Cytochrome P450 20A1 in Zebrafish
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Identification and Developmental Expression of the Full Complement Of
Goldstone et al. BMC Genomics 2010, 11:643 http://www.biomedcentral.com/1471-2164/11/643 RESEARCH ARTICLE Open Access Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish Jared V Goldstone1, Andrew G McArthur2, Akira Kubota1, Juliano Zanette1,3, Thiago Parente1,4, Maria E Jönsson1,5, David R Nelson6, John J Stegeman1* Abstract Background: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results: Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates. -
Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia
RESEARCH ARTICLE Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia Helen Eachus,1 Andreas Zaucker,2 James A. Oakes,1,3 Aliesha Griffin,2 Meltem Weger,2 T¨ulay Guran, ¨ 2 Angela Taylor,2 Abigail Harris,4 Andy Greenfield,4 Jonathan L. Quanson,5 Karl-Heinz Storbeck,5 Vincent T. Cunliffe,1 Ferenc Muller, ¨ 6 and Nils Krone1,3 1Department of Biomedical Science, The Bateson Centre, Sheffield S10 2TN, United Kingdom; 2Centre for Endocrinology, Diabetes, and Metabolism, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; 3Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TG, United Kingdom; 4Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire OX11 0RD, United Kingdom; 5Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa; and 6Institute of Cancer and Genomic Sciences, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, United Kingdom Congenital adrenal hyperplasia is a group of common inherited disorders leading to glucocorticoid deficiency. Most cases are caused by 21-hydroxylase deficiency (21OHD). The systemic consequences of imbalanced steroid hormone biosynthesis due to severe 21OHD remains poorly understood. Therefore, we developed a zebrafish model for 21OHD, which focuses on the impairment of glucocorticoid biosynthesis. A single 21-hydroxylase gene (cyp21a2) is annotated in the zebrafish genome based on sequence homology. Our in silico analysis of the 21-hydroxylase (Cyp21a2) protein sequence suggests a sufficient degree of similarity for the usage of zebrafish cyp21a2 to model aspects of human 21OHD in vivo. We determined the spatiotemporal expression patterns of cyp21a2 by whole-mount in situ hybridization and reverse transcription polymerase chain reaction throughout early development. -
Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy. -
(12) Patent Application Publication (10) Pub. No.: US 2011/001412.6 A1 Evans Et Al
US 2011 0014126A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/001412.6 A1 Evans et al. (43) Pub. Date: Jan. 20, 2011 (54) USE OF VITAMIND RECEPTORAGONISTS (60) Provisional application No. 60/985,972, filed on Nov. AND PRECURSORS TO TREAT FIBROSS 6, 2007. (76) Inventors: Ronald M. Evans, La Jolla, CA Publication Classification (US); Michael Downes, San Diego, CA (US); Christopher Liddle, (51) Int. Cl. New South Wales (AU): A 6LX 3/59 (2006.01) Nanthakumar Subramaniam, A6IPL/I6 (2006.01) New South Wales (AU); Caroline CI2O 1/02 (2006.01) Flora Samer, Geneva (CH) A61R 49/00 (2006.01) CI2N 5/071 (2010.01) Correspondence Address: (52) U.S. Cl. ............. 424/9.2: 514/167; 435/29: 435/375 KLARQUIST SPARKMAN, LLP 121 S.W. SALMONSTREET, SUITE 1600 (57) ABSTRACT PORTLAND, OR 97204 (US) This application relates to methods of treating, preventing, (21) Appl. No.: 12/772,981 and ameliorating fibrosis, such as fibrosis of the liver. In particular, the application relates to methods of using a vita (22) Filed: May 3, 2010 min D receptor agonist (Such as vitamin D. Vitamin Dana logs, vitamin D precursors, and vitamin D receptor agonists Related U.S. Application Data precursors) for the treatment of liver fibrosis. Also disclosed (63) Continuation-in-part of application No. 12/266,513, are methods for screening for agents that treat, prevent, and filed on Nov. 6, 2008. ameliorate fibrosis. Stellate Cells Liver RR1,3 AR, ERa ERR1,2,3, AR, ERa CNF GR, MR CNF RARa, GR, MR NF4g Rab NF4ag RARa,b, NOR1 a, RH1 TRa,b WDR NURR1 NOR1 RORa,b,g RORag CAR Receptor SF-1 FXRa,b FXRa,b epissertoup. -
A Critical Role of Follicle-Stimulating Hormone (Fsh) in Mediating the Effect Of
Toxicology 298 (2012) 30–39 Contents lists available at SciVerse ScienceDirect Toxicology j ournal homepage: www.elsevier.com/locate/toxicol A critical role of follicle-stimulating hormone (Fsh) in mediating the effect of clotrimazole on testicular steroidogenesis in adult zebrafish a a a a a Damien Baudiffier , Nathalie Hinfray , Mélanie Vosges , Nicolas Creusot , Edith Chadili , a b a,∗ Jean-Marc Porcher , Rüdiger W. Schulz , Franc¸ ois Brion a Institut National de l’environnement industriel et des risques (INERIS), Direction des Risques Chroniques, Unité d’écotoxicologie in vitro et in vivo, BP 2, 60550 Verneuil-en-Halatte, France b University of Utrecht, Science Faculty, Department Biology, Division Developmental Biology, Reproductive Biology Group, Kruyt Building room W-606, Padualaan 8, NL-3584 CH Utrecht, The Netherlands a r t i c l e i n f o a b s t r a c t Article history: Clotrimazole is a pharmaceutical fungicide known to inhibit several cytochrome P450 enzyme activi- Received 22 February 2012 ties, including several steroidogenic enzymes. This study aimed to assess short-term in vivo effects of Received in revised form 3 April 2012 clotrimazole exposure on blood 11-ketotestosterone (11-KT) levels and on the transcriptional activity of Accepted 21 April 2012 genes in pituitary and testis tissue that are functionally relevant for androgen production with the view Available online 28 April 2012 to further characterize the mode of action of clotrimazole on the hypothalamus-pituitary-gonad axis in zebrafish, a model vertebrate in toxicology. Adult male zebrafish were exposed to measured concentra- Keywords: tions in water of 71, 159 and 258 g/L of clotrimazole for 7 days. -
Novel Copy-Number Variations in Pharmacogenes Contribute to Interindividual Differences in Drug Pharmacokinetics
ORIGINAL RESEARCH ARTICLE © American College of Medical Genetics and Genomics Novel copy-number variations in pharmacogenes contribute to interindividual differences in drug pharmacokinetics María Santos, MSc1, Mikko Niemi, PhD2, Masahiro Hiratsuka, PhD3, Masaki Kumondai, BSc3, Magnus Ingelman-Sundberg, PhD4, Volker M. Lauschke, PhD4 and Cristina Rodríguez-Antona, PhD1,5 Purpose: Variability in pharmacokinetics and drug response is of the genes studied. We experimentally confirmed novel deletions shaped by single-nucleotide variants (SNVs) as well as copy- in CYP2C19, CYP4F2, and SLCO1B3 by Sanger sequencing and number variants (CNVs) in genes with importance for drug validated their allelic frequencies in selected populations. absorption, distribution, metabolism, and excretion (ADME). Conclusion: CNVs are an additional source of pharmacogenetic While SNVs have been extensively studied, a systematic assessment variability with important implications for drug response and of the CNV landscape in ADME genes is lacking. personalized therapy. This, together with the important contribu- Methods: We integrated data from 2,504 whole genomes from the tion of rare alleles to the variability of pharmacogenes, emphasizes 1000 Genomes Project and 59,898 exomes from the Exome the necessity of comprehensive next-generation sequencing–based Aggregation Consortium to identify CNVs in 208 relevant genotype identification for an accurate prediction of the genetic pharmacogenes. variability of drug pharmacokinetics. Results: We describe novel exonic deletions -
Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia
CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Birmingham Research Portal Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia Eachus, Helen; Zaucker, Andreas; Oakes, James A.; Griffin, Aliesha; Weger, Meltem; Güran, Tülay; Taylor, Angela; Harris, Abigail; Greenfield, Andy; Quanson, Jonathan L.; Storbeck, Karl-Heinz; Cunliffe, Vincent T.; Müller, Ferenc; Krone, Nils DOI: 10.1210/en.2017-00549 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Eachus, H, Zaucker, A, Oakes, JA, Griffin, A, Weger, M, Güran, T, Taylor, A, Harris, A, Greenfield, A, Quanson, JL, Storbeck, K-H, Cunliffe, VT, Müller, F & Krone, N 2017, 'Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia' Endocrinology, vol. 158, no. 12, pp. 4165-4173. https://doi.org/10.1210/en.2017- 00549 Link to publication on Research at Birmingham portal Publisher Rights Statement: Published in Endocrinology on 13/09/2017 https://doi.org/10.1210/en.2017-00549 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. -
Rapid Birth–Death Evolution Specific to Xenobiotic Cytochrome P450 Genes in Vertebrates
Rapid Birth–Death Evolution Specific to Xenobiotic Cytochrome P450 Genes in Vertebrates James H. Thomas* Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America Genes vary greatly in their long-term phylogenetic stability and there exists no general explanation for these differences. The cytochrome P450 (CYP450) gene superfamily is well suited to investigating this problem because it is large and well studied, and it includes both stable and unstable genes. CYP450 genes encode oxidase enzymes that function in metabolism of endogenous small molecules and in detoxification of xenobiotic compounds. Both types of enzymes have been intensively studied. My analysis of ten nearly complete vertebrate genomes indicates that each genome contains 50–80 CYP450 genes, which are about evenly divided between phylogenetically stable and unstable genes. The stable genes are characterized by few or no gene duplications or losses in species ranging from bony fish to mammals, whereas unstable genes are characterized by frequent gene duplications and losses (birth–death evolution) even among closely related species. All of the CYP450 genes that encode enzymes with known endogenous substrates are phylogenetically stable. In contrast, most of the unstable genes encode enzymes that function as xenobiotic detoxifiers. Nearly all unstable CYP450 genes in the mouse and human genomes reside in a few dense gene clusters, forming unstable gene islands that arose by recurrent local gene duplication. Evidence for positive selection in amino acid sequence is restricted to these unstable CYP450 genes, and sites of selection are associated with substrate-binding regions in the protein structure. These results can be explained by a general model in which phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure. -
Conformational Changes in Binding of Substrates with Human Cytochrome P450 Enzymes
Book of oral abstracts 100 Conformational changes in binding of substrates with human cytochrome P450 enzymes F. Peter Guengerich, Clayton J. Wilkey, Michael J. Reddish, Sarah M. Glass, and Thanh T. N. Phan Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA Introduction. Extensive evidence now exists that P450 enzymes can exist in multiple conformations, at least in the substrate-bound forms (e.g., crystallography). This multiplicity can be the result of either an induced fit mechanism or conformational selection (selective substrate binding to one of two or more equilibrating P450 conformations). Aims. Kinetic approaches can be used to distinguish between induced fit and conformational selection models. The same energy is involved in reaching the final state, regardless of the kinetic path. Methods. Stopped-flow absorbance and fluorescence measurements were made with recombinant human P450 enzymes. Analysis utilized kinetic modeling software (KinTek Explorer®). Results. P450 17A1 binding to its steroid ligands (pregnenolone and progesterone and the 17-hydroxy derivatives) is dominated by a conformational selection process, as judged by (a) decreasing rates of substrate binding as a function of substrate concentration, (b) opposite patterns of the dependence of binding rates as a function of varying concentrations of (i) substrate and (ii) enzyme, and (c) modeling of the data in KinTek Explorer. The inhibitory drugs orteronel and abiraterone bind P450 17A1 in multi-step processes, apparently in different ways. The dye Nile Red is also a substrate for P450 17A1 and its sequential binding to the enzyme can be resolved in fluorescence and absorbance changes. P450s 2C8, 2D6, 2E1, and 4A11 have also been analyzed with regard to substrate binding and utilize primarily conformational selection models, as revealed by analysis of binding rates vs. -
Expression of CYP2S1 in Human Hepatic Stellate Cells
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 581 (2007) 781–786 Expression of CYP2S1 in human hepatic stellate cells Carylyn J. Mareka, Steven J. Tuckera, Matthew Korutha, Karen Wallacea,b, Matthew C. Wrighta,b,* a School of Medical Sciences, Institute of Medical Science, University of Aberdeen, Aberdeen, UK b Liver Faculty Research Group, School of Clinical and Laboratory Sciences, University of Newcastle, Newcastle, UK Received 22 November 2006; revised 16 January 2007; accepted 23 January 2007 Available online 2 February 2007 Edited by Laszlo Nagy the expression and accumulation of scarring extracellular Abstract Activated stellate cells are myofibroblast-like cells associated with the generation of fibrotic scaring in chronically fibrotic matrix protein [2]. It is currently thought an inhibition damaged liver. Gene chip analysis was performed on cultured fi- of fibrosis in liver diseases may be an effective approach to brotic stellate cells. Of the 51 human CYP genes known, 13 treating patients for which the cause is refractive to current CYP and 5 CYP reduction-related genes were detected with 4 treatments (e.g. in approx. 30% of hepatitis C infected CYPs (CYP1A1, CYP2E1, CY2S1 and CYP4F3) consistently patients) [2,3]. At present, there is no approved treatment for present in stellate cells isolated from three individuals. Quantita- fibrosis. tive RT-PCR indicated that CYP2S1 was a major expressed Inadvertent toxicity of drugs is often associated with a ‘‘met- CYP mRNA transcript. The presence of a CYP2A-related pro- abolic activation’’ by CYPs [1]. -
Rapid Birth–Death Evolution Specific to Xenobiotic Cytochrome P450 Genes in Vertebrates
Rapid Birth–Death Evolution Specific to Xenobiotic Cytochrome P450 Genes in Vertebrates James H. Thomas* Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America Genes vary greatly in their long-term phylogenetic stability and there exists no general explanation for these differences. The cytochrome P450 (CYP450) gene superfamily is well suited to investigating this problem because it is large and well studied, and it includes both stable and unstable genes. CYP450 genes encode oxidase enzymes that function in metabolism of endogenous small molecules and in detoxification of xenobiotic compounds. Both types of enzymes have been intensively studied. My analysis of ten nearly complete vertebrate genomes indicates that each genome contains 50–80 CYP450 genes, which are about evenly divided between phylogenetically stable and unstable genes. The stable genes are characterized by few or no gene duplications or losses in species ranging from bony fish to mammals, whereas unstable genes are characterized by frequent gene duplications and losses (birth–death evolution) even among closely related species. All of the CYP450 genes that encode enzymes with known endogenous substrates are phylogenetically stable. In contrast, most of the unstable genes encode enzymes that function as xenobiotic detoxifiers. Nearly all unstable CYP450 genes in the mouse and human genomes reside in a few dense gene clusters, forming unstable gene islands that arose by recurrent local gene duplication. Evidence for positive selection in amino acid sequence is restricted to these unstable CYP450 genes, and sites of selection are associated with substrate-binding regions in the protein structure. These results can be explained by a general model in which phylogenetically stable genes have core functions in development and physiology, whereas unstable genes have accessory functions associated with unstable environmental interactions such as toxin and pathogen exposure. -
Effect of in Vivo Chronic Exposure to Clotrimazole on Zebrafish Testis Function
Environ Sci Pollut Res DOI 10.1007/s11356-013-1474-7 ECOTOXICOLOGY AND ENVIRONMENTAL TOXICOLOGY : NEW CONCEPTS, NEW TOOLS Effect of in vivo chronic exposure to clotrimazole on zebrafish testis function Damien Baudiffier & Nathalie Hinfray & Catherine Ravaud & Nicolas Creusot & Edith Chadili & Jean-Marc Porcher & Rüdiger W. Schulz & François Brion Received: 1 October 2012 /Accepted: 7 January 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Clotrimazole is an azole fungicide used as a human of 11-KT had increased. Morphometric analysis of the testes pharmaceutical that is known to inhibit cytochrome P450 did not show an effect of clotrimazole on meiotic (CYP) enzymatic activities, including several steroidogenic (spermatocytes) or postmeiotic (spermatids and spermatozoa) CYP. In a previous report, we showed that a 7-day exposure stages, but we observed an increase in the number of type A to clotrimazole induced the expression of genes related to spermatogonia, in agreement with an increase in mRNA levels steroidogenesis in the testes as a compensatory response, in- of piwil1, a specific molecular marker of type A spermatogo- volving the activation of the Fsh/Fshr pathway. In this context, nia. Our study demonstrated that clotrimazole is able to affect the aim of the present study was to assess the effect of an in testicular physiology and raised further concern about the vivo 21-day chronic exposure to clotrimazole (30–197 μg/L) impact of clotrimazole on reproduction. on zebrafish testis function, i.e., spermatogenesis and androgen release. The experimental design combined (1) gene transcript Keywords Clotrimazole . Endocrine disruption . levels measurements along the brain–pituitary–gonad axis, (2) Spermatogenesis .