLE 3 OPERATIONS DATA 4 - 6 WEST NILE 7 - 8 SURVEILLANCE PUBLIC SURVICE 9 REQUESTS VECTOR CONTROL DISTRICT COUNTY OF SANTA CLARA CONSUMER & ENVIRONMENTAL PROTECTION AGENCY PAGE 2 | OPERATIONS AND SURVEILLANCE REPORT MESSAGE FROM THE MANAGER Warm weather is here and that means vectors such as ticks are more active. May was Lyme Disease Awareness Month, and the County of Santa Clara Vector Control District celebrated by participating and advertising the Centers for Disease Control and Prevention’s Lyme Disease Awareness Month Lunch and Learn Series. The weekly series offered interactive presentations on tick surveillance, tick collection, tick bite prevention, and other activities. The District reminds the public to practice preventative measures to avoid coming into contact with ticks. Use insect repellent approved by the Environmental Protection Agency, avoid areas with high grass, and check gear, pets, and children for ticks during and after being in tick habitat. Warm months also mean other vectors such as mosquitoes are more active as well. The District is hard at work monitoring for diseases, such as West Nile virus and Nayer Zahiri eliminating mosquito breeding in areas like marshes, neglected pools, curbs, catch basins, and ponds.
    [Show full text]
  • Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden
    Oak Woodland Litter Spiders James Steffen Chicago Botanic Garden George Retseck Objectives • Learn about Spiders as Animals • Learn to recognize common spiders to family • Learn about spider ecology • Learn to Collect and Preserve Spiders Kingdom - Animalia Phylum - Arthropoda Subphyla - Mandibulata Chelicerata Class - Arachnida Orders - Acari Opiliones Pseudoscorpiones Araneae Spiders Arachnids of Illinois • Order Acari: Mites and Ticks • Order Opiliones: Harvestmen • Order Pseudoscorpiones: Pseudoscorpions • Order Araneae: Spiders! Acari - Soil Mites Characteriscs of Spiders • Usually four pairs of simple eyes although some species may have less • Six pair of appendages: one pair of fangs (instead of mandibles), one pair of pedipalps, and four pair of walking legs • Spinnerets at the end of the abdomen, which are used for spinning silk threads for a variety of purposes, such as the construction of webs, snares, and retreats in which to live or to wrap prey • 1 pair of sensory palps (often much larger in males) between the first pair of legs and the chelicerae used for sperm transfer, prey manipulation, and detection of smells and vibrations • 1 to 2 pairs of book-lungs on the underside of abdomen • Primitively, 2 body regions: Cephalothorax, Abdomen Spider Life Cycle • Eggs in batches (egg sacs) • Hatch inside the egg sac • molt to spiderlings which leave from the egg sac • grows during several more molts (instars) • at final molt, becomes adult – Some long-lived mygalomorphs (tarantulas) molt after adulthood Phenology • Most temperate
    [Show full text]
  • Bexar County Karst Invertebrates Draft Recovery Plan
    Bexar County Karst Invertebrates Draft Recovery Plan March 2008 Bexar County Karst Invertebrates Draft Recovery Plan BEXAR COUNTY KARST INVERTEBRATES DRAFT RECOVERY PLAN Southwest Region U.S. Fish and Wildlife Service Albuquerque, New Mexico March 2008 Approved: ___DRAFT_______________________________________ Regional Director, Southwest Region Date U.S. Fish and Wildlife Service Concur: __DRAFT____________________________________________ Executive Director Date Texas Parks and Wildlife Department ii Bexar County Karst Invertebrates Draft Recovery Plan DISCLAIMER Recovery plans delineate reasonable actions that the best available science indicates are necessary to recover or protect listed species. Plans are published by the U.S. Fish and Wildlife Service (Service), but are sometimes prepared with the assistance of recovery teams, contractors, state agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans are guidance and planning documents only. Identification of an action to be implemented by any private or public party does not create a legal obligation beyond existing legal requirements. Nothing in this plan should be construed as a commitment or requirement that any Federal agency obligate or pay funds in contravention of the Anti-Deficiency Act (U.S.C. 1341) or any other law or regulation. Recovery plans do not necessarily represent the views or the official positions or approval of any individuals or agencies involved in the plan formulation, other than the Service. They represent the official position of the Service only after the plan has been signed by the Regional Director as approved.
    [Show full text]
  • Arachnida, Araneae) Inventory of Hankoniemi, Finland
    Biodiversity Data Journal 5: e21010 doi: 10.3897/BDJ.5.e21010 Data Paper Standardized spider (Arachnida, Araneae) inventory of Hankoniemi, Finland Pedro Cardoso‡,§, Lea Heikkinen |, Joel Jalkanen¶, Minna Kohonen|, Matti Leponiemi|, Laura Mattila ¶, Joni Ollonen|, Jukka-Pekka Ranki|, Anni Virolainen |, Xuan Zhou|, Timo Pajunen ‡ ‡ Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland § IUCN SSC Spider & Scorpion Specialist Group, Helsinki, Finland | Department of Biosciences, University of Helsinki, Helsinki, Finland ¶ Department of Environmental Sciences, University of Helsinki, Helsinki, Finland Corresponding author: Pedro Cardoso (pedro.cardoso@helsinki.fi) Academic editor: Jeremy Miller Received: 15 Sep 2017 | Accepted: 14 Dec 2017 | Published: 18 Dec 2017 Citation: Cardoso P, Heikkinen L, Jalkanen J, Kohonen M, Leponiemi M, Mattila L, Ollonen J, Ranki J, Virolainen A, Zhou X, Pajunen T (2017) Standardized spider (Arachnida, Araneae) inventory of Hankoniemi, Finland. Biodiversity Data Journal 5: e21010. https://doi.org/10.3897/BDJ.5.e21010 Abstract Background During a field course on spider taxonomy and ecology at the University of Helsinki, the authors had the opportunity to sample four plots with a dual objective of both teaching on field methods, spider identification and behaviour and uncovering the spider diversity patterns found in the southern coastal forests of Hankoniemi, Finland. As an ultimate goal, this field course intended to contribute to a global project that intends to uncover spider diversity patterns worldwide. With that purpose, a set of standardised methods and procedures was followed that allow the comparability of obtained data with numerous other projects being conducted across all continents. New information A total of 104 species and 1997 adults was collected.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • A Mosquito Psorophora Ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V
    EENY-540 A Mosquito Psorophora ciliata (Fabricius) (Insecta: Diptera: Culicidae)1 Ephraim V. Ragasa and Phillip E. Kaufman2 Introduction For additional information on mosquitoes, see http://edis. ifas.ufl.edu/IN652. Psorophora ciliata (Fabricius) is a large mosquito (Cutwa and O’Meara 2005) that has developed an outsized reputa- tion because of its relatively intimidating heft and persistent Synonymy biting behavior (Gladney and Turner 1969), including Psorophora ciliata (Fabricius 1794) anecdotal historical accounts of its legendary aggressiveness Culex ciliata Fabricius (1794) (Wallis and Whitman 1971) and ‘frightening appearance’ Culex conterrens Walker (1856) (King et al. 1960). The ‘gallinipper’ or ‘shaggy-legged Culex molestus Weidemann (1820) gallinipper’ was used as a common name for Psorophora Culex rubidus Robineau-Desvoidy (1827) ciliata in various published reports (Ross 1947; King et al. Psorophora boscii Robineau-Desvoidy (1827) 1960; Breeland et al. 1961; Goddard et al. 2009). The term Psorophora ctites Dyar (1918) was mentioned much earlier by Flanery (1897) describing (From ITIS 2011) the mosquito as ‘the little zebra-legged thing—the shyest, slyest, meanest, and most venomous of them all’ [sic] but Distribution did not specify what species it was. The word gallinipper Psorophora ciliata usually is associated with other flood- originated as a vernacular term in the southeastern region water mosquitoes, including many species from the Aedes of the United States referring to ‘a large mosquito or other genera (Breeland et al. 1961), and has a wide distribution insect that has a painful bite or sting’ and has appeared in the New World. Floodwater mosquitoes often lay in folk tales, traditional minstrel songs, and a blues their eggs in low-lying areas with damp soil and grassy song referencing a large mosquito with a ‘fearsome bite’ overgrowth.
    [Show full text]
  • Scientific Note
    Journal of the American Mosquito Control Association, 18(4):359-363' 2OOz Copyright @ 2002 by the American Mosquito Control Association' Inc' SCIENTIFIC NOTE COLONIZATION OF ANOPHELES MACULAZUS FROM CENTRAL JAVA, INDONESIA' MICHAEL J. BANGS,' TOTO SOELARTO,3 BARODJI,3 BIMO P WICAKSANA'AND DAMAR TRI BOEWONO3 ABSTRACT, The routine colonization of Anopheles maculatus, a reputed malaria vector from Central Java, is described. The strain is free mating and long lived in the laboratory. This species will readily bloodfeed on small rodents and artificial membrane systems. Either natural or controlled temperatures, humidity, and lighting provide acceptable conditions for continuous rearing. A simple larval diet incorporating a l0:4 powdered mixture of a.i"a beef and rice hulls proved acceptable. Using a variety of simple tools and procedures, this colony strain appears readily adaptable to rearing under most laboratory conditions. This appears to be the first report of continuous colonization using a free-mating sffain of An. maculatus. Using this simple, relatively inexpensive method of mass colonization adds to the short list of acceptable laboratory populations used in the routine production of human-infecting plasmodia. KEY WORDS Anopheles maculatus, Central Java, colonization, larval diet, malaria vector, Indonesia Anop he Ie s (Ce ll ia) maculat us Theobald belongs nificantly divergent in phylogenetic terms from oth- to the Theobaldi group of the Neocellia series, er members of the complex and may represent one which also includes Anopheles karwari (James) and or more separate species awaiting formal descrip- Anopheles theobaldi Giles (Subbarao 1998). The tion (Rongnoparut, personal communication). For An. maculatus species complex is considered an purposes of this article, the Central Java strain will "spe- important malaria vector assemblage over certain be referred to as An.
    [Show full text]
  • Arachnida: Araneae) from the Middle Eocene Messel Maar, Germany
    Palaeoentomology 002 (6): 596–601 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ Short PALAEOENTOMOLOGY Copyright © 2019 Magnolia Press Communication ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.2.6.10 http://zoobank.org/urn:lsid:zoobank.org:pub:E7F92F14-A680-4D30-8CF5-2B27C5AED0AB A new spider (Arachnida: Araneae) from the Middle Eocene Messel Maar, Germany PAUL A. SELDEN1, 2, * & torsten wappler3 1Department of Geology, University of Kansas, 1475 Jayhawk Boulevard, Lawrence, Kansas 66045, USA. 2Natural History Museum, Cromwell Road, London SW7 5BD, UK. 3Hessisches Landesmuseum Darmstadt, Friedensplatz 1, 64283 Darmstadt, Germany. *Corresponding author. E-mail: [email protected] The Fossil-Lagerstätte of Grube Messel, Germany, has Thomisidae and Salticidae (Schawaller & Ono, 1979; produced some of the most spectacular fossils of the Wunderlich, 1986). The Pliocene lake of Willershausen, Paleogene (Schaal & Ziegler, 1992; Gruber & Micklich, produced by solution of evaporites and subsequent collapse, 2007; Selden & Nudds, 2012; Schaal et al., 2018). However, has produced some remarkably preserved arthropod fossils few arachnids have been discovered or described from this (Briggs et al., 1998), including numerous spider families: World Heritage Site. An araneid spider was reported by Dysderidae, Lycosidae, Thomisidae and Salticidae (Straus, Wunderlich (1986). Wedmann (2018) reported that 160 1967; Schawaller, 1982). All of these localities are much spider specimens were known from Messel although, sadly, younger than Messel. few are well preserved. She figured the araneid mentioned by Wunderlich (1986) and a nicely preserved hersiliid (Wedmann, 2018: figs 7.8–7.9, respectively). Wedmann Material and methods (2018) mentioned six opilionids yet to be described, and figured one (Wedmann, 2018: fig.
    [Show full text]
  • Importance of Mosquitoes
    IMPORTANCE OF MOSQUITOES Portions of this chapter were obtained from the University of Florida and the American Mosquito Control Association Public Health Pest Control website at http://vector.ifas.ufl.edu. Introduction to Pests and Public Health: Arthropods are the most successful group of animals on Earth. They thrive in every habitat and in all regions of the world. A small number of species from this phylum have a great impact on humans, affecting us not only by damaging agriculture and horticultural crops but also through the diseases they can transmit to humans and our domestic animals. Insects can transmit disease (vectors), cause wounds, inject venom, or create nuisance, and have serious social and economic consequences. Arthropods can be indirect (mechanical carriers) or direct (biological carriers) transmitters of disease. As indirect agents they serve as simple mechanical carriers of various bacteria and fungi which may cause disease. As direct or biological agents they serve as vectors for disease­causing agents that require the insect as part of the life cycle. In considering transmission of disease­ causing organisms, it is important to understand the relationships among the vector (the disease­ transmitting organism, i.e. an insect), the disease pathogen (for example, a virus) and the host (humans or animals). The pathogen may or may not undergo different life stages while in the vector. Pathogens that undergo changes in life stages within the vector before being transmitted to a host require the vector—without the vector, the disease life cycle would be broken and the pathogen would die. In either case, the vector is the means for the pathogen to pass from one host to another.
    [Show full text]
  • Table of Contents
    Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner
    [Show full text]