Download Article (PDF)
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Repeated Games
6.254 : Game Theory with Engineering Applications Lecture 15: Repeated Games Asu Ozdaglar MIT April 1, 2010 1 Game Theory: Lecture 15 Introduction Outline Repeated Games (perfect monitoring) The problem of cooperation Finitely-repeated prisoner's dilemma Infinitely-repeated games and cooperation Folk Theorems Reference: Fudenberg and Tirole, Section 5.1. 2 Game Theory: Lecture 15 Introduction Prisoners' Dilemma How to sustain cooperation in the society? Recall the prisoners' dilemma, which is the canonical game for understanding incentives for defecting instead of cooperating. Cooperate Defect Cooperate 1, 1 −1, 2 Defect 2, −1 0, 0 Recall that the strategy profile (D, D) is the unique NE. In fact, D strictly dominates C and thus (D, D) is the dominant equilibrium. In society, we have many situations of this form, but we often observe some amount of cooperation. Why? 3 Game Theory: Lecture 15 Introduction Repeated Games In many strategic situations, players interact repeatedly over time. Perhaps repetition of the same game might foster cooperation. By repeated games, we refer to a situation in which the same stage game (strategic form game) is played at each date for some duration of T periods. Such games are also sometimes called \supergames". We will assume that overall payoff is the sum of discounted payoffs at each stage. Future payoffs are discounted and are thus less valuable (e.g., money and the future is less valuable than money now because of positive interest rates; consumption in the future is less valuable than consumption now because of time preference). We will see in this lecture how repeated play of the same strategic game introduces new (desirable) equilibria by allowing players to condition their actions on the way their opponents played in the previous periods. -
Uniqueness and Symmetry in Bargaining Theories of Justice
Philos Stud DOI 10.1007/s11098-013-0121-y Uniqueness and symmetry in bargaining theories of justice John Thrasher Ó Springer Science+Business Media Dordrecht 2013 Abstract For contractarians, justice is the result of a rational bargain. The goal is to show that the rules of justice are consistent with rationality. The two most important bargaining theories of justice are David Gauthier’s and those that use the Nash’s bargaining solution. I argue that both of these approaches are fatally undermined by their reliance on a symmetry condition. Symmetry is a substantive constraint, not an implication of rationality. I argue that using symmetry to generate uniqueness undermines the goal of bargaining theories of justice. Keywords David Gauthier Á John Nash Á John Harsanyi Á Thomas Schelling Á Bargaining Á Symmetry Throughout the last century and into this one, many philosophers modeled justice as a bargaining problem between rational agents. Even those who did not explicitly use a bargaining problem as their model, most notably Rawls, incorporated many of the concepts and techniques from bargaining theories into their understanding of what a theory of justice should look like. This allowed them to use the powerful tools of game theory to justify their various theories of distributive justice. The debates between partisans of different theories of distributive justice has tended to be over the respective benefits of each particular bargaining solution and whether or not the solution to the bargaining problem matches our pre-theoretical intuitions about justice. There is, however, a more serious problem that has effectively been ignored since economists originally J. -
Introduction to Computational Social Choice
1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. Computational social choice (COMSOC), by comparison, is a very young field that formed only in the early 2000s. There were, however, a few precursors. For instance, David Gale and Lloyd Shapley's algorithm for finding stable matchings between two groups of people with preferences over each other, dating back to 1962, truly had a computational flavor. And in the late 1980s, a series of papers by John Bartholdi, Craig Tovey, and Michael Trick showed that, on the one hand, computational complexity, as studied in theoretical computer science, can serve as a barrier against strategic manipulation in elections, but on the other hand, it can also prevent the efficient use of some voting rules altogether. Around the same time, a research group around Bernard Monjardet and Olivier Hudry also started to study the computational complexity of preference aggregation procedures. -
Lecture Notes
GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies .................................. -
Finitely Repeated Games
Repeated games 1: Finite repetition Universidad Carlos III de Madrid 1 Finitely repeated games • A finitely repeated game is a dynamic game in which a simultaneous game (the stage game) is played finitely many times, and the result of each stage is observed before the next one is played. • Example: Play the prisoners’ dilemma several times. The stage game is the simultaneous prisoners’ dilemma game. 2 Results • If the stage game (the simultaneous game) has only one NE the repeated game has only one SPNE: In the SPNE players’ play the strategies in the NE in each stage. • If the stage game has 2 or more NE, one can find a SPNE where, at some stage, players play a strategy that is not part of a NE of the stage game. 3 The prisoners’ dilemma repeated twice • Two players play the same simultaneous game twice, at ! = 1 and at ! = 2. • After the first time the game is played (after ! = 1) the result is observed before playing the second time. • The payoff in the repeated game is the sum of the payoffs in each stage (! = 1, ! = 2) • Which is the SPNE? Player 2 D C D 1 , 1 5 , 0 Player 1 C 0 , 5 4 , 4 4 The prisoners’ dilemma repeated twice Information sets? Strategies? 1 .1 5 for each player 2" for each player D C E.g.: (C, D, D, C, C) Subgames? 2.1 5 D C D C .2 1.3 1.5 1 1.4 D C D C D C D C 2.2 2.3 2 .4 2.5 D C D C D C D C D C D C D C D C 1+1 1+5 1+0 1+4 5+1 5+5 5+0 5+4 0+1 0+5 0+0 0+4 4+1 4+5 4+0 4+4 1+1 1+0 1+5 1+4 0+1 0+0 0+5 0+4 5+1 5+0 5+5 5+4 4+1 4+0 4+5 4+4 The prisoners’ dilemma repeated twice Let’s find the NE in the subgames. -
Stable Matching: Theory, Evidence, and Practical Design
THE PRIZE IN ECONOMIC SCIENCES 2012 INFORMATION FOR THE PUBLIC Stable matching: Theory, evidence, and practical design This year’s Prize to Lloyd Shapley and Alvin Roth extends from abstract theory developed in the 1960s, over empirical work in the 1980s, to ongoing efforts to fnd practical solutions to real-world prob- lems. Examples include the assignment of new doctors to hospitals, students to schools, and human organs for transplant to recipients. Lloyd Shapley made the early theoretical contributions, which were unexpectedly adopted two decades later when Alvin Roth investigated the market for U.S. doctors. His fndings generated further analytical developments, as well as practical design of market institutions. Traditional economic analysis studies markets where prices adjust so that supply equals demand. Both theory and practice show that markets function well in many cases. But in some situations, the standard market mechanism encounters problems, and there are cases where prices cannot be used at all to allocate resources. For example, many schools and universities are prevented from charging tuition fees and, in the case of human organs for transplants, monetary payments are ruled out on ethical grounds. Yet, in these – and many other – cases, an allocation has to be made. How do such processes actually work, and when is the outcome efcient? Matching theory The Gale-Shapley algorithm Analysis of allocation mechanisms relies on a rather abstract idea. If rational people – who know their best interests and behave accordingly – simply engage in unrestricted mutual trade, then the outcome should be efcient. If it is not, some individuals would devise new trades that made them better of. -
Norms, Repeated Games, and the Role of Law
Norms, Repeated Games, and the Role of Law Paul G. Mahoneyt & Chris William Sanchiricot TABLE OF CONTENTS Introduction ............................................................................................ 1283 I. Repeated Games, Norms, and the Third-Party Enforcement P rob lem ........................................................................................... 12 88 II. B eyond T it-for-Tat .......................................................................... 1291 A. Tit-for-Tat for More Than Two ................................................ 1291 B. The Trouble with Tit-for-Tat, However Defined ...................... 1292 1. Tw o-Player Tit-for-Tat ....................................................... 1293 2. M any-Player Tit-for-Tat ..................................................... 1294 III. An Improved Model of Third-Party Enforcement: "D ef-for-D ev". ................................................................................ 1295 A . D ef-for-D ev's Sim plicity .......................................................... 1297 B. Def-for-Dev's Credible Enforceability ..................................... 1297 C. Other Attractive Properties of Def-for-Dev .............................. 1298 IV. The Self-Contradictory Nature of Self-Enforcement ....................... 1299 A. The Counterfactual Problem ..................................................... 1300 B. Implications for the Self-Enforceability of Norms ................... 1301 C. Game-Theoretic Workarounds ................................................ -
The Portfolio Optimization Performance During Malaysia's
Modern Applied Science; Vol. 14, No. 4; 2020 ISSN 1913-1844 E-ISSN 1913-1852 Published by Canadian Center of Science and Education The Portfolio Optimization Performance during Malaysia’s 2018 General Election by Using Noncooperative and Cooperative Game Theory Approach Muhammad Akram Ramadhan bin Ibrahim1, Pah Chin Hee1, Mohd Aminul Islam1 & Hafizah Bahaludin1 1Department of Computational and Theoretical Sciences Kulliyyah of Science International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia Correspondence: Pah Chin Hee, Department of Computational and Theoretical Sciences, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia. Received: February 10, 2020 Accepted: February 28, 2020 Online Published: March 4, 2020 doi:10.5539/mas.v14n4p1 URL: https://doi.org/10.5539/mas.v14n4p1 Abstract Game theory approach is used in this study that involves two types of games which are noncooperative and cooperative. Noncooperative game is used to get the equilibrium solutions from each payoff matrix. From the solutions, the values then be used as characteristic functions of Shapley value solution concept in cooperative game. In this paper, the sectors are divided into three groups where each sector will have three different stocks for the game. This study used the companies that listed in Bursa Malaysia and the prices of each stock listed in this research obtained from Datastream. The rate of return of stocks are considered as an input to get the payoff from each stock and its coalition sectors. The value of game for each sector is obtained using Shapley value solution concepts formula to find the optimal increase of the returns. The Shapley optimal portfolio, naive diversification portfolio and market portfolio performances have been calculated by using Sharpe ratio. -
Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D
Introduction to Computational Social Choice Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia To cite this version: Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia. Introduction to Computational Social Choice. Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, Ariel D. Procaccia, Handbook of Computational Social Choice, Cambridge University Press, pp.1-29, 2016, 9781107446984. 10.1017/CBO9781107446984. hal-01493516 HAL Id: hal-01493516 https://hal.archives-ouvertes.fr/hal-01493516 Submitted on 21 Mar 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Introduction to Computational Social Choice Felix Brandta, Vincent Conitzerb, Ulle Endrissc, J´er^omeLangd, and Ariel D. Procacciae 1.1 Computational Social Choice at a Glance Social choice theory is the field of scientific inquiry that studies the aggregation of individual preferences towards a collective choice. For example, social choice theorists|who hail from a range of different disciplines, including mathematics, economics, and political science|are interested in the design and theoretical evalu- ation of voting rules. Questions of social choice have stimulated intellectual thought for centuries. Over time the topic has fascinated many a great mind, from the Mar- quis de Condorcet and Pierre-Simon de Laplace, through Charles Dodgson (better known as Lewis Carroll, the author of Alice in Wonderland), to Nobel Laureates such as Kenneth Arrow, Amartya Sen, and Lloyd Shapley. -
Matchings and Games on Networks
Matchings and games on networks by Linda Farczadi A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Combinatorics and Optimization Waterloo, Ontario, Canada, 2015 c Linda Farczadi 2015 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract We investigate computational aspects of popular solution concepts for different models of network games. In chapter 3 we study balanced solutions for network bargaining games with general capacities, where agents can participate in a fixed but arbitrary number of contracts. We fully characterize the existence of balanced solutions and provide the first polynomial time algorithm for their computation. Our methods use a new idea of reducing an instance with general capacities to an instance with unit capacities defined on an auxiliary graph. This chapter is an extended version of the conference paper [32]. In chapter 4 we propose a generalization of the classical stable marriage problem. In our model the preferences on one side of the partition are given in terms of arbitrary bi- nary relations, that need not be transitive nor acyclic. This generalization is practically well-motivated, and as we show, encompasses the well studied hard variant of stable mar- riage where preferences are allowed to have ties and to be incomplete. Our main result shows that deciding the existence of a stable matching in our model is NP-complete. -
John Von Neumann Between Physics and Economics: a Methodological Note
Review of Economic Analysis 5 (2013) 177–189 1973-3909/2013177 John von Neumann between Physics and Economics: A methodological note LUCA LAMBERTINI∗y University of Bologna A methodological discussion is proposed, aiming at illustrating an analogy between game theory in particular (and mathematical economics in general) and quantum mechanics. This analogy relies on the equivalence of the two fundamental operators employed in the two fields, namely, the expected value in economics and the density matrix in quantum physics. I conjecture that this coincidence can be traced back to the contributions of von Neumann in both disciplines. Keywords: expected value, density matrix, uncertainty, quantum games JEL Classifications: B25, B41, C70 1 Introduction Over the last twenty years, a growing amount of attention has been devoted to the history of game theory. Among other reasons, this interest can largely be justified on the basis of the Nobel prize to John Nash, John Harsanyi and Reinhard Selten in 1994, to Robert Aumann and Thomas Schelling in 2005 and to Leonid Hurwicz, Eric Maskin and Roger Myerson in 2007 (for mechanism design).1 However, the literature dealing with the history of game theory mainly adopts an inner per- spective, i.e., an angle that allows us to reconstruct the developments of this sub-discipline under the general headings of economics. My aim is different, to the extent that I intend to pro- pose an interpretation of the formal relationships between game theory (and economics) and the hard sciences. Strictly speaking, this view is not new, as the idea that von Neumann’s interest in mathematics, logic and quantum mechanics is critical to our understanding of the genesis of ∗I would like to thank Jurek Konieczny (Editor), an anonymous referee, Corrado Benassi, Ennio Cavaz- zuti, George Leitmann, Massimo Marinacci, Stephen Martin, Manuela Mosca and Arsen Palestini for insightful comments and discussion. -
Introduction to Game Theory
Economic game theory: a learner centred introduction Author: Dr Peter Kührt Introduction to game theory Game theory is now an integral part of business and politics, showing how decisively it has shaped modern notions of strategy. Consultants use it for projects; managers swot up on it to make smarter decisions. The crucial aim of mathematical game theory is to characterise and establish rational deci- sions for conflict and cooperation situations. The problem with it is that none of the actors know the plans of the other “players” or how they will make the appropriate decisions. This makes it unclear for each player to know how their own specific decisions will impact on the plan of action (strategy). However, you can think about the situation from the perspective of the other players to build an expectation of what they are going to do. Game theory therefore makes it possible to illustrate social conflict situations, which are called “games” in game theory, and solve them mathematically on the basis of probabilities. It is assumed that all participants behave “rationally”. Then you can assign a value and a probability to each decision option, which ultimately allows a computational solution in terms of “benefit or profit optimisation”. However, people are not always strictly rational because seemingly “irrational” results also play a big role for them, e.g. gain in prestige, loss of face, traditions, preference for certain colours, etc. However, these “irrational" goals can also be measured with useful values so that “restricted rational behaviour” can result in computational results, even with these kinds of models.