A Beautiful Math : John Nash, Game Theory, and the Modern Quest for a Code of Nature / Tom Siegfried
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Notices of the American Mathematical Society
ISSN 0002-9920 of the American Mathematical Society February 2006 Volume 53, Number 2 Math Circles and Olympiads MSRI Asks: Is the U.S. Coming of Age? page 200 A System of Axioms of Set Theory for the Rationalists page 206 Durham Meeting page 299 San Francisco Meeting page 302 ICM Madrid 2006 (see page 213) > To mak• an antmat•d tub• plot Animated Tube Plot 1 Type an expression in one or :;)~~~G~~~t;~~i~~~~~~~~~~~~~:rtwo ' 2 Wrth the insertion point in the 3 Open the Plot Properties dialog the same variables Tl'le next animation shows • knot Plot 30 Animated + Tube Scientific Word ... version 5.5 Scientific Word"' offers the same features as Scientific WorkPlace, without the computer algebra system. Editors INTERNATIONAL Morris Weisfeld Editor-in-Chief Enrico Arbarello MATHEMATICS Joseph Bernstein Enrico Bombieri Richard E. Borcherds Alexei Borodin RESEARCH PAPERS Jean Bourgain Marc Burger James W. Cogdell http://www.hindawi.com/journals/imrp/ Tobias Colding Corrado De Concini IMRP provides very fast publication of lengthy research articles of high current interest in Percy Deift all areas of mathematics. All articles are fully refereed and are judged by their contribution Robbert Dijkgraaf to the advancement of the state of the science of mathematics. Issues are published as S. K. Donaldson frequently as necessary. Each issue will contain only one article. IMRP is expected to publish 400± pages in 2006. Yakov Eliashberg Edward Frenkel Articles of at least 50 pages are welcome and all articles are refereed and judged for Emmanuel Hebey correctness, interest, originality, depth, and applicability. Submissions are made by e-mail to Dennis Hejhal [email protected]. -
Game Theory- Prisoners Dilemma Vs Battle of the Sexes EXCERPTS
Lesson 14. Game Theory 1 Lesson 14 Game Theory c 2010, 2011 ⃝ Roberto Serrano and Allan M. Feldman All rights reserved Version C 1. Introduction In the last lesson we discussed duopoly markets in which two firms compete to sell a product. In such markets, the firms behave strategically; each firm must think about what the other firm is doing in order to decide what it should do itself. The theory of duopoly was originally developed in the 19th century, but it led to the theory of games in the 20th century. The first major book in game theory, published in 1944, was Theory of Games and Economic Behavior,byJohnvon Neumann (1903-1957) and Oskar Morgenstern (1902-1977). We will return to the contributions of Von Neumann and Morgenstern in Lesson 19, on uncertainty and expected utility. Agroupofpeople(orteams,firms,armies,countries)areinagame if their decision problems are interdependent, in the sense that the actions that all of them take influence the outcomes for everyone. Game theory is the study of games; it can also be called interactive decision theory. Many real-life interactions can be viewed as games. Obviously football, soccer, and baseball games are games.Butsoaretheinteractionsofduopolists,thepoliticalcampaignsbetweenparties before an election, and the interactions of armed forces and countries. Even some interactions between animal or plant species in nature can be modeled as games. In fact, game theory has been used in many different fields in recent decades, including economics, political science, psychology, sociology, computer science, and biology. This brief lesson is not meant to replace a formal course in game theory; it is only an in- troduction. -
Prisoners of Reason Game Theory and Neoliberal Political Economy
C:/ITOOLS/WMS/CUP-NEW/6549131/WORKINGFOLDER/AMADAE/9781107064034PRE.3D iii [1–28] 11.8.2015 9:57PM Prisoners of Reason Game Theory and Neoliberal Political Economy S. M. AMADAE Massachusetts Institute of Technology C:/ITOOLS/WMS/CUP-NEW/6549131/WORKINGFOLDER/AMADAE/9781107064034PRE.3D iv [1–28] 11.8.2015 9:57PM 32 Avenue of the Americas, New York, ny 10013-2473, usa Cambridge University Press is part of the University of Cambridge. It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence. www.cambridge.org Information on this title: www.cambridge.org/9781107671195 © S. M. Amadae 2015 This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published 2015 Printed in the United States of America A catalog record for this publication is available from the British Library. Library of Congress Cataloging in Publication Data Amadae, S. M., author. Prisoners of reason : game theory and neoliberal political economy / S.M. Amadae. pages cm Includes bibliographical references and index. isbn 978-1-107-06403-4 (hbk. : alk. paper) – isbn 978-1-107-67119-5 (pbk. : alk. paper) 1. Game theory – Political aspects. 2. International relations. 3. Neoliberalism. 4. Social choice – Political aspects. 5. Political science – Philosophy. I. Title. hb144.a43 2015 320.01′5193 – dc23 2015020954 isbn 978-1-107-06403-4 Hardback isbn 978-1-107-67119-5 Paperback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate. -
Repeated Games
REPEATED GAMES 1 Early PD experiments In 1950, Merrill Flood and Melvin Dresher (at RAND) devised an experiment to test Nash’s theory about defection in a two-person prisoners’ dilemma. Experimental Design – They asked two friends to play the PD 100 times. – They measured the success of Nash’s equilibrium concept by counting the number of times the players chose {D;D}. 2 Flood and Dresher’s results Player 1 cooperated in 68 rounds Player 2 cooperated in 78 rounds Both cooperated in 60 of last 89 rounds Flood Dresher Nash 3 Flood and Dresher’s results Player 1 cooperated in 68 rounds Player 2 cooperated in 78 rounds Both cooperated in 60 of last 89 rounds Wait a Ha! That jerk I can’tI’mOh a be Ha! Nash second... Nash was genius...%&@#!wrong! was wrong! wrong! Flood Dresher Nash 4 Nash’s response “If this experiment were conducted with various different players rotating the competition and with no information given to a player of what choices the others have been making until the end of all trials, then the experimental results would have been quite different, for this modification of procedure would remove the interaction between the trials.” 5 Nash’s response “The flaw in this experiment as a test of equilibrium point theory is that the experiment really amounts to having the players play one large multimove game. One cannot...think of the thing as a sequence of independent games...there is too much interaction.” In other words, Nash said that repeating the game changes the game itself. -
Strength in Numbers: the Rising of Academic Statistics Departments In
Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. -
Matchings and Games on Networks
Matchings and games on networks by Linda Farczadi A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Doctor of Philosophy in Combinatorics and Optimization Waterloo, Ontario, Canada, 2015 c Linda Farczadi 2015 Author's Declaration I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract We investigate computational aspects of popular solution concepts for different models of network games. In chapter 3 we study balanced solutions for network bargaining games with general capacities, where agents can participate in a fixed but arbitrary number of contracts. We fully characterize the existence of balanced solutions and provide the first polynomial time algorithm for their computation. Our methods use a new idea of reducing an instance with general capacities to an instance with unit capacities defined on an auxiliary graph. This chapter is an extended version of the conference paper [32]. In chapter 4 we propose a generalization of the classical stable marriage problem. In our model the preferences on one side of the partition are given in terms of arbitrary bi- nary relations, that need not be transitive nor acyclic. This generalization is practically well-motivated, and as we show, encompasses the well studied hard variant of stable mar- riage where preferences are allowed to have ties and to be incomplete. Our main result shows that deciding the existence of a stable matching in our model is NP-complete. -
John Von Neumann Between Physics and Economics: a Methodological Note
Review of Economic Analysis 5 (2013) 177–189 1973-3909/2013177 John von Neumann between Physics and Economics: A methodological note LUCA LAMBERTINI∗y University of Bologna A methodological discussion is proposed, aiming at illustrating an analogy between game theory in particular (and mathematical economics in general) and quantum mechanics. This analogy relies on the equivalence of the two fundamental operators employed in the two fields, namely, the expected value in economics and the density matrix in quantum physics. I conjecture that this coincidence can be traced back to the contributions of von Neumann in both disciplines. Keywords: expected value, density matrix, uncertainty, quantum games JEL Classifications: B25, B41, C70 1 Introduction Over the last twenty years, a growing amount of attention has been devoted to the history of game theory. Among other reasons, this interest can largely be justified on the basis of the Nobel prize to John Nash, John Harsanyi and Reinhard Selten in 1994, to Robert Aumann and Thomas Schelling in 2005 and to Leonid Hurwicz, Eric Maskin and Roger Myerson in 2007 (for mechanism design).1 However, the literature dealing with the history of game theory mainly adopts an inner per- spective, i.e., an angle that allows us to reconstruct the developments of this sub-discipline under the general headings of economics. My aim is different, to the extent that I intend to pro- pose an interpretation of the formal relationships between game theory (and economics) and the hard sciences. Strictly speaking, this view is not new, as the idea that von Neumann’s interest in mathematics, logic and quantum mechanics is critical to our understanding of the genesis of ∗I would like to thank Jurek Konieczny (Editor), an anonymous referee, Corrado Benassi, Ennio Cavaz- zuti, George Leitmann, Massimo Marinacci, Stephen Martin, Manuela Mosca and Arsen Palestini for insightful comments and discussion. -
Prizes and Awards Session
PRIZES AND AWARDS SESSION Wednesday, July 12, 2021 9:00 AM EDT 2021 SIAM Annual Meeting July 19 – 23, 2021 Held in Virtual Format 1 Table of Contents AWM-SIAM Sonia Kovalevsky Lecture ................................................................................................... 3 George B. Dantzig Prize ............................................................................................................................. 5 George Pólya Prize for Mathematical Exposition .................................................................................... 7 George Pólya Prize in Applied Combinatorics ......................................................................................... 8 I.E. Block Community Lecture .................................................................................................................. 9 John von Neumann Prize ......................................................................................................................... 11 Lagrange Prize in Continuous Optimization .......................................................................................... 13 Ralph E. Kleinman Prize .......................................................................................................................... 15 SIAM Prize for Distinguished Service to the Profession ....................................................................... 17 SIAM Student Paper Prizes .................................................................................................................... -
Koopmans in the Soviet Union
Koopmans in the Soviet Union A travel report of the summer of 1965 Till Düppe1 December 2013 Abstract: Travelling is one of the oldest forms of knowledge production combining both discovery and contemplation. Tjalling C. Koopmans, research director of the Cowles Foundation of Research in Economics, the leading U.S. center for mathematical economics, was the first U.S. economist after World War II who, in the summer of 1965, travelled to the Soviet Union for an official visit of the Central Economics and Mathematics Institute of the Soviet Academy of Sciences. Koopmans left with the hope to learn from the experiences of Soviet economists in applying linear programming to economic planning. Would his own theories, as discovered independently by Leonid V. Kantorovich, help increasing allocative efficiency in a socialist economy? Koopmans even might have envisioned a research community across the iron curtain. Yet he came home with the discovery that learning about Soviet mathematical economists might be more interesting than learning from them. On top of that, he found the Soviet scene trapped in the same deplorable situation he knew all too well from home: that mathematicians are the better economists. Key-Words: mathematical economics, linear programming, Soviet economic planning, Cold War, Central Economics and Mathematics Institute, Tjalling C. Koopmans, Leonid V. Kantorovich. Word-Count: 11.000 1 Assistant Professor, Department of economics, Université du Québec à Montréal, Pavillon des Sciences de la gestion, 315, Rue Sainte-Catherine Est, Montréal (Québec), H2X 3X2, Canada, e-mail: [email protected]. A former version has been presented at the conference “Social and human sciences on both sides of the ‘iron curtain’”, October 17-19, 2013, in Moscow. -
Nine Takes on Indeterminacy, with Special Emphasis on the Criminal Law
University of Pennsylvania Carey Law School Penn Law: Legal Scholarship Repository Faculty Scholarship at Penn Law 2015 Nine Takes on Indeterminacy, with Special Emphasis on the Criminal Law Leo Katz University of Pennsylvania Carey Law School Follow this and additional works at: https://scholarship.law.upenn.edu/faculty_scholarship Part of the Criminal Law Commons, Law and Philosophy Commons, and the Public Law and Legal Theory Commons Repository Citation Katz, Leo, "Nine Takes on Indeterminacy, with Special Emphasis on the Criminal Law" (2015). Faculty Scholarship at Penn Law. 1580. https://scholarship.law.upenn.edu/faculty_scholarship/1580 This Article is brought to you for free and open access by Penn Law: Legal Scholarship Repository. It has been accepted for inclusion in Faculty Scholarship at Penn Law by an authorized administrator of Penn Law: Legal Scholarship Repository. For more information, please contact [email protected]. ARTICLE NINE TAKES ON INDETERMINACY, WITH SPECIAL EMPHASIS ON THE CRIMINAL LAW LEO KATZ† INTRODUCTION ............................................................................ 1945 I. TAKE 1: THE COGNITIVE THERAPY PERSPECTIVE ................ 1951 II. TAKE 2: THE MORAL INSTINCT PERSPECTIVE ..................... 1954 III. TAKE 3: THE CORE–PENUMBRA PERSPECTIVE .................... 1959 IV. TAKE 4: THE SOCIAL CHOICE PERSPECTIVE ....................... 1963 V. TAKE 5: THE ANALOGY PERSPECTIVE ................................. 1965 VI. TAKE 6: THE INCOMMENSURABILITY PERSPECTIVE ............ 1968 VII. TAKE 7: THE IRRATIONALITY-OF-DISAGREEMENT PERSPECTIVE ..................................................................... 1969 VIII. TAKE 8: THE SMALL WORLD/LARGE WORLD PERSPECTIVE 1970 IX. TAKE 9: THE RESIDUALIST PERSPECTIVE ........................... 1972 CONCLUSION ................................................................................ 1973 INTRODUCTION The claim that legal disputes have no determinate answer is an old one. The worry is one that assails every first-year law student at some point. -
Game Theory and Its Practical Applications
University of Northern Iowa UNI ScholarWorks Presidential Scholars Theses (1990 – 2006) Honors Program 1997 Game theory and its practical applications Angela M. Koos University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©1997 Angela M. Koos Follow this and additional works at: https://scholarworks.uni.edu/pst Part of the Other Economics Commons Recommended Citation Koos, Angela M., "Game theory and its practical applications" (1997). Presidential Scholars Theses (1990 – 2006). 100. https://scholarworks.uni.edu/pst/100 This Open Access Presidential Scholars Thesis is brought to you for free and open access by the Honors Program at UNI ScholarWorks. It has been accepted for inclusion in Presidential Scholars Theses (1990 – 2006) by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Game Theory and its Practical Applications A Presidential Scholar Senior Thesis University of Northern Iowa by Angela M. Koos Spring 1997 Dr. Ken Brown, 7 Dfrte Thesis and Major Advisor ,~-,, Dr. Ed Rathmell, Date Chair of Presidential Scholars Board Table of Contents Section Page(s) I. Historical Overview 1 I.A. Early Contributions to Game Theory 1 - 3 LB. John von Neumann, the RAND Corporation, and the Arms Race 3 - 7 LC. John Nash 7 - 8 I.D. Other Contributions to Game Theory 9 II. Defining Game Theory 9 - 12 II.A. Formal Representations of Games 12 - 13 II.A. I. Extensive Form 13 - 24 II.A.2. Normal Form 24 - 25 III. The Minimax Theorem 25 - 26 III.A. Preliminary Comments 26 - 27 III.B. The Theorem 27 - 28 IV. -
Why Is Behavioral Game Theory a Game for Economists? the Concept of Beliefs in Equilibrium∗
Why is behavioral game theory a game for economists? The concept of beliefs in equilibrium∗ Michiru Nagatsu Chiara Lisciandray May 7, 2021 Abstract The interdisciplinary exchange between economists and psychologists has so far been more active and fruitful in the modifications of Expected Util- ity Theory than in those of Game Theory. We argue that this asymmetry may be explained by economists' specific way of doing equilibrium analysis of aggregate-level outcomes in their practice, and by psychologists' reluctance to fully engage with such practice. We focus on the notion of belief that is em- bedded in economists' practice of equilibrium analysis, more specifically Nash equilibrium, and argue that its difference from the psychological counterpart is one of the factors that makes interdisciplinary exchange in behavioral game theory more difficult. 1 Introduction One of the most influential texts published in the behavioral and social sciences in the first half of the twentieth century was, according to many, Von Neumann and Morgenstern's (vNM) Theory of Games and Economic Behavior (1944). Not only did the book lay the foundation of game theory, which has become the essential research tool in contemporary economics, it also influenced several other disciplines beyond economics, from political science to linguistics and biology. Two of the most important contributions of Theory of Games and Economic Be- havior to economics are the axiomatic derivation of expected utility (in the second edition of 1947) and the minimax solution to zero-sum games. John Nash general- ized vNM's existence proof of equilibrium in non-zero-sum games in 1951, thereby ∗To appear in Egashira, Taishido, Hands and M¨aki(eds.) (2018) A Genealogy of Self-interest in Economics (Springer).