Scientific Note

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Note Journal of the American Mosquito Control Association, 18(4):359-363' 2OOz Copyright @ 2002 by the American Mosquito Control Association' Inc' SCIENTIFIC NOTE COLONIZATION OF ANOPHELES MACULAZUS FROM CENTRAL JAVA, INDONESIA' MICHAEL J. BANGS,' TOTO SOELARTO,3 BARODJI,3 BIMO P WICAKSANA'AND DAMAR TRI BOEWONO3 ABSTRACT, The routine colonization of Anopheles maculatus, a reputed malaria vector from Central Java, is described. The strain is free mating and long lived in the laboratory. This species will readily bloodfeed on small rodents and artificial membrane systems. Either natural or controlled temperatures, humidity, and lighting provide acceptable conditions for continuous rearing. A simple larval diet incorporating a l0:4 powdered mixture of a.i"a beef and rice hulls proved acceptable. Using a variety of simple tools and procedures, this colony strain appears readily adaptable to rearing under most laboratory conditions. This appears to be the first report of continuous colonization using a free-mating sffain of An. maculatus. Using this simple, relatively inexpensive method of mass colonization adds to the short list of acceptable laboratory populations used in the routine production of human-infecting plasmodia. KEY WORDS Anopheles maculatus, Central Java, colonization, larval diet, malaria vector, Indonesia Anop he Ie s (Ce ll ia) maculat us Theobald belongs nificantly divergent in phylogenetic terms from oth- to the Theobaldi group of the Neocellia series, er members of the complex and may represent one which also includes Anopheles karwari (James) and or more separate species awaiting formal descrip- Anopheles theobaldi Giles (Subbarao 1998). The tion (Rongnoparut, personal communication). For An. maculatus species complex is considered an purposes of this article, the Central Java strain will "spe- important malaria vector assemblage over certain be referred to as An. maculatus [sensu stricto, parts of its wide Oriental distribution, namely cies B"l (Subbarao 1998). southem Thailand, western Indonesia, peninsular In nature, An. maculatus occupies a wide range Malaysia, and the Philippines (Reid 1968). It is of- of shaded to partially sunlit larval habitats, includ- ten reported as an important malaria vector in hilly ing small rock pools and ground depressions. In areas of Central Java Province and southern Su- Central Java, this malaria vector is closely associ- matra (Mardihusodo 1989, Takken and Knols ated with the hill regions' numerous small steams, 1990). In contrast, because of its more zoophilic which serve as a primary breeding habitat. This behavior and normally low human-biting densities, species prefers water that has collected in drying this species is of little or no medical importance on streambeds and seepages or along the margins of other islands of the Indonesian archipelago-Kali- slow-running creeks and small garden irrigation mantan. Sulawesi. and eastward to Timor Island ditches. Generally, clear fresh water with no or lim- (Hoedojo 1989). Eight species have been formally ited amounts of emergent and floating vegetation recognized in tllreAn. maculatus complex based on are prefered oviposition sites. Little else is defini- morphologic and cytogenetic studies of polytene tively known about the bionomics and adult behav- chromosomes (Rattanarithikul and Green 1986, ior of this species in Java. Rattanarithikul and Harbach 1990). Recent DNA The reputed importance of An. maculatus as a evidence indicates the complex may likely contain disseminator of malaria prompted an investigation (Rong- more members awaiting formal description into the selection and colonization of this species status of At?. noparut et a]. 1999). The taxonomic to facilitate scientific studies on insecticide resis- known; however, maculatus in Indonesia is not tance, vector capacity/competence, and life history the Javan populations are sig- there is evidence that by ensuring a reliable and continuous supply of mosquitoes. Previous attempts at continuous colo- An. maculatus appear limited, based on ' The opinions and assertions contained herein are those nization of (Jay- of the authors and are not to be construed as official or only 2 published accounts from Sri Lanka reflecting the views of the U.S. Naval Service or the In- ewickrema 1952) and peninsular Malaysia (Ow donesian Ministry of Health. Send reprint requests to the Yang et al. 1963). Jayewickrema's brief description Publications Office, American Embassy Jakarta, U.S. Na- did not mention mating conditions or egg output val Medical Research Unit No. 2, FPO AP 95620-8132. for this species, while Ow Yang et al. (1963) were 'U.S. Naval Medical Research Unit No. 2, Kompleks able to maintain a colony only by induced artificial P2M/LitBangKes, Jl. Percertakan Negara No. 29, Jakarta, mating procedures. Soon afterward, An. maculatus 10560 Indonesia. I Disease Vector and Reservoir Research Unit was obtained by the Centers for Disease Control (BPVRP), Jl. Hasanudin 123, PO Box 100, Salatiga, Cen- (CDC) and Prevention (Atlanta, GA) from the In- tral Java, 507 l3 lndonesia. stitute for Medical Research (Kuala Lumpur, Ma- 359 JounNar oF THE AMERIcIN Mosquno CoNrnor_ Assocr,qrroN Vol. 18,No.4 laysia) for use in a series of investigations on in- with 4-cm-wide filter paper strips placed along the fectivity and plasmodium transmission of differe n1 inner walls to prevent stranding and drying of eggs. species (Collins and strains et al. 1976, 1980, After hatching, approximately 400 first-stage larvae 1986). The CDC colony still had the distinct dis- were transferred into larger enamelware or plastic advantage of requiring artificial mating for its prop- rearing pans (35 X 24 x. 5 cm) containing approx- agation (Chin et al. 1966). In 1999, a colonv ofAn. imately 2 liters of clean, nonchlorinated water from maculatus form B was established in Thailand, but either well or bottled sources. Finely powdered lar- again, colony maintenance has required artificiat val food was spread evenly onto the water surface (Chareonviriyaphap, mating personal communica- twice daily, beginning with approximately 50 mg tion). The materials and methods described herein divided on day I and increasing by 50 mg incre- for maintaining a continuous breeding stock were mentally to 350 mg by day 7 and beyond as needed. developed using mostly local, inexpensive products Larval food was decreased as late fourth instars and and standard handling procedures. The only signif- pupae developed. In general, daily food require- icant items purchased from outside of Indonesia ments can vary by rearing pan and careful obser- were the collapsible aluminum adult cages (Bio- vation was necessary to adjust amounts to avoid Quip, Gardena, CA, and American Biological Sup- over- or underfeeding. The amount of food was ad- ply Co., Gainesville, FL). General collection, rear- justed to the developmental stage and numbers pre- ing, and handling methods for anopheline sent. Several different food combinations for larvae mosquitoes were based on extractions from stan- were tried (Barodji et al. 1985). A mixture (10:4) dard insectary methodology and procedures (Co- of low-fat (lean), dried, powdered beef and finely htzzr 1964, Gahan 1966, Foster 1980, Gerberg et ground rice hulls (bekatul) as previously described al- 1994). with the colonization of Anopheles aconitus Doe- ln t994, natural bloodfed An. maculat rs were nitz and Anopheles barbirostris Van der Wulp (Bar- obtained from outdoor and animal shelter resting odji et al. 1985, Soelarto et al. 1995) was found the collections in Desa (village) Hargotirto, Subdistrict most acceptable food for all instars. The ingredients Kokap (07"49'64"5; 110'06'07'E, elevation -775 ft are readily available at relatively low cost com- above sea level) within the Special Administrative pared with many other food mixtures that use com- Province of Yogyakarta in central Java. This site is mercially refined products like liver powder, pow- located in the Menoreh Hills of Kulonprogo Dis- dered brewer's yeast, finely ground food formulated trict, one of the most malaria-endemic areas in for laboratory animals, aquarium fish, dog food, or Java. This strain was first established in the Disease dog biscuits, to name a few. This beef/bekatul mix- Vector and Reservoir Research Unit, Salatiga, Cen- ture also helps reduce rearing maintenance because tral Java, within a spacious rearing room provided many larval foods (e.9., commercial dog food) are with ample natural light from windows and ceiling more likely to create unfavorable conditions (e.g., skylights. Temperature and humidity in the facility scum, bacterial growth) in the aquatic medium be- were not controlled and the mosquitoes were sub- cause of their excessive fat content. To further re- ject to prevailing tropical ambient temperatures, hu- duce scum formation on the water surface, posi- -f + midity (27 6oC; 75 l5%o relarive humidity), tioned electric fans provided a light flow of air over and lighting conditions. This strain later was adapt- the pans. Direct low-volume aeration through the ed under more controlled conditions of temoerature water using small electric aquarium pumps was also and humidity with a natural 12 h light:li h dark found acceptable. In some instances. water temper- regimen. ature was regulated at a constant 28-30"C by plac- In Salatiga, individual bloodfed females derived ing rearing pans on flat silicone rubber-coated eiec- from field samples were placed in paper cups for trical heating strips (Cole-Parmer, Vernon Hills, oviposition. Each cup (200-ml volume) was lined IL). Fresh water was added to the rearing pans daily with filter paper and filled one third with nonchlor- to replace loss from evaporation. inated water. The tops of the cups were covered Pupation normally occurs between days 8 and with a fine mesh synthetic screen and females were 10, sometimes sooner' depending on the mean wa- provided with a lOVo sucrose solution soaked into ter temperature (-28-30"C). Pupae were trans- cotton wool. Eggs were freely laid on the water ferred daily using a hand pipette from rearing pans surface and allowed to hatch, occurring within 2-3 into plastic cups (100 ml) containing clean water.
Recommended publications
  • Sampling Adults by Animal Bait Catches and by Animal-Baited Traps
    Chapter 5 Sampling Adults by Animal Bait Catches and by Animal-Baited Traps The most fundamental method for catching female mosquitoes is to use a suit­ able bait to attract hungry host-seeking individuals, and human bait catches, sometimes euphemistically called landing counts, have been used for many years to collect anthropophagic species. Variations on the simple direct bait catch have included enclosing human or bait animals in nets, cages or traps which, in theory at least, permit the entrance of mosquitoes but prevent their escape. Other attractants, the most widely used of which are light and carbon dioxide, have also been developed for catching mosquitoes. In some areas, especially in North America, light-traps, with or without carbon dioxide as a supplement, have more or less replaced human and animal baits as a routine sampling method for several species (Chapter 6). However, despite intensive studies on host-seeking behaviour no really effective attractant has been found to replace a natural host, and consequently human bait catches remain the most useful single method of collecting anthropophagic mosquitoes. Moreover, although bait catches are not completely free from sampling bias they are usually more so than most other collecting methods that employ an attractant. They are also easily performed and require no complicated or expensive equipment. HUMAN BAIT CATCHES Attraction to hosts Compounds used by mosquitoes to locate their hosts are known as kairomones, that is substances from the emitters (hosts) are favourable to the receiver (mosquitoes) but not to themselves. Emanations from hosts include heat, water vapour, carbon dioxide and various host odours.
    [Show full text]
  • Light Traps Fail to Estimate Reliable Malaria Mosquito Biting Rates On
    Overgaard et al. Malaria Journal 2012, 11:56 http://www.malariajournal.com/content/11/1/56 RESEARCH Open Access Light traps fail to estimate reliable malaria mosquito biting rates on Bioko Island, Equatorial Guinea Hans J Overgaard1,5*, Solve Sæbø2, Michael R Reddy3, Vamsi P Reddy4, Simon Abaga5, Abrahan Matias6 and Michel A Slotman4 Abstract Background: The human biting rate (HBR), an important parameter for assessing malaria transmission and evaluating vector control interventions, is commonly estimated by human landing collections (HLC). Although intense efforts have been made to find alternative non-exposure mosquito collection methods, HLC remains the standard for providing reliable and consistent HBRs. The aim of this study was to assess the relationship between human landing and light trap collections (LTC), in an attempt to estimate operationally feasible conversion factors between the two. The study was conducted as part of the operational research component of the Bioko Island Malaria Control Project (BIMCP), Equatorial Guinea. Methods: Malaria mosquitoes were collected indoors and outdoors by HLCs and LTCs in three villages on Bioko Island, Equatorial Guinea during five bimonthly collections in 2009. Indoor light traps were suspended adjacent to occupied long-lasting, insecticide-treated bed nets. Outdoor light traps were placed close to the outer wall under the roof of the collection house. Collected specimens were subjected to DNA extraction and diagnostic PCR to identify species within the Anopheles gambiae complex. Data were analysed by simple regression of log- transformed values and by Bayesian regression analysis. Results: There was a poor correlation between the two collection methods. Results varied by location, venue, month, house, but also by the statistical method used.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Species Diversity and Insecticide Resistance Within the Anopheles
    Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand Anchana Sumarnrote, Hans Overgaard, Vincent Corbel, Kanutcharee Thanispong, Theeraphap Chareonviriyaphap, Sylvie Manguin To cite this version: Anchana Sumarnrote, Hans Overgaard, Vincent Corbel, Kanutcharee Thanispong, Theeraphap Chare- onviriyaphap, et al.. Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand. Parasites & Vectors, 2020, 13, pp.525. 10.1186/s13071- 020-04389-4. hal-03083171 HAL Id: hal-03083171 https://hal.archives-ouvertes.fr/hal-03083171 Submitted on 15 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Sumarnrote et al. Parasites Vectors (2020) 13:525 https://doi.org/10.1186/s13071-020-04389-4 Parasites & Vectors RESEARCH Open Access Species diversity and insecticide resistance within the Anopheles hyrcanus group in Ubon Ratchathani Province, Thailand Anchana Sumarnrote1, Hans J. Overgaard1,2,3, Vincent Corbel1,2, Kanutcharee Thanispong4, Theeraphap Chareonviriyaphap5 and Sylvie Manguin6* Abstract Background: Members of the Anopheles hyrcanus group have been incriminated as important malaria vectors. This study aims to identify the species and explore the insecticide susceptibility profle within the Anopheles hyrcanus group in Ubon Ratchathani Province, northeastern Thailand where increasing numbers of malaria cases were reported in 2014.
    [Show full text]
  • Ecologically Sound Mosquito Management in Wetlands. the Xerces
    Ecologically Sound Mosquito Management in Wetlands An Overview of Mosquito Control Practices, the Risks, Benefits, and Nontarget Impacts, and Recommendations on Effective Practices that Control Mosquitoes, Reduce Pesticide Use, and Protect Wetlands. Celeste Mazzacano and Scott Hoffman Black The Xerces Society FOR INVERTEBRATE CONSERVATION Ecologically Sound Mosquito Management in Wetlands An Overview of Mosquito Control Practices, the Risks, Benefits, and Nontarget Impacts, and Recommendations on Effective Practices that Control Mosquitoes, Reduce Pesticide Use, and Protect Wetlands. Celeste Mazzacano Scott Hoffman Black The Xerces Society for Invertebrate Conservation Oregon • California • Minnesota • Michigan New Jersey • North Carolina www.xerces.org The Xerces Society for Invertebrate Conservation is a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citi- zens to implement conservation programs worldwide. The Society uses advocacy, education, and ap- plied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional offices in California, Minnesota, Michigan, New Jersey, and North Carolina. © 2013 by The Xerces Society for Invertebrate Conservation Acknowledgements Our thanks go to the photographers for allowing us to use their photos. Copyright of all photos re- mains with the photographers. In addition, we thank Jennifer Hopwood for reviewing the report. Editing and layout: Matthew Shepherd Funding for this report was provided by The New-Land Foundation, Meyer Memorial Trust, The Bul- litt Foundation, The Edward Gorey Charitable Trust, Cornell Douglas Foundation, Maki Foundation, and Xerces Society members.
    [Show full text]
  • Entomological Determinants of Malaria Transmission In
    Wellcome Open Research 2018, 3:109 Last updated: 10 DEC 2018 RESEARCH ARTICLE Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages [version 1; referees: 2 approved with reservations] Victor Chaumeau 1-4, Bénédicte Fustec2, Saw Nay Hsel3, Céline Montazeau2, Saw Naw Nyo3, Selma Metaane 2, Sunisa Sawasdichai3, Prapan Kittiphanakun3, Phabele Phatharakokordbun3, Nittipha Kwansomboon5, Chiara Andolina3,4, Dominique Cerqueira2, Theeraphap Chareonviriyaphap5, François H. Nosten 3,4, Vincent Corbel2 1Centre Hospitalier Universitaire de Montpellier, Montpellier, 34295, France 2Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France 3Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand 4Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK 5Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand First published: 31 Aug 2018, 3:109 ( Open Peer Review v1 https://doi.org/10.12688/wellcomeopenres.14761.1) Latest published: 31 Aug 2018, 3:109 ( https://doi.org/10.12688/wellcomeopenres.14761.1) Referee Status: Abstract Invited Referees Background: The Thailand-Myanmar borderland is an area endemic for 1 2 malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on the entomological version 1 determinants of malaria transmission. published report report Methods: As part of a pilot study on Targeted Malaria Elimination, 31 Aug 2018 entomological investigations were conducted during 24 months in four villages located in Kayin state, Myanmar.
    [Show full text]
  • Entomological Determinants of Malaria Transmission in Kayin State
    Wellcome Open Research 2018, 3:109 Last updated: 03 AUG 2021 RESEARCH ARTICLE Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages [version 1; peer review: 2 approved with reservations] Victor Chaumeau 1-4, Bénédicte Fustec2, Saw Nay Hsel3, Céline Montazeau2, Saw Naw Nyo3, Selma Metaane 2, Sunisa Sawasdichai3, Prapan Kittiphanakun3, Phabele Phatharakokordbun3, Nittipha Kwansomboon5, Chiara Andolina3,4, Dominique Cerqueira2, Theeraphap Chareonviriyaphap 5, François H. Nosten 3,4, Vincent Corbel 2 1Centre Hospitalier Universitaire de Montpellier, Montpellier, 34295, France 2Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France 3Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand 4Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK 5Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand v1 First published: 31 Aug 2018, 3:109 Open Peer Review https://doi.org/10.12688/wellcomeopenres.14761.1 Second version: 05 Feb 2019, 3:109 https://doi.org/10.12688/wellcomeopenres.14761.2 Reviewer Status Third version: 09 May 2019, 3:109 https://doi.org/10.12688/wellcomeopenres.14761.3 Invited Reviewers Latest published: 17 Jun 2019, 3:109 https://doi.org/10.12688/wellcomeopenres.14761.4 1 2 version 4 Abstract (revision) Background: The Thailand-Myanmar borderland is an area endemic 17 Jun 2019 for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on version 3 the entomological determinants of malaria transmission.
    [Show full text]
  • Mosquitoes of the Genus Anopheles in Countries of the WHO European Region Having Faced a Recent Resurgence of Malaria
    Within the framework of the new WHO regional strategy aimed at malaria elimination, special attention is given to operational research. In order to update scientifi c knowledge on malaria, the WHO Regional Offi ce for Europe has initiated a regional programme on operational research related to malaria entomology and vector control, which is being carried out successfully with the assistance of research institutions and partners in affected countries of Middle Asia and South Mosquitoes of the genus Caucasus. The objectives of the research are closely tied to the particular situation and problems identifi ed within a single country or a group of neighbouring countries. Anopheles in countries of The identifi cation and geographical distribution of Anopheles mosquitoes, the prevalence of sibling species and their role in malaria transmission, taxonomy, biology and ecology of malaria vectors are of particular interest in the Region. the WHO European Region The results of the research presented in this paper conducted over the past fi ve having faced a recent years in countries having faced a recent resurgence of malaria in the WHO European Region, will help national health authorities to re-examine the current vector control strategies, taking into account the updated knowledge of existing and potential resurgence of malaria malaria vectors. The threat of the re-establishment of malaria transmission in the Region should not be downgraded, despite the substantial progress achieved. In this connection, further research on the taxonomy, biology, ecology, behaviour and genetics of mosquitoes of the Anopheles genus will lead to a better understanding of the nature of malaria vectors and their role in transmission in the WHO European Region, and to providing advice on the ways to best address the problem.
    [Show full text]
  • Entomological Determinants of Malaria
    Wellcome Open Research 2019, 3:109 Last updated: 03 AUG 2021 RESEARCH ARTICLE Entomological determinants of malaria transmission in Kayin state, Eastern Myanmar: A 24-month longitudinal study in four villages [version 4; peer review: 2 approved] Victor Chaumeau 1-4, Bénédicte Fustec2, Saw Nay Hsel3, Céline Montazeau2, Saw Naw Nyo3, Selma Metaane 2, Sunisa Sawasdichai3, Prapan Kittiphanakun3, Phabele Phatharakokordbun3, Nittipha Kwansomboon5, Chiara Andolina3,4, Dominique Cerqueira2, Theeraphap Chareonviriyaphap 5, François H. Nosten 3,4, Vincent Corbel 2 1Centre Hospitalier Universitaire de Montpellier, Montpellier, 34295, France 2Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle, Institut de Recherche pour le Développement, Montpellier, 34394, France 3Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, 63110, Thailand 4Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK 5Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand v4 First published: 31 Aug 2018, 3:109 Open Peer Review https://doi.org/10.12688/wellcomeopenres.14761.1 Second version: 05 Feb 2019, 3:109 https://doi.org/10.12688/wellcomeopenres.14761.2 Reviewer Status Third version: 09 May 2019, 3:109 https://doi.org/10.12688/wellcomeopenres.14761.3 Invited Reviewers Latest published: 17 Jun 2019, 3:109 https://doi.org/10.12688/wellcomeopenres.14761.4 1 2 version 4 Abstract (revision) Background: The Thailand-Myanmar borderland is an area endemic 17 Jun 2019 for malaria where transmission is low, seasonal and unstable. The epidemiology has been described but there is relatively few data on version 3 the entomological determinants of malaria transmission.
    [Show full text]
  • Perilaku Pencegahan Dan Penyembuhan Penyakit Shigella
    DOI: https://doi.org/10.22435/jek.v20i1.4092 PARASIT Plasmodium sp PADA TERNAK KAMBING ETAWA DI DAERAH ENDEMIK MALARIA KABUPATEN PURWOREJO Parasites of Plasmodium sp on Etawa Goats in the Malaria Endemic Area of Purworejo District Didik Sumanto1, 2, Suharyo Hadisaputro2, M. Sakundarno Adi3,4, Siti Susanti5, Sayono1 1Fakultas Kesehatan Masyarakat Universitas Muhammadiyah Semarang 2Doktoral Ilmu Kedokteran dan Kesehatan Fakultas Kedokteran Universitas Diponegoro 3Magister Epidemiologi Sekolah Pascasarjana Universitas Diponegoro 4Bagian Epidemiologi Fakultas Kesehatan Masyarakat Universitas Diponegoro 5Fakultas Peternakan dan Pertanian Universitas Diponegoro Email: [email protected] Diterima: 26 November 2020; Direvisi: 3 Februari 2021; Disetujui: 29 Juni 2021 ABSTRACT Kaligesing Subdistrict, Purworejo Regency, is a malaria endemic area in Central Java Province, with an Annual Parasite Incidence (API) of 0,32‰ in 2017 with the confirmed vector being An. aconites and An. maculatus. Anopheles zoophagic nature and existence of livestock around the residence has an important role as a barrier to the transmission of malaria. One type of livestock that is widely cultivated by the community is the type of “Etawa” goat. This study aims to determine the type of Plasmodium found in livestock. This is a descriptive study with cross-sectional design and 97 samples were taken by purposive sampling. The variables analyzed were the distance between the cage and the place of residence, the presence of parasites in the blood of cattle and mosquitoes eviction attempts by the community. Examination conducted by microscopic blood clots with Giemsa staining. The results of the examination, found 4 slides (4,12%) positive for Plasmodium sp in goat blood with the cage located less than 10 meters from the residence.
    [Show full text]
  • The Dominant Anopheles Vectors of Human Malaria in the Asia-Pacific
    Sinka et al. Parasites & Vectors 2011, 4:89 http://www.parasitesandvectors.com/content/4/1/89 RESEARCH Open Access The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis Marianne E Sinka1*, Michael J Bangs2, Sylvie Manguin3, Theeraphap Chareonviriyaphap4, Anand P Patil1, William H Temperley1, Peter W Gething1, Iqbal RF Elyazar5, Caroline W Kabaria6, Ralph E Harbach7 and Simon I Hay1,6* Abstract Background: The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results: Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables.
    [Show full text]
  • The Global Public Health Significance of Plasmodium Vivax Katherine E
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Public Health Resources Public Health Resources 2012 The Global Public Health Significance of Plasmodium vivax Katherine E. Battle University of Oxford Peter W. Gething University of Oxford Iqbal R.F. Elyazar Eijkman-Oxford Clinical Research Unit, Jalan Diponegoro No. 69, Jakarta, Indonesia Catherine L. Moyes University of Oxford, [email protected] Marianne E. Sinka University of Oxford See next page for additional authors Follow this and additional works at: http://digitalcommons.unl.edu/publichealthresources Battle, Katherine E.; Gething, Peter W.; Elyazar, Iqbal R.F.; Moyes, Catherine L.; Sinka, Marianne E.; Howes, Rosalind E.; Guerra, Carlos A.; Price, Ric N.; Baird, J. Kevin; and Hay, Simon I., "The Global Public Health Significance of Plasmodium vivax" (2012). Public Health Resources. 366. http://digitalcommons.unl.edu/publichealthresources/366 This Article is brought to you for free and open access by the Public Health Resources at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Public Health Resources by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Katherine E. Battle, Peter W. Gething, Iqbal R.F. Elyazar, Catherine L. Moyes, Marianne E. Sinka, Rosalind E. Howes, Carlos A. Guerra, Ric N. Price, J. Kevin Baird, and Simon I. Hay This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/ publichealthresources/366 CHAPTER ONE The Global Public Health Significance of Plasmodium vivax Katherine E. Battle*, Peter W. Gething*, Iqbal R.F. Elyazar†, Catherine L. Moyes*, Marianne E. Sinka*, Rosalind E. Howes*, Carlos A. Guerra‡, Ric N.
    [Show full text]