Christopher Charles Anderson
Total Page:16
File Type:pdf, Size:1020Kb
ASSESSING FACTORS THAT INFLUENCE LAKE WATER-COLUMN TOTAL PHOSPHORUS VARIABILITY IN FLORIDA’S NUTRIENT ZONES By CHRISTOPHER CHARLES ANDERSON A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2013 1 © 2013 Christopher Charles Anderson 2 To my Grandpa 3 ACKNOWLEDGMENTS I thank Dr. Daniel Canfield Jr. for providing me with the opportunity to learn how to be a scientist as well as for his time, effort, and support in helping me achieve my goals. I thank Dr. Charles Cichra and Dr. Mark Brenner for serving on my committee and for their willingness to listen patiently and help whenever they were needed. I thank all of the LAKEWATCH volunteers and the entire LAKEWATCH staff; without whom this project would not have been possible. I thank Mark Hoyer for teaching me the importance of a being a well-rounded scientist. I thank my family and close friends without whom I would not be the person I am today. 4 TABLE OF CONTENTS page ACKNOWLEDGMENTS .................................................................................................. 4 LIST OF TABLES ............................................................................................................ 7 LIST OF FIGURES .......................................................................................................... 8 ABSTRACT ..................................................................................................................... 9 CHAPTER 1 INTRODUCTION .................................................................................................... 10 2 LITERATURE REVIEW .......................................................................................... 14 Physical Factors ..................................................................................................... 14 Surficial Hydrologic Connectivity ...................................................................... 14 Morphometric Factors ...................................................................................... 15 Landscape Development Intensity Index .......................................................... 17 Chemical Factors .................................................................................................... 18 True Color ........................................................................................................ 18 Total Alkalinity .................................................................................................. 20 Biological Factors ................................................................................................... 22 3 METHODS .............................................................................................................. 26 Data Collection ....................................................................................................... 26 Physical Factors ..................................................................................................... 27 Surficial Hydrologic Connectivity ...................................................................... 27 Morphometric Factors and LDI ......................................................................... 28 Chemical Factors .................................................................................................... 29 Biological Factors ................................................................................................... 30 Data Analyses ......................................................................................................... 32 4 RESULTS ............................................................................................................... 34 Physical Factors ..................................................................................................... 34 Chemical Factors .................................................................................................... 35 Biological Factors ................................................................................................... 36 Surficial Hydrologic Connectivity ............................................................................. 38 5 DISCUSSION ......................................................................................................... 55 6 RECOMMENDATIONS AND CONCLUSIONS ....................................................... 61 5 APPENDIX A MAP OF TOTAL PHOSPHORUS ZONES OF FLORIDA ....................................... 64 B LAKE REGIONS OF FLORIDA ............................................................................... 65 C LANDSCAPE DEVELOPMENT INTENSITY COEFFIECIENTS ............................. 66 D ALL DATA ............................................................................................................... 67 LIST OF REFERENCES ............................................................................................... 97 BIOGRAPHICAL SKETCH .......................................................................................... 104 6 LIST OF TABLES Table page 4-1 Descriptive statistics of physical factors for all quantiles. ................................... 40 4-2 Two tailed t-test results for all physical factors by TP zone. ............................... 42 4-3 Correlation coefficients for each physical factor and total phosphorus and p- values by quantile and zone. .............................................................................. 43 4-4 Descriptive statistics of water chemistry factors for all quantiles. ....................... 44 4-5 Two-tailed t-test results for all chemical factors by TP zone. .............................. 45 4-6 Correlation coefficients for each chemical factor and total phosphorus and p- values by quantile and zone. .............................................................................. 46 4-7 Descriptive statistics of biological factors for all quantiles. ................................. 47 4-8 Two-tailed t-test results for all biological factors by TP zone. ............................. 49 4-9 Correlation coefficients for each biological factor with total phosphorus and p- values by quantile and zone. .............................................................................. 50 4-10 Descriptive statistics for limnological factors in drainage lakes........................... 51 4-11 Descriptive statistics for limnological factors in seepage lakes. .......................... 52 4-12 Two-tailed t-test results comparing drainage lakes and seepage lakes. ............. 53 4-13 Correlation coefficients and p-values for correlations between each limnological factor and total phosphorus for drainage and seepage lakes. ........ 54 C-1 Land use classifications and corresponding Landscape Development Intensity Coefficients (Brown and Vivas 2005) ................................................... 66 D-1 Non-transformed data for all physical factors for each lake in this study. For surficial hydrologic connectivity, 0 denotes seepage lakes and 1 denotes drainage lakes. ................................................................................................... 67 D-2 Non-transformed data for all chemical factors for all lakes ................................. 77 D-3 Non-transformed data for all biological factors for all lakes ................................ 87 7 LIST OF FIGURES Figure page A-1 Map of total phosphorus zones for Florida lakes (Bachmann et al. 2012) .......... 64 B-1 Map showing USEPA’s Lake Regions of Florida (Griffith et al. 1997) ................ 65 8 Abstract of Thesis Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Master of Science ASSESSING FACTORS THAT INFLUENCE LAKE WATER-COLUMN TOTAL PHOSPHORUS VARIABILITY IN FLORIDA’S NUTRIENT ZONES By Christopher Charles Anderson August 2013 Chair: Daniel E. Canfield, Jr. Major: Fisheries and Aquatic Sciences Bachmann et al. (2012) created six statistically defensible total phosphorus (TP) zones to be considered in establishing numeric nutrient criteria for Florida lakes. However, some of the zones have wide ranges of TP concentrations (e.g., Zone TP3: TP range: 3 µg/L to1857 µg/L). The primary objective of this study was to examine lakes in the 10% and 90% quantiles of TP concentrations for each TP zone (TP1 to TP6) to determine which limnological (physical, chemical and/or biological) factors most influence in-zone TP variability. The 10% and 90% quantiles were chosen because they represent the “oligotrophic” and “eutrophic/hypereutrophic” lakes, respectively, in each TP zone. Of twelve limnological factors analyzed, aquatic macrophyte abundance, true color and surficial hydrologic connectivity seem to be the most important limnological factors affecting TP variability in Florida’s nutrient zones. Understanding which limnological factor or factors explain a significant part of TP variability in Florida lakes is critical to developing an appropriate nutrient management strategy for individual Florida lakes. 9 CHAPTER 1 INTRODUCTION In the United States, quantification of nutrient concentrations in water bodies (e.g., lakes) is the primary basis for determining progress towards reaching the goals of the Clean Water Act to protect the designated uses of water bodies (USEPA 2000; Reckhow et al. 2005). The U.S. Environmental Protection Agency (USEPA) requires states to either adopt the ambient nutrient criteria that they developed, or establish