Categories of Spaces Built from Local Models

Total Page:16

File Type:pdf, Size:1020Kb

Categories of Spaces Built from Local Models Categories of spaces built from local models Low Zhen Lin Trinity Hall University of Cambridge 20th June 2016 This dissertation is submitted for the degree of Doctor of Philosophy 獻僅 給 以 我 此 ⽗ 論 母 ⽂ This dissertation is dedicated to my parents. Abstract Many of the classes of objects studied in geometry are defined by first choosing a class of nice spaces and then allowing oneself to glue these local models together to construct more general spaces. The most well-known examples are manifolds and schemes. The main purpose of this thesis is to give a unified account of this procedure of constructing a category of spaces built from local models and to study the general properties of such categories of spaces. The theory developed here will be illustrated with reference to examples, including the aforementioned manifolds and schemes. For concreteness, consider the passage from commutative rings to schemes. There are three main steps: first, one identifies a distinguished class of ring homo- morphisms corresponding to open immersions of schemes; second, one defines the notion of an open covering in terms of these distinguished homomorphisms; and finally, one embeds the opposite of the category of commutative ringsin an ambient category in which one can glue (the formal duals of) commutative rings along (the formal duals of) distinguished homomorphisms. Traditionally, the ambient category is taken to be the category of locally ringed spaces, but fol- lowing Grothendieck, one could equally well work in the category of sheaves for the large Zariski site—this is the so-called ‘functor of points approach’. A third option, related to the exact completion of a category, is described in this thesis. The main result can be summarised thus: categories of spaces built from local models are extensive categories with a class of distinguished morphisms, sub- ject to various stability axioms, such that certain equivalence relations (defined relative to the class of distinguished morphisms) have pullback-stable quotients; moreover, this construction is functorial and has a universal property. 君⼦於其⾔︐無所苟⽽已矣。故君⼦名之必可⾔也︐⾔之必可⾏也。刑罰不中︐則民無所措⼿⾜。禮樂不興︐則刑罰不中︔事⾔ 不名 不 成 不 順 ︐ 正 ︐ 則 ︐ 則 禮 則 事 樂 ⾔ 不 不 不 成 興 順 ︔ ︔ ︔ If names be not correct, language is not in accordance with the truth of things. If language be not in accordance with the truth of things, affairs cannot be carried on to success. When affairs cannot be carried on to success, proprieties and music will not flourish. When proprieties and music do not flourish, punishments will not be properly awarded. When punishments are not properly awarded, the people do not know how to move hand or foot. Therefore a superior man considers it necessary that the names he uses may be spoken ︽ 論 語 ‧ ⼦ 路 ︾ appropriately, and also that what he speaks may be carried out appropriately. What the superior man requires is just that in his words there may be nothing incorrect. Analects, Book XIII, translated by James Legge Contents Preface xi Introduction xiii Context .................................. xiii Summary ................................. xiv Outline .................................. xix Guide for readers ............................. xxi Chapter I. Abstract topology 1 1.1. The relative point of view ..................... 1 1.2. Local properties of morphisms . 13 1.3. Regulated categories ........................ 31 1.4. Exact quotients ........................... 40 1.5. Strict coproducts .......................... 61 Chapter II. Charted objects 77 2.1. Sites ................................ 77 2.2. Ecumenae ............................. 89 2.3. Extents ............................... 102 2.4. Functoriality ............................ 117 2.5. Universality ............................ 138 ix Contents Chapter III. Specificities 145 3.1. Compactness ............................ 145 3.2. Discrete fibrations . 153 3.3. Manifolds ............................. 161 3.4. Topological spaces . 166 3.5. Schemes .............................. 174 Appendix A. Generalities 199 a.1. Presheaves ............................. 199 a.2. Coverages ............................. 209 a.3. Sheaves ............................... 223 Bibliography 233 Index 235 x Preface Declaration of originality This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except as declared in the preface and spe- cified in the text. It is not substantially the same as any that I have submitted,or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other university or similar institution except as declared in the preface and specified in the text. I further state that no substan- tial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma, or other qualification at the University of Cambridge or any other university or similar institution except as declared in the preface and specified in the text. xi Preface Acknowledgements I am very grateful to my supervisor, Peter Johnstone, for taking me as a student and allowing me to chart my own course through the last three and a half years. I would also like to thank all the other members of the category theory research group, past and present, whose company I have had the pleasure of having: Mar- tin Hyland, Julia Goedecke, Olivia Caramello, Ignacio López Franco, Nathan Bowler, Rory Lucyshyn-Wright, Guilherme Lima de Carvalho e Silva, Achilleas Kryftis, Christina Vasilakopoulou, Tamara von Glehn, Sori Lee, Filip Bár, Paige North, Enrico Ghiorzi, Adam Lewicki, Sean Moss, Nigel Burke, Georgios Char- alambous, and Eric Faber. Their presence contributed to a stimulating working environment in Cambridge, and I am glad to have been part of it. In this context, I must also mention Jonas Frey and Ohad Kammar, whose regular participation in the category theory seminar surely warrants their inclusion in the preceding list as honorary members of our research group. The internet has been a great boon to researchers all over the world. I have benefited from the insights gleaned from electronic correspondence with fellow mathematicians: Michael Shulman, Aaron Mazel-Gee, Emily Riehl, Qiaochu Yuan, Lukas Brantner, Geoffroy Horel, David White, Martin Brandenburg, and many others besides—primarily users of 푛Forum, MathOverflow, and Mathe- matics StackExchange—who are too numerous to list. In addition, TEX Stack- Exchange has been a very helpful resource for resolving TEXnical difficulties. The research presented in this thesis was conducted mostly during the course of a Ph.D. studentship funded by the Cambridge Commonwealth, European and International Trust and the Department of Pure Mathematics and Mathematical Statistics. I gratefully acknowledge their financial support. Last, but not least, I thank all my friends and family for their moral support, particularly Saran Tunyasuvunakool and Kathryn Atwell, whose friendship I have been fortunate to enjoy over the past seven and a half years. There are no words to express the profundity of my gratitude to my parents. I dedicate this thesis to them. xii Introduction Context Many of the classes of objects studied in geometry are defined by first choosing a class of nice spaces and then allowing oneself to glue these local models together to construct more general spaces. The most well-known examples are manifolds and schemes. In fact, manifolds comprise a whole family of examples: after all, there are smooth manifolds, topological manifolds, complex analytic manifolds, manifolds with boundaries, manifolds with corners, etc. All of these notions of manifold are defined in roughly the same way, namely, as topological spaces equipped with a covering family of open embeddings of local models such that certain regularity conditions are satisfied. On the other hand, the traditional defin- ition of scheme is much more involved: because the local models are not given directly as geometric objects, one has to first find a suitable geometric incarnation of the local models, which is highly non-trivial. Another manifold-like notion is the notion of sheaf. Indeed, a sheaf on a topo- logical space is a topological space obtained by gluing together open subspaces of the base space. This heuristic can be made precise and remains valid for Gro- thendieck’s notion of sheaf on a site: a site is a category equipped with a notion of covering, and a sheaf on a site can be regarded as a formal colimit of a diagram in the base. Thus, it should come as no surprise that manifold-like objects can be represented by sheaves on the category of local models, in the sense that there is a fully faithful functor from the category of manifold-like objects to the category of sheaves. There is an alternative definition of scheme based on the aforementioned sheaf representation: this is called ‘the functor-of-points approach to algebraic geo- xiii Introduction metry’ and can be found in e.g. [Demazure and Gabriel, 1970]. The great advant- age of the definition in terms of functors over the traditional one in terms oflocally ringed spaces is that one no longer needs to explicitly model affine schemes— the local models—as geometric objects; instead, one can just glue together affine schemes formally. In exchange, one has to give up a certain sense of concreteness, but it is precisely the high level of abstraction that makes the functor-of-points approach so amenable to generalisation: one can mimic the functorial definition of ‘scheme’ in
Recommended publications
  • Relations in Categories
    Relations in Categories Stefan Milius A thesis submitted to the Faculty of Graduate Studies in partial fulfilment of the requirements for the degree of Master of Arts Graduate Program in Mathematics and Statistics York University Toronto, Ontario June 15, 2000 Abstract This thesis investigates relations over a category C relative to an (E; M)-factori- zation system of C. In order to establish the 2-category Rel(C) of relations over C in the first part we discuss sufficient conditions for the associativity of horizontal composition of relations, and we investigate special classes of morphisms in Rel(C). Attention is particularly devoted to the notion of mapping as defined by Lawvere. We give a significantly simplified proof for the main result of Pavlovi´c,namely that C Map(Rel(C)) if and only if E RegEpi(C). This part also contains a proof' that the category Map(Rel(C))⊆ is finitely complete, and we present the results obtained by Kelly, some of them generalized, i. e., without the restrictive assumption that M Mono(C). The next part deals with factorization⊆ systems in Rel(C). The fact that each set-relation has a canonical image factorization is generalized and shown to yield an (E¯; M¯ )-factorization system in Rel(C) in case M Mono(C). The setting without this condition is studied, as well. We propose a⊆ weaker notion of factorization system for a 2-category, where the commutativity in the universal property of an (E; M)-factorization system is replaced by coherent 2-cells. In the last part certain limits and colimits in Rel(C) are investigated.
    [Show full text]
  • Category Theory
    Michael Paluch Category Theory April 29, 2014 Preface These note are based in part on the the book [2] by Saunders Mac Lane and on the book [3] by Saunders Mac Lane and Ieke Moerdijk. v Contents 1 Foundations ....................................................... 1 1.1 Extensionality and comprehension . .1 1.2 Zermelo Frankel set theory . .3 1.3 Universes.....................................................5 1.4 Classes and Gödel-Bernays . .5 1.5 Categories....................................................6 1.6 Functors .....................................................7 1.7 Natural Transformations. .8 1.8 Basic terminology . 10 2 Constructions on Categories ....................................... 11 2.1 Contravariance and Opposites . 11 2.2 Products of Categories . 13 2.3 Functor Categories . 15 2.4 The category of all categories . 16 2.5 Comma categories . 17 3 Universals and Limits .............................................. 19 3.1 Universal Morphisms. 19 3.2 Products, Coproducts, Limits and Colimits . 20 3.3 YonedaLemma ............................................... 24 3.4 Free cocompletion . 28 4 Adjoints ........................................................... 31 4.1 Adjoint functors and universal morphisms . 31 4.2 Freyd’s adjoint functor theorem . 38 5 Topos Theory ...................................................... 43 5.1 Subobject classifier . 43 5.2 Sieves........................................................ 45 5.3 Exponentials . 47 vii viii Contents Index .................................................................. 53 Acronyms List of categories. Ab The category of small abelian groups and group homomorphisms. AlgA The category of commutative A-algebras. Cb The category Func(Cop,Sets). Cat The category of small categories and functors. CRings The category of commutative ring with an identity and ring homomor- phisms which preserve identities. Grp The category of small groups and group homomorphisms. Sets Category of small set and functions. Sets Category of small pointed set and pointed functions.
    [Show full text]
  • Quasi-Categories Vs Simplicial Categories
    Quasi-categories vs Simplicial categories Andr´eJoyal January 07 2007 Abstract We show that the coherent nerve functor from simplicial categories to simplicial sets is the right adjoint in a Quillen equivalence between the model category for simplicial categories and the model category for quasi-categories. Introduction A quasi-category is a simplicial set which satisfies a set of conditions introduced by Boardman and Vogt in their work on homotopy invariant algebraic structures [BV]. A quasi-category is often called a weak Kan complex in the literature. The category of simplicial sets S admits a Quillen model structure in which the cofibrations are the monomorphisms and the fibrant objects are the quasi- categories [J2]. We call it the model structure for quasi-categories. The resulting model category is Quillen equivalent to the model category for complete Segal spaces and also to the model category for Segal categories [JT2]. The goal of this paper is to show that it is also Quillen equivalent to the model category for simplicial categories via the coherent nerve functor of Cordier. We recall that a simplicial category is a category enriched over the category of simplicial sets S. To every simplicial category X we can associate a category X0 enriched over the homotopy category of simplicial sets Ho(S). A simplicial functor f : X → Y is called a Dwyer-Kan equivalence if the functor f 0 : X0 → Y 0 is an equivalence of Ho(S)-categories. It was proved by Bergner, that the category of (small) simplicial categories SCat admits a Quillen model structure in which the weak equivalences are the Dwyer-Kan equivalences [B1].
    [Show full text]
  • Lecture Notes on Simplicial Homotopy Theory
    Lectures on Homotopy Theory The links below are to pdf files, which comprise my lecture notes for a first course on Homotopy Theory. I last gave this course at the University of Western Ontario during the Winter term of 2018. The course material is widely applicable, in fields including Topology, Geometry, Number Theory, Mathematical Pysics, and some forms of data analysis. This collection of files is the basic source material for the course, and this page is an outline of the course contents. In practice, some of this is elective - I usually don't get much beyond proving the Hurewicz Theorem in classroom lectures. Also, despite the titles, each of the files covers much more material than one can usually present in a single lecture. More detail on topics covered here can be found in the Goerss-Jardine book Simplicial Homotopy Theory, which appears in the References. It would be quite helpful for a student to have a background in basic Algebraic Topology and/or Homological Algebra prior to working through this course. J.F. Jardine Office: Middlesex College 118 Phone: 519-661-2111 x86512 E-mail: [email protected] Homotopy theories Lecture 01: Homological algebra Section 1: Chain complexes Section 2: Ordinary chain complexes Section 3: Closed model categories Lecture 02: Spaces Section 4: Spaces and homotopy groups Section 5: Serre fibrations and a model structure for spaces Lecture 03: Homotopical algebra Section 6: Example: Chain homotopy Section 7: Homotopical algebra Section 8: The homotopy category Lecture 04: Simplicial sets Section 9:
    [Show full text]
  • A Simplicial Set Is a Functor X : a Op → Set, Ie. a Contravariant Set-Valued
    Contents 9 Simplicial sets 1 10 The simplex category and realization 10 11 Model structure for simplicial sets 15 9 Simplicial sets A simplicial set is a functor X : Dop ! Set; ie. a contravariant set-valued functor defined on the ordinal number category D. One usually writes n 7! Xn. Xn is the set of n-simplices of X. A simplicial map f : X ! Y is a natural transfor- mation of such functors. The simplicial sets and simplicial maps form the category of simplicial sets, denoted by sSet — one also sees the notation S for this category. If A is some category, then a simplicial object in A is a functor A : Dop ! A : Maps between simplicial objects are natural trans- formations. 1 The simplicial objects in A and their morphisms form a category sA . Examples: 1) sGr = simplicial groups. 2) sAb = simplicial abelian groups. 3) s(R − Mod) = simplicial R-modules. 4) s(sSet) = s2Set is the category of bisimplicial sets. Simplicial objects are everywhere. Examples of simplicial sets: 1) We’ve already met the singular set S(X) for a topological space X, in Section 4. S(X) is defined by the cosimplicial space (covari- ant functor) n 7! jDnj, by n S(X)n = hom(jD j;X): q : m ! n defines a function ∗ n q m S(X)n = hom(jD j;X) −! hom(jD j;X) = S(X)m by precomposition with the map q : jDmj ! jDmj. The assignment X 7! S(X) defines a covariant func- tor S : CGWH ! sSet; called the singular functor.
    [Show full text]
  • On the Geometric Realization of Dendroidal Sets
    Fabio Trova On the Geometric Realization of Dendroidal Sets Thesis advisor: Prof. Ieke Moerdijk Leiden University MASTER ALGANT University of Padova Et tu ouvriras parfois ta fenˆetre, comme ¸ca,pour le plaisir. Et tes amis seront bien ´etonn´esde te voir rire en regardant le ciel. Alors tu leur diras: “Oui, les ´etoiles,¸came fait toujours rire!” Et ils te croiront fou. Je t’aurai jou´eun bien vilain tour. A Irene, Lorenzo e Paolo a chi ha fatto della propria vita poesia a chi della poesia ha fatto la propria vita Contents Introduction vii Motivations and main contributions........................... vii 1 Category Theory1 1.1 Categories, functors, natural transformations...................1 1.2 Adjoint functors, limits, colimits..........................4 1.3 Monads........................................7 1.4 More on categories of functors............................ 10 1.5 Monoidal Categories................................. 13 2 Simplicial Sets 19 2.1 The Simplicial Category ∆ .............................. 19 2.2 The category SSet of Simplicial Sets........................ 21 2.3 Geometric Realization................................ 23 2.4 Classifying Spaces.................................. 28 3 Multicategory Theory 29 3.1 Trees.......................................... 29 3.2 Planar Multicategories................................ 31 3.3 Symmetric multicategories.............................. 34 3.4 (co)completeness of Multicat ............................. 37 3.5 Closed monoidal structure in Multicat ....................... 40 4 Dendroidal Sets 43 4.1 The dendroidal category Ω .............................. 43 4.1.1 Algebraic definition of Ω ........................... 44 4.1.2 Operadic definition of Ω ........................... 45 4.1.3 Equivalence of the definitions........................ 46 4.1.4 Faces and degeneracies............................ 48 4.2 The category dSet of Dendroidal Sets........................ 52 4.3 Nerve of a Multicategory............................... 55 4.4 Closed Monoidal structure on dSet ........................
    [Show full text]
  • The Multitopic Ω–Category of All Multitopic Ω–Categories by M. Makkai (Mcgill University) September 2, 1999; Corrected: June 5, 2004
    The multitopic ω–category of all multitopic ω–categories by M. Makkai (McGill University) September 2, 1999; corrected: June 5, 2004 Introduction. Despite its considerable length, this paper is only an announcement. It gives two definitions: that of "multitopic ω-category", and that of "the (large) multitopic set of all (small) multitopic ω-categories". It also announces the theorem that the latter is a multitopic ω-category. The work has two direct sources. One is the paper [H/M/P] in which, among others, the concept of "multitopic set" was introduced. The other is the author's work on FOLDS, first order logic with dependent sorts. The latter was reported on in [M2]. A detailed account of the work on FOLDS is in [M3]. For the understanding of the present paper, what is contained in [M2] suffices. In fact, section 1 of this paper gives the definitions of all that's needed in this paper; so, probably, there won't be even a need to consult [M2]. The concept of multitopic set, the main contribution of [H/M/P], was, in turn, inspired by the work of J. Baez and J. Dolan [B/D]. Multitopic sets are a variant of opetopic sets of loc. cit. The name "multitopic set" refers to multicategories, a concept originally due to J. Lambek [L], and given an only moderately generalized formulation in [H/M/P]. The earlier "opetopic set" is based on a concept of operad; see [B/D]. I should say that the exact relationship of the two concepts ("multitopic set" and "opetopic set") is still not clarified.
    [Show full text]
  • Adhesive and Quasiadhesive Categories ∗
    RAIRO-Inf. Theor. Appl. 39 (2005) 511-545 DOI: 10.1051/ita:2005028 ADHESIVE AND QUASIADHESIVE CATEGORIES ∗ Stephen Lack1 and Pawel Sobocinski´ 2 Abstract. We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well- behaved, as well as quasiadhesive categories which restrict attention to regular monomorphisms. Many examples of graphical structures used in computer science are shown to be examples of adhesive and quasi- adhesive categories. Double-pushout graph rewriting generalizes well to rewriting on arbitrary adhesive and quasiadhesive categories. Mathematics Subject Classification. 18A30, 18A35, 18D99, 68Q42, 68Q65. Introduction Recently there has been renewed interest in reasoning using graphical methods, particularly within the fields of mobility and distributed computing [15,21] as well as applications of semantic techniques in molecular biology [4, 6]. Research has also progressed on specific graphical models of computation [20]. As the number of various models grows, it is important to understand the basic underlying principles of computation on graphical structures. Indeed, a solid understanding of the foundations of a general class of models (provided by adhesive categories), together with a collection of general semantic techniques (for example [23]) will provide practitioners and theoreticians alike with a toolbox of standard techniques with Keywords and phrases. Adhesive categories, quasiadhesive categories, extensive categories, category theory, graph rewriting. ∗ The first author acknowledges the support of the Australian Research Council. The second author acknowledges the support of BRICS, Basic Research in Computer Science (www.brics.dk), funded by the Danish National Research Foundation. 1 School of Quantitative Methods and Mathematical Sciences, University of Western Sydney, Australia.
    [Show full text]
  • Ends and Coends
    THIS IS THE (CO)END, MY ONLY (CO)FRIEND FOSCO LOREGIAN† Abstract. The present note is a recollection of the most striking and use- ful applications of co/end calculus. We put a considerable effort in making arguments and constructions rather explicit: after having given a series of preliminary definitions, we characterize co/ends as particular co/limits; then we derive a number of results directly from this characterization. The last sections discuss the most interesting examples where co/end calculus serves as a powerful abstract way to do explicit computations in diverse fields like Algebra, Algebraic Topology and Category Theory. The appendices serve to sketch a number of results in theories heavily relying on co/end calculus; the reader who dares to arrive at this point, being completely introduced to the mysteries of co/end fu, can regard basically every statement as a guided exercise. Contents Introduction. 1 1. Dinaturality, extranaturality, co/wedges. 3 2. Yoneda reduction, Kan extensions. 13 3. The nerve and realization paradigm. 16 4. Weighted limits 21 5. Profunctors. 27 6. Operads. 33 Appendix A. Promonoidal categories 39 Appendix B. Fourier transforms via coends. 40 References 41 Introduction. The purpose of this survey is to familiarize the reader with the so-called co/end calculus, gathering a series of examples of its application; the author would like to stress clearly, from the very beginning, that the material presented here makes arXiv:1501.02503v2 [math.CT] 9 Feb 2015 no claim of originality: indeed, we put a special care in acknowledging carefully, where possible, each of the many authors whose work was an indispensable source in compiling this note.
    [Show full text]
  • Theories of Presheaf Type
    THEORIES OF PRESHEAF TYPE TIBOR BEKE Introduction Let us say that a geometric theory T is of presheaf type if its classifying topos B[T ] is (equivalent to) a presheaf topos. (We adhere to the convention that geometric logic allows arbitrary disjunctions, while coherent logic means geometric and finitary.) Write Mod(T ) for the category of Set-models and homomorphisms of T . The next proposition is well known; see, for example, MacLane{Moerdijk [13], pp. 381-386, and the textbook of Ad´amek{ Rosick´y[1] for additional information: Proposition 0.1. For a category , the following properties are equivalent: M (i) is a finitely accessible category in the sense of Makkai{Par´e [14], i.e. it has filtered colimitsM and a small dense subcategory of finitely presentable objects C (ii) is equivalent to Pts(Set C), the category of points of some presheaf topos (iii) M is equivalent to the free filtered cocompletion (also known as Ind- ) of a small categoryM . C (iv) is equivalentC to Mod(T ) for some geometric theory of presheaf type. M Moreover, if these are satisfied for a given , then the | in any of (i), (ii) and (iii) | can be taken to be the full subcategory ofM consistingC of finitely presentable objects. (There may be inequivalent choices of , as it isM in general only determined up to idempotent completion; this will not concern us.) C This seems to completely solve the problem of identifying when T is of presheaf type: check whether Mod(T ) is finitely accessible and if so, recover the presheaf topos as Set-functors on the full subcategory of finitely presentable models.
    [Show full text]
  • Discrete Double Fibrations
    Theory and Applications of Categories, Vol. 37, No. 22, 2021, pp. 671{708. DISCRETE DOUBLE FIBRATIONS MICHAEL LAMBERT Abstract. Presheaves on a small category are well-known to correspond via a cate- gory of elements construction to ordinary discrete fibrations over that same small cate- gory. Work of R. Par´eproposes that presheaves on a small double category are certain lax functors valued in the double category of sets with spans. This paper isolates the discrete fibration concept corresponding to this presheaf notion and shows that thecat- egory of elements construction introduced by Par´eleads to an equivalence of virtual double categories. Contents 1 Introduction 671 2 Lax Functors, Elements, and Discrete Double Fibrations 674 3 Monoids, Modules and Multimodulations 686 4 The Full Representation Theorem 699 5 Prospectus and Applications 705 1. Introduction A discrete fibration is functor F : F ! C such that for each arrow f : C ! FY in C , there is a unique arrow f ∗Y ! Y in F whose image under F is f. These correspond to ordinary presheaves DFib(C ) ' [C op; Set] via a well-known \category of elements" construction [MacLane, 1998]. This is a \repre- sentation theorem" in the sense that discrete fibrations over C correspond to set-valued representations C . Investigation of higher-dimensional structures leads to the question of analogues of such well-established developments in lower-dimensional settings. In the case of fibrations, for example, ordinary fibrations have their analogues in “2-fibrations” over a fixedbase 2-category [Buckley, 2014]. Discrete fibrations over a fixed base 2-category have their 2-dimensional version in \discrete 2-fibrations” [Lambert, 2020].
    [Show full text]
  • A Study of Categories of Algebras and Coalgebras
    A Study of Categories of Algebras and Coalgebras Jesse Hughes May, 2001 Department of Philosophy Carnegie Mellon University Pittsburgh PA 15213 Thesis Committee Steve Awodey, Co-Chair Dana Scott, Co-Chair Jeremy Avigad Lawrence Moss, Indiana University Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Abstract This thesis is intended to help develop the theory of coalgebras by, first, taking classic theorems in the theory of universal algebras and dualizing them and, second, developing an internal logic for categories of coalgebras. We begin with an introduction to the categorical approach to algebras and the dual notion of coalgebras. Following this, we discuss (co)algebras for a (co)monad and develop a theory of regular subcoalgebras which will be used in the internal logic. We also prove that categories of coalgebras are complete, under reasonably weak conditions, and simultaneously prove the well-known dual result for categories of algebras. We close the second chapter with a discussion of bisimulations in which we introduce a weaker notion of bisimulation than is current in the literature, but which is well-behaved and reduces to the standard definition under the assumption of choice. The third chapter is a detailed look at three theorem's of G. Birkhoff [Bir35, Bir44], presenting categorical proofs of the theorems which generalize the classical results and which can be easily dualized to apply to categories of coalgebras. The theorems of interest are the variety theorem, the equational completeness theorem and the subdirect product representation theorem. The duals of each of these theorems is discussed in detail, and the dual notion of \coequation" is introduced and several examples given.
    [Show full text]