Mosquitoes of the Northwestern States

Total Page:16

File Type:pdf, Size:1020Kb

Mosquitoes of the Northwestern States UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook No. 46 WASHINGTON, D. C ISSUED NOVEHBBB 1951 MOSQUITOES OF THE NORTHWESTERN STATES By H. H. STAGE. C. M. GJULX.IN and W. W. YATES, Entomologists Division of Insects Affecting Man and Animals Bureau of Entomology and Plant Quarantine Agricultural Research Administration For «al« b7 tli« Snpcrintendmt of Docmneiita, Washiixton, D. C. - - Prie« 35 cents (Paper Corar) This handbook deals with the mosquitoes recorded from the three Northwestern States—Oregon, Washington, and Idaho. It brings together widely scattered information on 39 species and subspecies, including descriptions and keys for identifying the species and notes on the several associ- ations of species and their biology, their economic impor- tance, distribution, and methods of control. The handbook has been prepared as a companion to Miscellaneous Publi- cation 336, The Mosquitoes of the Southeastern States (83). The control methods recommended here differ considerably from those in that publication because many new insecti- cides have been developed since it was last revised. Culex tar salis y the most widely distributed mosquito in the Northwest. It breeds in the widest variety of waters and is one of the most potent transmitters of western equine encephalomyelitis and St. Louis encephalitis. UNITED STATES DEPARTMENT OF AGRICULTURE Agriculture Handbook 46 WASHINGTON, D. C. ISSUED NOVEMBER 1952 MOSQUITOES OF THE NORTHWESTERN STATES BY H. H. STAGE, C. M. GJULLIN, and W. W. YATES, entomologists, Division of Insects Affecting Man and Animals Bureau of Entomology and Plant Quarantine Agricultural Research Administration i CONTENTS Page Page Mosquito literature 2 Associations of species in the Northwest—continued Mosquito-control associations and Tidal water 23 abatement districts in the Log ponds and water in United States artificial containers 24 General characteristics and habits Mosquito control 24 of mosquitoes Surveys 24 Life History Hand collections 25 Eggs Trap collections 26 Larvae Collections of larvae ...... 28 Pupae Collections of eggs 29 Adults V Engineering surveys 30 Longevity Control of larvae 30 Flight Elimination of breeding places 30 Collection and preservation of Use of larvicides 37 specimens Materials for controlling Identification of species mosquito larvae 39 History of mosquito control in the Control of adults ;.. 39 Northwest Repellents 39 Space sprays 40 Genera and species found in the Residual sprays 42 Northwest 10 Control of resistant mosquitoes 43 Mosquitos and disease 12 Equipment for applying Malaria 12 insecticides 44 Natural enemies of mosquitoes 44 Encephalitides 14 Keys and notes for identifying Associations of species in the mosquitoes of the Northwest 45 Northwest . 15 Key to genera 45 Floodwater 18 Genus Anopheles Meigen .... 49 Rain pools 19 Genus Aedes Meigen 53 Snow water 20 Genus Mansonia Blanchard . 75 Tree holes 22 Genus Culex Linnaeus 75 Irrigation water 22 Genus Culiseta Felt 79 Permanent ponds 23 Bibliography 87 1 Grateful acknowledgement is made of the aid given by E. F. Knipling, who was in charge of mosquito investigations in the Pacific Northwest from August 1, 1940, until April 1, 1942, and who later, as chief of the Division, gave invaluable council. Thanks are due also for data contributed by A. W. Lindquist, R. A. Hoff- man, and A. R. Roth, of the Corvallis, Greg., laboratory. HANDBOOK 46, U. S. DEPARTMENT OF AGRICULTURE MOSQUITO LITERATURE ment districts. It gives informa- tion on laws and agencies for 'T^HE literature on mosquitoes mosquito abatement, education of A has become exceedingly large. the public, general principles of Each year about 1,000 references abatement methods and tech- to various phases of mosquito niques, abatement of disease vec- biology and the diseases they tors, and a host of related data. carry appear in widely scattered The Engineering News Record publications. Probably no other (25) has issued a series of short group of insects has received so papers on the engineering aspects much study throughout the world. of mosquito control. Some of the publications of espe- For those concerned with the cial interest to workers concerned manipulation of water levels in with mosquitoes in the Northwest the control of malaria and mos- are given at the end of this hand- quitoes, a publication by the book (p. 87). United States Public Health Serv- One of the earliest comprehen- ice and the Tennessee Valley Au- sive works on any group of in- thority (162) is indispensable. sects is a four-volume monograph Although the information is fo- by Howard, Dyar, and Knab cused on malaria control, the (68), issued in 1912-17. It in- possible field of application is far cludes descriptions, biology, dis- broader as it may be of great use tribution, and taxonomy of mos- in the development of water re- quitoes in the Western Hemis- sources, pow. r, and irrigations phere north of the equator. in the Northvest. Matheson's handbook (99), re- Several Strie bulletins and a vised in 1944, gives much infor- Canadian report will be found mation on the taxonomy and bi- particularly useful in a study of ology of the mosquitoes of North the mosquitoes in the North- America and includes a discus- west : California, by Freeborn and sion of their relation to human Bohart (SO) ; Montana, by Mail welfare and problems of control. (97) ; Utah, by Rees (111) ; Ore- More recently, in 1949, Car- gon, by Yates, Lindquist, and penter, Middlekauff, and Cham- Mote (17Í) ; the Lower Fraser berlin (13) published an authori- Valley of British Columbia, by tative book of nearly 300 pages Hearle (58). A guide for identi- covering the taxonomy and bi- fying mosquitoes of the Pacific ology of species found in the Coast States, by Freeborn and Southern States east of the Mis- Brookman (81), contains unique sissippi River. but valuable keys. In another book that appeared The following serial publica- in 1949, Marston Bates (17) has tions will be of interest to stu- compiled a voluminous array of dents of Culicidae: Mosquito facts on the biology and disease News, published quarterly by the relationships of mosquitoes, American Mosquito Control As- which will be very valuable to all sociation at Albany, N. Y., and students specializing in mosquito the proceedings published each research and control. year by the New Jersey Mosquito A textbook by Herms and Gray Extermination Association, the (62) is designed primarily for California Mosquito Control As- entomologists, engineers, and sociation, the Florida Anti-Mos- staff employees who are directing quito Association, and the Utah the activities of mosquito-abate- Mosquito Abatement Association. MOSQUITOES OF THE NORTHWESTERN STATES Articles on mosquitoes also ap- The California Mosquito Control As- sociation, organized in 1932. pear in bulletins and reports of The American Mosquito Control the United States Public Health Association, Inc., organized in 1936. Service and in various entomolog- The Virginia Mosquito Control Asso- ical, medical, and other scientific ciation, organized in 1947. The Utah Mosquito Abatement Asso- journals throughout the world. ciation, organized in 1947. For a number of years articles The Illinois Mosquito Control Asso- on various phases of the biology ciation, organized in 1948. and control of anopheline mos- Each of these associations quitoes appeared in the Journal holds annual meetings, and most of the National Malaria Society. of them publish their proceed- This society has now amalga- ings, which contain valuable con- mated with the American Society tributions on mosquito biology of Tropical Medicine to become and control. the American Society of Tropical The American Mosquito Con- Medicine and Hygiene, and its trol Association is international journal includes papers on rnos- in scope and has a membership quitoes and their disease relation- of about 1,000. It is a nonprofit ships. technical and educational associa- MOSQUITO-CONTROL ASSOCI- tion of mosquito workers, com- ATIONS AND ABATEMENT posed of entomologists, sanitary DISTRICTS IN THE UNITED engineers, control officials, med- STATES 'j ical personnel, and laymen who There are sevm mosquito- are charged with or are inter- control associations 4n the United ested in mosquito control and States (1.Í0), as follows: related work. Annual meetings The New Jersey Extermination Asso- are held in various parts of the ciation, organized in 1913. The Florida Anti-Mosquito Associa- United States, usually conjointly tion, organized in 1929. with the State associations. MALARIA AND PEST MOSQUITO CONTROL OPERATIONS IN UNITED STATES MALARIA MOSOUITO CONTROL (Public H«alth S*rvl«*) U&an« STATE MOSQUITO CONTROL DISTRICTS M.SA. Wwt.H»0. U. i. DCMRTMCNr OF ACmCUkTURC FIGURE 1.—Map of the United States showing location of mosquito-control operations, 1950. HANDBOOK 46, U. S. DEPARTMENT OF AGRICULTURE There are about 250 local mos- three States, whereas Aedes hexo- quito-control agencies in 39 dontus is found only in snow States, Hawaii, and Puerto Rico water in high mountainous areas (fig. 1). These agencies are com- {27). Some genera, such as monly called mosquito-abatement Aedes y lay their eggs on ground districts and are usually named that may later be flooded, where- after the counties in which they as others, such as Culex and Culi" are located. In 1951 Florida had seta, lay them directly on the 21 such districts, with a total water surface. budget of about $985,000; Cali- Temperatures of air and water, fornia 44, with over $1,700,000; alkalinity or acidity of the water, New Jersey 16, with $640,000; and associated shelter and vege- Utah 4, with $117,000; Virginia tation aiïect the abundance and 13, with $178,000; and Rhode presence of most species. The Island 18, with $76,000. A total species also differ in biting hab- of more than $6,000,000 is bud- its, longevity, and flight range. geted annually in the fight The mosquito is an insect hav- against pest mosquitoes and ma- ing a complete metamorphosis.
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Scientific Note
    Journal of the American Mosquito Control Association, 18(4):359-363' 2OOz Copyright @ 2002 by the American Mosquito Control Association' Inc' SCIENTIFIC NOTE COLONIZATION OF ANOPHELES MACULAZUS FROM CENTRAL JAVA, INDONESIA' MICHAEL J. BANGS,' TOTO SOELARTO,3 BARODJI,3 BIMO P WICAKSANA'AND DAMAR TRI BOEWONO3 ABSTRACT, The routine colonization of Anopheles maculatus, a reputed malaria vector from Central Java, is described. The strain is free mating and long lived in the laboratory. This species will readily bloodfeed on small rodents and artificial membrane systems. Either natural or controlled temperatures, humidity, and lighting provide acceptable conditions for continuous rearing. A simple larval diet incorporating a l0:4 powdered mixture of a.i"a beef and rice hulls proved acceptable. Using a variety of simple tools and procedures, this colony strain appears readily adaptable to rearing under most laboratory conditions. This appears to be the first report of continuous colonization using a free-mating sffain of An. maculatus. Using this simple, relatively inexpensive method of mass colonization adds to the short list of acceptable laboratory populations used in the routine production of human-infecting plasmodia. KEY WORDS Anopheles maculatus, Central Java, colonization, larval diet, malaria vector, Indonesia Anop he Ie s (Ce ll ia) maculat us Theobald belongs nificantly divergent in phylogenetic terms from oth- to the Theobaldi group of the Neocellia series, er members of the complex and may represent one which also includes Anopheles karwari (James) and or more separate species awaiting formal descrip- Anopheles theobaldi Giles (Subbarao 1998). The tion (Rongnoparut, personal communication). For An. maculatus species complex is considered an purposes of this article, the Central Java strain will "spe- important malaria vector assemblage over certain be referred to as An.
    [Show full text]
  • ARTHROPOD MONITORING: Mosquito Studies
    64 ARTHROPOD MONITORING: Mosquito Studies - Greenwoods, Summer 1995 Wi~~iam L. Butts Expanded sampling of the area inunediately adj acent to the large bog ("Cranberry Bog") for anthrophilic mosquitoes was the main focus of studies at Greenwoods. Initial plans to conduct biting/alighting sampling from a boat at selected sites around the margin of the impoundment were abandoned due to logistical difficulties. Emergent and submerged obstructions made it impossible to move about by boat at a rate that would allow for sampling at a sufficient number of sites within the hours of feeding activity. It was also evident that repeated sampling by boat would cause an unacceptable level of disruption to aquatic vegetation. A series of eight sampling sites marked with bicolored streamers was established along the west side of the bog from the point of access to the main dam northward. A similar series was laid out along the east side with three sampling stations south of the one at the dock site and four stations north of it. Biting/alighting collections were made by the author sitting for 20 minutes at each site with one forearm exposed. Mosquitoes alighting upon that arm or at other points on the body within reach of the other arm were collected by inverting a small killing vial over the mosquitoes. Sampling series were begun at approximately first light and in late evening beginning at a time estimated to terminate the series when unaided visual observation became difficult. In most instances one side of the bog was sampled in the evening and the other side the following morning.
    [Show full text]
  • The Mosquitoes of Minnesota
    Technical Bulletin 228 April 1958 The Mosquitoes of Minnesota (Diptera : Culicidae : Culicinae) A. RALPH BARR University of Minnesota Agricultural Experiment Station ~2 Technirnl Rull!'lin :z2g 1-,he Mosquitoes of J\ilinnesota (Diptera: Culicidae: Culicinae) A. llALPII R\lm University of Minnesota Agricultural Experiment Station CONTENTS I. Introduction JI. Historical Ill. Biology of mosquitoes ................................ Zoogeography Oviposition ......................................... Breeding places of larvae ................................... I) Larrnl p;rowth ....................................... Ill ,\atural factors in the control of larvae .................. JI The pupal stage ............................................... 12 .\lating .................................... _ ..... 12 Feeding of adults ......................................... 12 Hibernation 11 Seasonal distribution II I\ . Techniques Equipment Eggs ............................... · .... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · Larvae Pupae Adults Colonization and rearing . IB \. Systematic treatment Keys to genera Adult females . l'J \fale terminalia . 19 Pupae ······················································· .... ········ 2.'i Larvae ····················································· ..... ········ 2S :-n Anopheles ········································· ··························· Anopheles (Anopheles) barberi .................... · · · · · · · · · · · · · · · · · · · · · · · · earlei ...•......................... · · · · ·
    [Show full text]
  • Importance of Mosquitoes
    IMPORTANCE OF MOSQUITOES Portions of this chapter were obtained from the University of Florida and the American Mosquito Control Association Public Health Pest Control website at http://vector.ifas.ufl.edu. Introduction to Pests and Public Health: Arthropods are the most successful group of animals on Earth. They thrive in every habitat and in all regions of the world. A small number of species from this phylum have a great impact on humans, affecting us not only by damaging agriculture and horticultural crops but also through the diseases they can transmit to humans and our domestic animals. Insects can transmit disease (vectors), cause wounds, inject venom, or create nuisance, and have serious social and economic consequences. Arthropods can be indirect (mechanical carriers) or direct (biological carriers) transmitters of disease. As indirect agents they serve as simple mechanical carriers of various bacteria and fungi which may cause disease. As direct or biological agents they serve as vectors for disease­causing agents that require the insect as part of the life cycle. In considering transmission of disease­ causing organisms, it is important to understand the relationships among the vector (the disease­ transmitting organism, i.e. an insect), the disease pathogen (for example, a virus) and the host (humans or animals). The pathogen may or may not undergo different life stages while in the vector. Pathogens that undergo changes in life stages within the vector before being transmitted to a host require the vector—without the vector, the disease life cycle would be broken and the pathogen would die. In either case, the vector is the means for the pathogen to pass from one host to another.
    [Show full text]
  • Table of Contents
    Table of Contents Oral Presentation Abstracts ............................................................................................................................... 3 Plenary Session ............................................................................................................................................ 3 Adult Control I ............................................................................................................................................ 3 Mosquito Lightning Symposium ...................................................................................................................... 5 Student Paper Competition I .......................................................................................................................... 9 Post Regulatory approval SIT adoption ......................................................................................................... 10 16th Arthropod Vector Highlights Symposium ................................................................................................ 11 Adult Control II .......................................................................................................................................... 11 Management .............................................................................................................................................. 14 Student Paper Competition II ...................................................................................................................... 17 Trustee/Commissioner
    [Show full text]
  • Ecologically Sound Mosquito Management in Wetlands. the Xerces
    Ecologically Sound Mosquito Management in Wetlands An Overview of Mosquito Control Practices, the Risks, Benefits, and Nontarget Impacts, and Recommendations on Effective Practices that Control Mosquitoes, Reduce Pesticide Use, and Protect Wetlands. Celeste Mazzacano and Scott Hoffman Black The Xerces Society FOR INVERTEBRATE CONSERVATION Ecologically Sound Mosquito Management in Wetlands An Overview of Mosquito Control Practices, the Risks, Benefits, and Nontarget Impacts, and Recommendations on Effective Practices that Control Mosquitoes, Reduce Pesticide Use, and Protect Wetlands. Celeste Mazzacano Scott Hoffman Black The Xerces Society for Invertebrate Conservation Oregon • California • Minnesota • Michigan New Jersey • North Carolina www.xerces.org The Xerces Society for Invertebrate Conservation is a nonprofit organization that protects wildlife through the conservation of invertebrates and their habitat. Established in 1971, the Society is at the forefront of invertebrate protection, harnessing the knowledge of scientists and the enthusiasm of citi- zens to implement conservation programs worldwide. The Society uses advocacy, education, and ap- plied research to promote invertebrate conservation. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional offices in California, Minnesota, Michigan, New Jersey, and North Carolina. © 2013 by The Xerces Society for Invertebrate Conservation Acknowledgements Our thanks go to the photographers for allowing us to use their photos. Copyright of all photos re- mains with the photographers. In addition, we thank Jennifer Hopwood for reviewing the report. Editing and layout: Matthew Shepherd Funding for this report was provided by The New-Land Foundation, Meyer Memorial Trust, The Bul- litt Foundation, The Edward Gorey Charitable Trust, Cornell Douglas Foundation, Maki Foundation, and Xerces Society members.
    [Show full text]
  • A Classification System for Mosquito Life Cycles: Life Cycle Types for Mosquitoes of the Northeastern United States
    June, 2004 Journal of Vector Ecology 1 Distinguished Achievement Award Presentation at the 2003 Society for Vector Ecology Meeting A classification system for mosquito life cycles: life cycle types for mosquitoes of the northeastern United States Wayne J. Crans Mosquito Research and Control, Department of Entomology, Rutgers University, 180 Jones Avenue, New Brunswick, NJ 08901, U.S.A. Received 8 January 2004; Accepted 16 January 2004 ABSTRACT: A system for the classification of mosquito life cycle types is presented for mosquito species found in the northeastern United States. Primary subdivisions include Univoltine Aedine, Multivoltine Aedine, Multivoltine Culex/Anopheles, and Unique Life Cycle Types. A montotypic subdivision groups life cycle types restricted to single species. The classification system recognizes 11 shared life cycle types and three that are limited to single species. Criteria for assignments include: 1) where the eggs are laid, 2) typical larval habitat, 3) number of generations per year, and 4) stage of the life cycle that overwinters. The 14 types in the northeast have been named for common model species. A list of species for each life cycle type is provided to serve as a teaching aid for students of mosquito biology. Journal of Vector Ecology 29 (1): 1-10. 2004. Keyword Index: Mosquito biology, larval mosquito habitats, classification of mosquito life cycles. INTRODUCTION strategies that do not fit into any of the four basic temperate types that Bates described in his book. Two There are currently more than 3,000 mosquito of the mosquitoes he suggested as model species occur species in the world grouped in 39 genera and 135 only in Europe and one of his temperate life cycle types subgenera (Clements 1992, Reinert 2000, 2001).
    [Show full text]
  • A-Lovisolo.Vp:Corelventura
    Acta zoologica cracoviensia, 46(suppl.– Fossil Insects): 37-50, Kraków, 15 Oct., 2003 Searching for palaeontological evidence of viruses that multiply in Insecta and Acarina Osvaldo LOVISOLO and Oscar RÖSLER Received: 31 March, 2002 Accepted for publication: 17 Oct., 2002 LOVISOLO O., RÖSLER O. 2003. Searching for palaeontological evidence of viruses that multiply in Insecta and Acarina. Acta zoologica cracoviensia, 46(suppl.– Fossil Insects): 37-50. Abstract. Viruses are known to be agents of important diseases of Insecta and Acarina, and many vertebrate and plant viruses have arthropods as propagative vectors. There is fossil evidence of arthropod pathogens for some micro-organisms, but not for viruses. Iso- lated virions would be hard to detect but, in fossil material, it could be easier to find traces of virus infection, mainly virus-induced cellular structures (VICS), easily recognisable by electron microscopy, such as virions encapsulated in protein occlusion bodies, aggregates of membrane-bounded virus particles and crystalline arrays of numerous virus particles. The following main taxa of viruses that multiply in arthropods are discussed both for some of their evolutionary aspects and for the VICS they cause in arthropods: A. dsDNA Poxviridae, Asfarviridae, Baculoviridae, Iridoviridae, Polydnaviridae and Ascoviridae, infecting mainly Lepidoptera, Hymenoptera, Coleoptera, Diptera and Acarina; B. ssDNA Parvoviridae, infecting mainly Diptera and Lepidoptera; C. dsRNA Reoviridae and Bir- naviridae, infecting mainly Diptera, Hymenoptera and Acarina, and plant viruses also multiplying in Hemiptera; D. Amb.-ssRNA Bunyaviridae and Tenuivirus, that multiply in Diptera and Hemiptera (animal viruses) and in Thysanoptera and Hemiptera (plant vi- ruses); E. -ssRNA Rhabdoviridae, multiplying in Diptera and Acarina (vertebrate vi- ruses), and mainly in Hemiptera (plant viruses); F.
    [Show full text]
  • Mosquitoes of the Genus Anopheles in Countries of the WHO European Region Having Faced a Recent Resurgence of Malaria
    Within the framework of the new WHO regional strategy aimed at malaria elimination, special attention is given to operational research. In order to update scientifi c knowledge on malaria, the WHO Regional Offi ce for Europe has initiated a regional programme on operational research related to malaria entomology and vector control, which is being carried out successfully with the assistance of research institutions and partners in affected countries of Middle Asia and South Mosquitoes of the genus Caucasus. The objectives of the research are closely tied to the particular situation and problems identifi ed within a single country or a group of neighbouring countries. Anopheles in countries of The identifi cation and geographical distribution of Anopheles mosquitoes, the prevalence of sibling species and their role in malaria transmission, taxonomy, biology and ecology of malaria vectors are of particular interest in the Region. the WHO European Region The results of the research presented in this paper conducted over the past fi ve having faced a recent years in countries having faced a recent resurgence of malaria in the WHO European Region, will help national health authorities to re-examine the current vector control strategies, taking into account the updated knowledge of existing and potential resurgence of malaria malaria vectors. The threat of the re-establishment of malaria transmission in the Region should not be downgraded, despite the substantial progress achieved. In this connection, further research on the taxonomy, biology, ecology, behaviour and genetics of mosquitoes of the Anopheles genus will lead to a better understanding of the nature of malaria vectors and their role in transmission in the WHO European Region, and to providing advice on the ways to best address the problem.
    [Show full text]
  • Pdf Attenuated Influenza Vaccine in Children: Implication for Selection of 17
    A Peer-Reviewed Journal Tracking and Analyzing Disease Trends pages 1357–1522 EDITOR-IN-CHIEF D. Peter Drotman EDITORIAL STAFF EDITORIAL BOARD Founding Editor Dennis Alexander, Addlestone Surrey, United Kingdom Joseph E. McDade, Rome, Georgia, USA Ban Allos, Nashville, Tennessee, USA Managing Senior Editor Michael Apicella, Iowa City, Iowa, USA Polyxeni Potter, Atlanta, Georgia, USA Barry J. Beaty, Ft. Collins, Colorado, USA Associate Editors Martin J. Blaser, New York, New York, USA Charles Ben Beard, Ft. Collins, Colorado, USA David Brandling-Bennet, Washington, D.C., USA Donald S. Burke, Baltimore, Maryland, USA David Bell, Atlanta, Georgia, USA Charles H. Calisher, Ft. Collins, Colorado, USA Patrice Courvalin, Paris, France Arturo Casadevall, New York, New York, USA Stephanie James, Bethesda, Maryland, USA Thomas Cleary, Houston, Texas, USA Brian W.J. Mahy, Atlanta, Georgia, USA Anne DeGroot, Providence, Rhode Island, USA Takeshi Kurata, Tokyo, Japan Vincent Deubel, Lyon, France Martin I. Meltzer, Atlanta, Georgia, USA Ed Eitzen, Washington, D.C., USA Duane J. Gubler, Ft. Collins, Colorado, USA David Morens, Washington, D.C., USA Scott Halstead, Arlington, Virginia, USA J. Glenn Morris, Baltimore, Maryland, USA David L. Heymann, Geneva, Switzerland Tanja Popovic, Atlanta, Georgia, USA Sakae Inouye, Tokyo, Japan Patricia M. Quinlisk, Des Moines, Iowa, USA Charles King, Cleveland, Ohio, USA Gabriel Rabinovich, Buenos Aires, Argentina Keith Klugman, Atlanta, Georgia, USA Didier Raoult, Marseilles, France S.K. Lam, Kuala Lumpur, Malaysia Bruce R. Levin, Atlanta, Georgia, USA Pierre Rollin, Atlanta, Georgia, USA Myron Levine, Baltimore, Maryland, USA Mario Raviglione, Geneva, Switzerland Stuart Levy, Boston, Massachusetts, USA David Walker, Galveston, Texas, USA John S.
    [Show full text]