Effect of in Vivo Chronic Exposure to Clotrimazole on Zebrafish Testis Function

Total Page:16

File Type:pdf, Size:1020Kb

Effect of in Vivo Chronic Exposure to Clotrimazole on Zebrafish Testis Function Environ Sci Pollut Res DOI 10.1007/s11356-013-1474-7 ECOTOXICOLOGY AND ENVIRONMENTAL TOXICOLOGY : NEW CONCEPTS, NEW TOOLS Effect of in vivo chronic exposure to clotrimazole on zebrafish testis function Damien Baudiffier & Nathalie Hinfray & Catherine Ravaud & Nicolas Creusot & Edith Chadili & Jean-Marc Porcher & Rüdiger W. Schulz & François Brion Received: 1 October 2012 /Accepted: 7 January 2013 # Springer-Verlag Berlin Heidelberg 2013 Abstract Clotrimazole is an azole fungicide used as a human of 11-KT had increased. Morphometric analysis of the testes pharmaceutical that is known to inhibit cytochrome P450 did not show an effect of clotrimazole on meiotic (CYP) enzymatic activities, including several steroidogenic (spermatocytes) or postmeiotic (spermatids and spermatozoa) CYP. In a previous report, we showed that a 7-day exposure stages, but we observed an increase in the number of type A to clotrimazole induced the expression of genes related to spermatogonia, in agreement with an increase in mRNA levels steroidogenesis in the testes as a compensatory response, in- of piwil1, a specific molecular marker of type A spermatogo- volving the activation of the Fsh/Fshr pathway. In this context, nia. Our study demonstrated that clotrimazole is able to affect the aim of the present study was to assess the effect of an in testicular physiology and raised further concern about the vivo 21-day chronic exposure to clotrimazole (30–197 μg/L) impact of clotrimazole on reproduction. on zebrafish testis function, i.e., spermatogenesis and androgen release. The experimental design combined (1) gene transcript Keywords Clotrimazole . Endocrine disruption . levels measurements along the brain–pituitary–gonad axis, (2) Spermatogenesis . Steroidogenesis . HPG axis . Zebrafish 11-ketotestosterone (11-KT) quantification in the blood, and (3) histology of the testes, including morphometric analysis. The chronic exposure led to an induction of steroidogenesis- Introduction related genes and fshr in the testes as well as fshβ in the pituitary. Moreover, increases of the gonadosomatic index Spermatogenesis is a cyclic and tightly regulated develop- and of the volume proportion of interstitial Leydig cells were mental process during which a small number of spermato- observed in clotrimazole-exposed fish. In accordance with gonial stem cells proliferate and differentiate to form a large these histological observations, the circulating concentration number of spermatozoa (Nobrega et al. 2009; Schulz et al. 2010). Germ cells can only survive and develop in close and Responsible editor: Markus Hecker continuous relationship with Sertoli cells (Matta et al. 2002). Spermatogenesis is supported by testicular steroidogenesis, Electronic supplementary material The online version of this article a multistep process involving a cascade of enzymatic reac- (doi:10.1007/s11356-013-1474-7) contains supplementary material, which is available to authorized users. tions and producing steroid hormones (Miller 1988; Parker and Schimmer 1995) that control various physiological D. Baudiffier : N. Hinfray : C. Ravaud : N. Creusot : E. Chadili : J.-M. Porcher : F. Brion (*) functions (Miller 1988). Spermatogenesis and steroidogen- Direction des Risques Chroniques, Pôle VIVA, Unité esis are under the control of the hypothalamus–pituitary– d’écotoxicologie in vitro et in vivo, INERIS, gonad (HPG) axis: hypothalamic gonadotropin-releasing Parc Technologique Alata, BP2, hormone stimulates the release of pituitary gonadotropins, 60550 Verneuil-en-Halatte, France e-mail: [email protected] luteinizing hormone (Lh), and follicle-stimulating hormone (Fsh) that interact with their gonadal G protein-coupled R. W. Schulz receptors, Fsh receptor (Fshr) and Lh receptor. Androgenic Science Faculty, Department Biology, Division sex steroids synthesized in Leydig cells in response to Developmental Biology, Reproductive Biology Group, University of Utrecht, Padualaan 8, gonadotropic stimulation interact with the androgen receptor 3584 CH Utrecht, Netherlands expressed by Sertoli or interstitial somatic cells in the testis Environ Sci Pollut Res (Burns and Matzuk 2002; Kumar 2005; Petersen and Soder 2001;Schulzetal.2010), would be affected by 2006; Pierce and Parsons 1981). In fish, testicular expres- clotrimazole. sion sites of gonadotropin receptors overlap in Sertoli and Therefore, the present study aimed at assessing the Leydig cells (Garcia-Lopez et al. 2009; Ohta et al. 2007), effect of a prolonged in vivo exposure of fish to clo- and Fsh is a potent steroidogenic hormone (Kazeto et al. trimazole on steroidogenesis and spermatogenesis, 2008;Planasetal.1993). Follicle stimulating hormone addressing the following questions: (1) Does biological activates the Fshr on Leydig and Sertoli cells to control compensation in response to inhibiting enzymatic activ- steroidogenesis and spermatogenesis, respectively (Garcia- ities still occur after a prolonged 21-day exposure of Lopez et al. 2009, 2010; Ohta et al. 2007; Schulz et al. male fish to clotrimazole at similar concentrations as 2010). In male fish, Leydig cells produce 11-oxygenated those previously used for the 7-day exposure experi- androgens, such as 11-ketotestosterone (11-KT), which ment? (2) Does a prolonged exposure have a significant stimulates spermatogenesis (Miura et al. 1991). Sertoli cells effect on spermatogenesis? but not germ cells expressed functional receptors for both androgens and Fsh, so these cells act as a regulatory inter- face between the endocrine system and the germ cells Methods (Petersen and Soder 2006). Azole fungicides inhibit cytochrome P450 (CYP) 51, 14α- The experimental design and most of the biological analyses lanosterol demethylase, disrupting ergosterol synthesis, and have been described in a previous study (Baudiffier et al. 2012). increasing cell permeability in fungi (Georgopapadakou 1998; Henry and Sisler 1984). Several azole fungicides such as Animals and treatments ketoconazole or prochloraz also inhibit other CYP enzyme activities and have the capacity to alter gonadal steroidogen- All experiments were approved by the ethical committee of the esis and reproductive function in fish (Ankley et al. 2007; National Institute of Industrial Environment and Risks Villeneuve et al. 2007a; Zhang et al. 2008a). For example, (INERIS). Wild-type adult male zebrafish (Danio rerio,AB several azole compounds inhibit steroidogenic cytochrome strain) were obtained from our breeding units (INERIS, P450 17α-hydroxylase/17,20-lyase (Cyp17) and aromatase Verneuil-en-Halatte, France). Fish were raised on a 14:10 light/- (Cyp19) in mammals and fish (Ayub and Levell 1987; dark cycle in a recirculated water system (Tecniplast, France) at Heneweer et al. 2004; Hinfray et al. 2006b; Monod et al. 25.1±1 °C. Clotrimazole (purity≥98 %) was purchased from 1993; Vinggaard et al. 2000). Data on the occurrence and fate Sigma-Aldrich (France), and all the stock solutions were pre- of azole fungicides in the aquatic environment are scarce pared in dimethylsulfoxide (DMSO; Sigma-Aldrich). although the concentrations of several azoles such as clotri- Zebrafish were exposed to three concentrations of clotri- mazole, propiconazole, fluconazole, and tebuconazole have mazole (30, 67, and 197 μg/L) or solvent alone (DMSO, been reported at concentrations ranging from the low nano- 0.004 %v/v) for 21 days under semi-static conditions with a grams per liter to the low micrograms per liter range total renewal of the contaminated water every day (temper- (Berenzen et al. 2005; Kahle et al. 2008;Kreuger1998; ature, 25±0.7 °C; pH, 8.01±0.37; conductivity, 374.5± Peschka et al. 2007; Roberts and Thomas 2006;Thomasand 27.6 μS/cm; dissolved oxygen, 5.8±0.8 mg/L). Each con- Hilton 2004). Despite their occurrence in aquatic habitat, there dition contained 21 fish equally distributed in three replicate exist very few studies on their in vivo endocrine-disrupting 4-L glass tanks. Water samples were collected from each potencies in fish (Brown et al. 2011; Hinfray et al. 2011). condition at day 11 and day 18 at the time of water renewal In a previous short-term experiment of 7 days, we inves- (t=0 h) and 24 h later (t=24 h). tigated the effect of clotrimazole on the pituitary–gonad axis at the molecular level in adult male zebrafish. Our data Fish sampling showed that clotrimazole induced a biological compensation as revealed by increased expression of steroidogenesis- At the end of the exposure, fish were sacrificed in ice-cold related genes and protein de novo synthesis in Leydig cells water and blood (2.5 or 5 μL) was collected. The liver, while the 11-KT plasma concentration was not affected. pituitary, and brain were removed and preserved in RNA Clotrimazole exposure also induced overexpression of pitu- later™ (Sigma-Aldrich, France) until quantification of gene itary fshβ and its testicular receptor fshr. These results expression. The testes were removed, weighted, and pre- suggested that Fsh/Fshr signalling is involved in the served in RNA later™ (Sigma-Aldrich, France) or fixed in clotrimazole-induced steroidogenesis (Baudiffier et al. Bouin’s fluid for histological and immunohistochemistry 2012; Hinfray et al. 2011). Moreover, this raised the ques- experiments. Testis mass was determined to calculate the tion if also spermatogenesis, a process regulated by andro- Gonadosomatic Index (GSI, gonad wet mass/total body wet gens and Fsh (McLachlan et al. 2002; Plant and Marshall mass × 100). Environ Sci Pollut Res Measurement of actual
Recommended publications
  • Identification and Developmental Expression of the Full Complement Of
    Goldstone et al. BMC Genomics 2010, 11:643 http://www.biomedcentral.com/1471-2164/11/643 RESEARCH ARTICLE Open Access Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish Jared V Goldstone1, Andrew G McArthur2, Akira Kubota1, Juliano Zanette1,3, Thiago Parente1,4, Maria E Jönsson1,5, David R Nelson6, John J Stegeman1* Abstract Background: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results: Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates.
    [Show full text]
  • Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia
    RESEARCH ARTICLE Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia Helen Eachus,1 Andreas Zaucker,2 James A. Oakes,1,3 Aliesha Griffin,2 Meltem Weger,2 T¨ulay Guran, ¨ 2 Angela Taylor,2 Abigail Harris,4 Andy Greenfield,4 Jonathan L. Quanson,5 Karl-Heinz Storbeck,5 Vincent T. Cunliffe,1 Ferenc Muller, ¨ 6 and Nils Krone1,3 1Department of Biomedical Science, The Bateson Centre, Sheffield S10 2TN, United Kingdom; 2Centre for Endocrinology, Diabetes, and Metabolism, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, United Kingdom; 3Academic Unit of Child Health, Department of Oncology and Metabolism, University of Sheffield, Sheffield S10 2TG, United Kingdom; 4Mammalian Genetics Unit, Medical Research Council, Harwell Institute, Oxfordshire OX11 0RD, United Kingdom; 5Department of Biochemistry, Stellenbosch University, Stellenbosch, Matieland 7602, South Africa; and 6Institute of Cancer and Genomic Sciences, University of Birmingham, College of Medical and Dental Sciences, Birmingham B15 2TT, United Kingdom Congenital adrenal hyperplasia is a group of common inherited disorders leading to glucocorticoid deficiency. Most cases are caused by 21-hydroxylase deficiency (21OHD). The systemic consequences of imbalanced steroid hormone biosynthesis due to severe 21OHD remains poorly understood. Therefore, we developed a zebrafish model for 21OHD, which focuses on the impairment of glucocorticoid biosynthesis. A single 21-hydroxylase gene (cyp21a2) is annotated in the zebrafish genome based on sequence homology. Our in silico analysis of the 21-hydroxylase (Cyp21a2) protein sequence suggests a sufficient degree of similarity for the usage of zebrafish cyp21a2 to model aspects of human 21OHD in vivo. We determined the spatiotemporal expression patterns of cyp21a2 by whole-mount in situ hybridization and reverse transcription polymerase chain reaction throughout early development.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/001412.6 A1 Evans Et Al
    US 2011 0014126A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/001412.6 A1 Evans et al. (43) Pub. Date: Jan. 20, 2011 (54) USE OF VITAMIND RECEPTORAGONISTS (60) Provisional application No. 60/985,972, filed on Nov. AND PRECURSORS TO TREAT FIBROSS 6, 2007. (76) Inventors: Ronald M. Evans, La Jolla, CA Publication Classification (US); Michael Downes, San Diego, CA (US); Christopher Liddle, (51) Int. Cl. New South Wales (AU): A 6LX 3/59 (2006.01) Nanthakumar Subramaniam, A6IPL/I6 (2006.01) New South Wales (AU); Caroline CI2O 1/02 (2006.01) Flora Samer, Geneva (CH) A61R 49/00 (2006.01) CI2N 5/071 (2010.01) Correspondence Address: (52) U.S. Cl. ............. 424/9.2: 514/167; 435/29: 435/375 KLARQUIST SPARKMAN, LLP 121 S.W. SALMONSTREET, SUITE 1600 (57) ABSTRACT PORTLAND, OR 97204 (US) This application relates to methods of treating, preventing, (21) Appl. No.: 12/772,981 and ameliorating fibrosis, such as fibrosis of the liver. In particular, the application relates to methods of using a vita (22) Filed: May 3, 2010 min D receptor agonist (Such as vitamin D. Vitamin Dana logs, vitamin D precursors, and vitamin D receptor agonists Related U.S. Application Data precursors) for the treatment of liver fibrosis. Also disclosed (63) Continuation-in-part of application No. 12/266,513, are methods for screening for agents that treat, prevent, and filed on Nov. 6, 2008. ameliorate fibrosis. Stellate Cells Liver RR1,3 AR, ERa ERR1,2,3, AR, ERa CNF GR, MR CNF RARa, GR, MR NF4g Rab NF4ag RARa,b, NOR1 a, RH1 TRa,b WDR NURR1 NOR1 RORa,b,g RORag CAR Receptor SF-1 FXRa,b FXRa,b epissertoup.
    [Show full text]
  • A Critical Role of Follicle-Stimulating Hormone (Fsh) in Mediating the Effect Of
    Toxicology 298 (2012) 30–39 Contents lists available at SciVerse ScienceDirect Toxicology j ournal homepage: www.elsevier.com/locate/toxicol A critical role of follicle-stimulating hormone (Fsh) in mediating the effect of clotrimazole on testicular steroidogenesis in adult zebrafish a a a a a Damien Baudiffier , Nathalie Hinfray , Mélanie Vosges , Nicolas Creusot , Edith Chadili , a b a,∗ Jean-Marc Porcher , Rüdiger W. Schulz , Franc¸ ois Brion a Institut National de l’environnement industriel et des risques (INERIS), Direction des Risques Chroniques, Unité d’écotoxicologie in vitro et in vivo, BP 2, 60550 Verneuil-en-Halatte, France b University of Utrecht, Science Faculty, Department Biology, Division Developmental Biology, Reproductive Biology Group, Kruyt Building room W-606, Padualaan 8, NL-3584 CH Utrecht, The Netherlands a r t i c l e i n f o a b s t r a c t Article history: Clotrimazole is a pharmaceutical fungicide known to inhibit several cytochrome P450 enzyme activi- Received 22 February 2012 ties, including several steroidogenic enzymes. This study aimed to assess short-term in vivo effects of Received in revised form 3 April 2012 clotrimazole exposure on blood 11-ketotestosterone (11-KT) levels and on the transcriptional activity of Accepted 21 April 2012 genes in pituitary and testis tissue that are functionally relevant for androgen production with the view Available online 28 April 2012 to further characterize the mode of action of clotrimazole on the hypothalamus-pituitary-gonad axis in zebrafish, a model vertebrate in toxicology. Adult male zebrafish were exposed to measured concentra- Keywords: ␮ tions in water of 71, 159 and 258 g/L of clotrimazole for 7 days.
    [Show full text]
  • Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia
    CORE Metadata, citation and similar papers at core.ac.uk Provided by University of Birmingham Research Portal Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia Eachus, Helen; Zaucker, Andreas; Oakes, James A.; Griffin, Aliesha; Weger, Meltem; Güran, Tülay; Taylor, Angela; Harris, Abigail; Greenfield, Andy; Quanson, Jonathan L.; Storbeck, Karl-Heinz; Cunliffe, Vincent T.; Müller, Ferenc; Krone, Nils DOI: 10.1210/en.2017-00549 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Eachus, H, Zaucker, A, Oakes, JA, Griffin, A, Weger, M, Güran, T, Taylor, A, Harris, A, Greenfield, A, Quanson, JL, Storbeck, K-H, Cunliffe, VT, Müller, F & Krone, N 2017, 'Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia' Endocrinology, vol. 158, no. 12, pp. 4165-4173. https://doi.org/10.1210/en.2017- 00549 Link to publication on Research at Birmingham portal Publisher Rights Statement: Published in Endocrinology on 13/09/2017 https://doi.org/10.1210/en.2017-00549 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
    [Show full text]
  • Cortisol Directly Stimulates Spermatogonial Differentiation
    biomolecules Article Cortisol Directly Stimulates Spermatogonial Differentiation, Meiosis, and Spermiogenesis in Zebrafish (Danio rerio) Testicular Explants Aldo Tovo-Neto 1,2,3 , Emanuel R. M. Martinez 3, Aline G. Melo 3 , Lucas B. Doretto 3 , Arno J. Butzge 3 , Maira S. Rodrigues 1,3 , Rafael T. Nakajima 3 , Hamid R. Habibi 2,4 and Rafael H. Nóbrega 3,* 1 Aquaculture Program (CAUNESP), São Paulo State University, Jaboticabal, 14884-900 SP, Brazil; [email protected] (A.T.-N.); [email protected] (M.S.R.) 2 Department of Biological Sciences, University of Calgary, Calgary, T2N 1N4 AB, Canada; [email protected] 3 Reproductive and Molecular Biology Group, Department of Morphology, Institute of Biosciences, São Paulo State University, Botucatu, 18618-970 SP, Brazil; [email protected] (E.R.M.M.); [email protected] (A.G.M.); [email protected] (L.B.D.); [email protected] (A.J.B.); [email protected] (R.T.N.) 4 Department of Physiology and Pharmacology, University of Calgary, Calgary, T2N 1N4 AB, Canada * Correspondence: [email protected]; Tel.: +55-14-3880-0482 Received: 6 December 2019; Accepted: 14 February 2020; Published: 10 March 2020 Abstract: Cortisol is the major endocrine factor mediating the inhibitory effects of stress on vertebrate reproduction. It is well known that cortisol affects reproduction by interacting with the hypothalamic–pituitary–gonads axis, leading to downstream inhibitory and stimulatory effects on gonads. However, the mechanisms are not fully understood. In this study, we provide novel data demonstrating the stimulatory effects of cortisol on spermatogenesis using an ex vivo organ culture system.
    [Show full text]
  • Ferredoxin 1B Deficiency Leads to Testis Disorganization, Impaired Spermatogenesis and Feminization in Zebrafish
    This is a repository copy of Ferredoxin 1b deficiency leads to testis disorganization, impaired spermatogenesis and feminization in zebrafish. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/148928/ Version: Accepted Version Article: Oakes, J.A., Li, N., Wistow, B.R.C. et al. (5 more authors) (2019) Ferredoxin 1b deficiency leads to testis disorganization, impaired spermatogenesis and feminization in zebrafish. Endocrinology. ISSN 0013-7227 https://doi.org/10.1210/en.2019-00068 This is a pre-copyedited, author-produced version of an article accepted for publication in Endocrinology following peer review. The version of record Oakes, J. et al, Ferredoxin 1b deficiency leads to testis disorganization, impaired spermatogenesis and feminization in zebrafish, Endocrinology, is available online at: https://doi.org/10.1210/en.2019-00068. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Revised Manuscript - Clean Click here to access/download;Revised Manuscript - Clean;en.2019-00068 revised manuscript clean.docx 1 Ferredoxin 1b deficiency leads to testis disorganization, impaired 2 spermatogenesis and feminization in zebrafish 3 4 James A Oakes1,2, Nan Li1,2, Belinda RC Wistow1,2, Aliesha Griffin3, Lise Barnard4, Karl-Heinz Storbeck4, 5 Vincent T Cunliffe2, Nils P Krone1,2,5.
    [Show full text]
  • University of Birmingham Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia
    University of Birmingham Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia Eachus, Helen; Zaucker, Andreas; Oakes, James A.; Griffin, Aliesha; Weger, Meltem; Güran, Tülay; Taylor, Angela; Harris, Abigail; Greenfield, Andy; Quanson, Jonathan L.; Storbeck, Karl-Heinz; Cunliffe, Vincent T.; Müller, Ferenc; Krone, Nils DOI: 10.1210/en.2017-00549 License: Creative Commons: Attribution (CC BY) Document Version Publisher's PDF, also known as Version of record Citation for published version (Harvard): Eachus, H, Zaucker, A, Oakes, JA, Griffin, A, Weger, M, Güran, T, Taylor, A, Harris, A, Greenfield, A, Quanson, JL, Storbeck, K-H, Cunliffe, VT, Müller, F & Krone, N 2017, 'Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia', Endocrinology, vol. 158, no. 12, pp. 4165-4173. https://doi.org/10.1210/en.2017- 00549 Link to publication on Research at Birmingham portal Publisher Rights Statement: Published in Endocrinology on 13/09/2017 https://doi.org/10.1210/en.2017-00549 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.
    [Show full text]
  • Cytochrome P450 20A1 in Zebrafish
    Toxicology and Applied Pharmacology 296 (2016) 73–84 Contents lists available at ScienceDirect Toxicology and Applied Pharmacology journal homepage: www.elsevier.com/locate/ytaap Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders Benjamin Lemaire a,1,2, Akira Kubota a,3, Conor M. O'Meara a, David C. Lamb b,RobertL.Tanguayc, Jared V. Goldstone a, John J. Stegeman a,⁎,2 a Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA b Institute of Life Science, Medical School, Swansea University, Swansea, United Kingdom c Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, USA article info abstract Article history: Cytochrome P450 (CYP) enzymes for which there is no functional information are considered “orphan” CYPs. Received 13 November 2015 Previous studies showed that CYP20A1, an orphan, is expressed in human hippocampus and substantia nigra, Revised 29 January 2016 and in zebrafish (Danio rerio) CYP20A1 maternal transcript occurs in eggs, suggesting involvement in brain and Accepted 1 February 2016 in early development. Moreover, hyperactivity is reported in humans with chromosome 2 microdeletions includ- Available online 4 February 2016 ing CYP20A1. We examined CYP20A1 in zebrafish, including impacts of chemical exposure on expression. Zebrafish CYP20A1 cDNA was cloned, sequenced, and aligned with cloned human CYP20A1 and predicted verte- Keywords: Cytochrome P450 20A1 brate orthologs. CYP20A1s share a highly conserved N-terminal region and unusual sequences in the I-helix and Behavioral disorders the heme-binding CYP signature motifs. CYP20A1 mRNA expression was observed in adult zebrafish organs in- Methylmercury cluding the liver, heart, gonads, spleen and brain, as well as the eye and optic nerve.
    [Show full text]
  • Genetic Disruption of 21-Hydroxylase in Zebrafish Causes Interrenal Hyperplasia
    This is a repository copy of Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/123026/ Version: Accepted Version Article: Eachus, H., Zaucker, A., Oakes, J.A. et al. (11 more authors) (2017) Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia. Endocrinology (00549). ISSN 0013-7227 https://doi.org/10.1210/en.2017-00549 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Genetic disruption of 21-hydroxylase in zebrafish causes interrenal hyperplasia Helen Eachus, Andreas Zaucker, James A Oakes, Aliesha Griffin, Meltem Weger, Tülay Güran, Angela Taylor, Abigail Harris, Andy Greenfield, Jonathan L Quanson, Karl-Heinz Storbeck, Vincent T Cunliffe, Ferenc Müller, Nils Krone Endocrinology Endocrine Society Submitted: June 13, 2017 Accepted: September 07, 2017 First Online: September 13, 2017 Advance Articles are PDF versions of manuscripts that have been peer reviewed and accepted but Endocrinology not yet copyedited.
    [Show full text]
  • The Transcriptomic Signature of Different Sexes in Two Protogynous
    www.nature.com/scientificreports OPEN The transcriptomic signature of diferent sexes in two protogynous hermaphrodites: Insights into the Received: 17 August 2017 Accepted: 14 February 2018 molecular network underlying sex Published: xx xx xxxx phenotype in fsh A. Tsakogiannis1,2, T. Manousaki1, J. Lagnel1, A. Sterioti1, M. Pavlidis2, N. Papandroulakis1, C. C. Mylonas1 & C. S. Tsigenopoulos1 Sex diferentiation is a puzzling problem in fsh due to the variety of reproductive systems and the fexibility of their sex determination mechanisms. The Sparidae, a teleost family, refects this remarkable diversity of sexual mechanisms found in fsh. Our aim was to capture the transcriptomic signature of diferent sexes in two protogynous hermaphrodite sparids, the common pandora Pagellus erythrinus and the red porgy Pagrus pagrus in order to shed light on the molecular network contributing to either the female or the male phenotype in these organisms. Through RNA sequencing, we investigated sex-specifc diferences in gene expression in both species’ brains and gonads. The analysis revealed common male and female specifc genes/pathways between these protogynous fsh. Whereas limited sex diferences found in the brain indicate a sexually plastic tissue, in contrast, the great amount of sex-biased genes observed in gonads refects the functional divergence of the transformed tissue to either its male or female character. Α common “crew” of well-known molecular players is acting to preserve either sex identity of the gonad in these fsh. Lastly, this study lays the ground for a deeper understanding of the complex process of sex diferentiation in two species with an evolutionary signifcant reproductive system.
    [Show full text]
  • Modes De Perturbation De La Stéroïdogenèse Testiculaire Et De La Spermatogenèse Chez Le Poisson Zèbre (Danio Rerio) Par Des Fongicides Azolés Damien Baudiffier
    Modes de perturbation de la stéroïdogenèse testiculaire et de la spermatogenèse chez le poisson zèbre (Danio rerio) par des fongicides azolés Damien Baudiffier To cite this version: Damien Baudiffier. Modes de perturbation de la stéroïdogenèse testiculaire et de la spermatogenèse chez le poisson zèbre (Danio rerio) par des fongicides azolés. Reproduction sexuée. Université Rennes 1, 2012. Français. NNT : 2012REN1S078. tel-00783232 HAL Id: tel-00783232 https://tel.archives-ouvertes.fr/tel-00783232 Submitted on 31 Jan 2013 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : ANNÉE 2012 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Biologie Ecole doctorale Vie – Agronomie – Santé (VAS) présentée par Damien Baudiffier Préparée au sein de l’unité Ecotoxicologie in vitro et in vivo (ECOT) INERIS, Verneuil – en – Halatte Et avec la collaboration du Laboratoire de Physiologie et génomique des poissons, (LPGP) INRA, Rennes Thèse soutenue à l’INERIS Modes
    [Show full text]