On the Geometric Realization of Dendroidal Sets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
New Multicategory Boosting Algorithms Based on Multicategory Fisher-Consistent Losses by Hui
The Annals of Applied Statistics 2008, Vol. 2, No. 4, 1290–1306 DOI: 10.1214/08-AOAS198 © Institute of Mathematical Statistics, 2008 NEW MULTICATEGORY BOOSTING ALGORITHMS BASED ON MULTICATEGORY FISHER-CONSISTENT LOSSES BY HUI ZOU1,JI ZHU AND TREVOR HASTIE University of Minnesota , University of Michigan and Stanford University Fisher-consistent loss functions play a fundamental role in the construc- tion of successful binary margin-based classifiers. In this paper we establish the Fisher-consistency condition for multicategory classification problems. Our approach uses the margin vector concept which can be regarded as a multicategory generalization of the binary margin. We characterize a wide class of smooth convex loss functions that are Fisher-consistent for multi- category classification. We then consider using the margin-vector-based loss functions to derive multicategory boosting algorithms. In particular, we de- rive two new multicategory boosting algorithms by using the exponential and logistic regression losses. 1. Introduction. The margin-based classifiers, including the support vector machine (SVM) [Vapnik (1996)] and boosting [Freund and Schapire (1997)], have demonstrated their excellent performances in binary classification problems. Re- cent statistical theory regards binary margin-based classifiers as regularized em- pirical risk minimizers with proper loss functions. Friedman, Hastie and Tibshi- rani (2000) showed that AdaBoost minimizes the novel exponential loss by fitting a forward stage-wise additive model. In the same spirit, Lin (2002) showed that the SVM solves a penalized hinge loss problem and the population minimizer of the hinge loss is exactly the Bayes rule, thus, the SVM directly approximates the Bayes rule without estimating the conditional class probability. -
Category Theory
Michael Paluch Category Theory April 29, 2014 Preface These note are based in part on the the book [2] by Saunders Mac Lane and on the book [3] by Saunders Mac Lane and Ieke Moerdijk. v Contents 1 Foundations ....................................................... 1 1.1 Extensionality and comprehension . .1 1.2 Zermelo Frankel set theory . .3 1.3 Universes.....................................................5 1.4 Classes and Gödel-Bernays . .5 1.5 Categories....................................................6 1.6 Functors .....................................................7 1.7 Natural Transformations. .8 1.8 Basic terminology . 10 2 Constructions on Categories ....................................... 11 2.1 Contravariance and Opposites . 11 2.2 Products of Categories . 13 2.3 Functor Categories . 15 2.4 The category of all categories . 16 2.5 Comma categories . 17 3 Universals and Limits .............................................. 19 3.1 Universal Morphisms. 19 3.2 Products, Coproducts, Limits and Colimits . 20 3.3 YonedaLemma ............................................... 24 3.4 Free cocompletion . 28 4 Adjoints ........................................................... 31 4.1 Adjoint functors and universal morphisms . 31 4.2 Freyd’s adjoint functor theorem . 38 5 Topos Theory ...................................................... 43 5.1 Subobject classifier . 43 5.2 Sieves........................................................ 45 5.3 Exponentials . 47 vii viii Contents Index .................................................................. 53 Acronyms List of categories. Ab The category of small abelian groups and group homomorphisms. AlgA The category of commutative A-algebras. Cb The category Func(Cop,Sets). Cat The category of small categories and functors. CRings The category of commutative ring with an identity and ring homomor- phisms which preserve identities. Grp The category of small groups and group homomorphisms. Sets Category of small set and functions. Sets Category of small pointed set and pointed functions. -
Quasi-Categories Vs Simplicial Categories
Quasi-categories vs Simplicial categories Andr´eJoyal January 07 2007 Abstract We show that the coherent nerve functor from simplicial categories to simplicial sets is the right adjoint in a Quillen equivalence between the model category for simplicial categories and the model category for quasi-categories. Introduction A quasi-category is a simplicial set which satisfies a set of conditions introduced by Boardman and Vogt in their work on homotopy invariant algebraic structures [BV]. A quasi-category is often called a weak Kan complex in the literature. The category of simplicial sets S admits a Quillen model structure in which the cofibrations are the monomorphisms and the fibrant objects are the quasi- categories [J2]. We call it the model structure for quasi-categories. The resulting model category is Quillen equivalent to the model category for complete Segal spaces and also to the model category for Segal categories [JT2]. The goal of this paper is to show that it is also Quillen equivalent to the model category for simplicial categories via the coherent nerve functor of Cordier. We recall that a simplicial category is a category enriched over the category of simplicial sets S. To every simplicial category X we can associate a category X0 enriched over the homotopy category of simplicial sets Ho(S). A simplicial functor f : X → Y is called a Dwyer-Kan equivalence if the functor f 0 : X0 → Y 0 is an equivalence of Ho(S)-categories. It was proved by Bergner, that the category of (small) simplicial categories SCat admits a Quillen model structure in which the weak equivalences are the Dwyer-Kan equivalences [B1]. -
Generalized Enrichment of Categories
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 168 (2002) 391–406 www.elsevier.com/locate/jpaa Generalized enrichment of categories Tom Leinster Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK Received 1 December 1999; accepted 4 May 2001 Abstract We deÿne the phrase ‘category enriched in an fc-multicategory’ and explore some exam- ples. An fc-multicategory is a very general kind of two-dimensional structure, special cases of which are double categories, bicategories, monoidal categories and ordinary multicategories. Enrichment in an fc-multicategory extends the (more or less well-known) theories of enrichment in a monoidal category, in a bicategory, and in a multicategory. Moreover, fc-multicategories provide a natural setting for the bimodules construction, traditionally performed on suitably co- complete bicategories. Although this paper is elementary and self-contained, we also explain why, from one point of view, fc-multicategories are the natural structures in which to enrich categories. c 2001 Elsevier Science B.V. All rights reserved. MSC: 18D20; 18D05; 18D50; 18D10 A general question in category theory is: given some kind of categorical structure, what might it be enriched in? For instance, suppose we take braided monoidal cat- egories. Then the question asks: what kind of thing must V be if we are to speak sensibly of V-enriched braided monoidal categories? (The usual answer is that V must be a symmetricmonoidal category.) In another paper, [7], I have given an answer to the general question for a certain family of categorical structures (generalized multicategories). -
Lecture Notes on Simplicial Homotopy Theory
Lectures on Homotopy Theory The links below are to pdf files, which comprise my lecture notes for a first course on Homotopy Theory. I last gave this course at the University of Western Ontario during the Winter term of 2018. The course material is widely applicable, in fields including Topology, Geometry, Number Theory, Mathematical Pysics, and some forms of data analysis. This collection of files is the basic source material for the course, and this page is an outline of the course contents. In practice, some of this is elective - I usually don't get much beyond proving the Hurewicz Theorem in classroom lectures. Also, despite the titles, each of the files covers much more material than one can usually present in a single lecture. More detail on topics covered here can be found in the Goerss-Jardine book Simplicial Homotopy Theory, which appears in the References. It would be quite helpful for a student to have a background in basic Algebraic Topology and/or Homological Algebra prior to working through this course. J.F. Jardine Office: Middlesex College 118 Phone: 519-661-2111 x86512 E-mail: [email protected] Homotopy theories Lecture 01: Homological algebra Section 1: Chain complexes Section 2: Ordinary chain complexes Section 3: Closed model categories Lecture 02: Spaces Section 4: Spaces and homotopy groups Section 5: Serre fibrations and a model structure for spaces Lecture 03: Homotopical algebra Section 6: Example: Chain homotopy Section 7: Homotopical algebra Section 8: The homotopy category Lecture 04: Simplicial sets Section 9: -
A Simplicial Set Is a Functor X : a Op → Set, Ie. a Contravariant Set-Valued
Contents 9 Simplicial sets 1 10 The simplex category and realization 10 11 Model structure for simplicial sets 15 9 Simplicial sets A simplicial set is a functor X : Dop ! Set; ie. a contravariant set-valued functor defined on the ordinal number category D. One usually writes n 7! Xn. Xn is the set of n-simplices of X. A simplicial map f : X ! Y is a natural transfor- mation of such functors. The simplicial sets and simplicial maps form the category of simplicial sets, denoted by sSet — one also sees the notation S for this category. If A is some category, then a simplicial object in A is a functor A : Dop ! A : Maps between simplicial objects are natural trans- formations. 1 The simplicial objects in A and their morphisms form a category sA . Examples: 1) sGr = simplicial groups. 2) sAb = simplicial abelian groups. 3) s(R − Mod) = simplicial R-modules. 4) s(sSet) = s2Set is the category of bisimplicial sets. Simplicial objects are everywhere. Examples of simplicial sets: 1) We’ve already met the singular set S(X) for a topological space X, in Section 4. S(X) is defined by the cosimplicial space (covari- ant functor) n 7! jDnj, by n S(X)n = hom(jD j;X): q : m ! n defines a function ∗ n q m S(X)n = hom(jD j;X) −! hom(jD j;X) = S(X)m by precomposition with the map q : jDmj ! jDmj. The assignment X 7! S(X) defines a covariant func- tor S : CGWH ! sSet; called the singular functor. -
Models of Classical Linear Logic Via Bifibrations of Polycategories
Models of Classical Linear Logic via Bifibrations of Polycategories N. Blanco and N. Zeilberger School of Computer Science University of Birmingham, UK SYCO5, September 2019 N. Blanco and N. Zeilberger ( School of ComputerModels Science of Classical University Linear of Logic Birmingham, via Bifibrations UK ) of PolycategoriesSYCO5, September 2019 1 / 27 Outline 1 Multicategories and Monoidal categories 2 Opfibration of Multicategories 3 Polycategories and Linearly Distributive Categories 4 Bifibration of polycategories N. Blanco and N. Zeilberger ( School of ComputerModels Science of Classical University Linear of Logic Birmingham, via Bifibrations UK ) of PolycategoriesSYCO5, September 2019 2 / 27 Multicategories and Monoidal categories Outline 1 Multicategories and Monoidal categories N. Blanco and N. Zeilberger ( School of ComputerModels Science of Classical University Linear of Logic Birmingham, via Bifibrations UK ) of PolycategoriesSYCO5, September 2019 3 / 27 Multicategories and Monoidal categories Tensor product of vector spaces In linear algebra: universal property C A; B A ⊗ B In category theory as a structure: a monoidal product ⊗ Universal property of tensor product needs many-to-one maps Category with many-to-one maps ) Multicategory N. Blanco and N. Zeilberger ( School of ComputerModels Science of Classical University Linear of Logic Birmingham, via Bifibrations UK ) of PolycategoriesSYCO5, September 2019 3 / 27 Multicategories and Monoidal categories Multicategory1 Definition A multicategory M has: A collection of objects Γ finite list of objects and A objects Set of multimorphisms M(Γ; A) Identities idA : A ! A f :Γ ! A g :Γ ; A; Γ ! B Composition: 1 2 g ◦i f :Γ1; Γ; Γ2 ! B With usual unitality and associativity and: interchange law: (g ◦ f1) ◦ f2 = (g ◦ f2) ◦ f1 where f1 and f2 are composed in two different inputs of g 1Tom Leinster. -
Tom Leinster
Theory and Applications of Categories, Vol. 12, No. 3, 2004, pp. 73–194. OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY TOM LEINSTER ABSTRACT. The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak n-category. Included is a full explanation of why the proposed definition of n- category is a reasonable one, and of what happens when n ≤ 2. Generalized operads and multicategories play other parts in higher-dimensional algebra too, some of which are outlined here: for instance, they can be used to simplify the opetopic approach to n-categories expounded by Baez, Dolan and others, and are a natural language in which to discuss enrichment of categorical structures. Contents Introduction 73 1 Bicategories 77 2 Operads and multicategories 88 3 More on operads and multicategories 107 4 A definition of weak ω-category 138 A Biased vs. unbiased bicategories 166 B The free multicategory construction 177 C Strict ω-categories 180 D Existence of initial operad-with-contraction 189 References 192 Introduction This paper concerns various aspects of higher-dimensional category theory, and in partic- ular n-categories and generalized operads. We start with a look at bicategories (Section 1). Having reviewed the basics of the classical definition, we define ‘unbiased bicategories’, in which n-fold composites of 1-cells are specified for all natural n (rather than the usual nullary and binary presentation). We go on to show that the theories of (classical) bicategories and of unbiased bicategories are equivalent, in a strong sense. -
Reinforced Multicategory Support Vector Machines
Supplementary materials for this article are available online. PleaseclicktheJCGSlinkathttp://pubs.amstat.org. Reinforced Multicategory Support Vector Machines Yufeng L IU and Ming YUAN Support vector machines are one of the most popular machine learning methods for classification. Despite its great success, the SVM was originally designed for binary classification. Extensions to the multicategory case are important for general classifica- tion problems. In this article, we propose a new class of multicategory hinge loss func- tions, namely reinforced hinge loss functions. Both theoretical and numerical properties of the reinforced multicategory SVMs (MSVMs) are explored. The results indicate that the proposed reinforced MSVMs (RMSVMs) give competitive and stable performance when compared with existing approaches. R implementation of the proposed methods is also available online as supplemental materials. Key Words: Fisher consistency; Multicategory classification; Regularization; SVM. 1. INTRODUCTION Classification is a very important statistical task for information extraction from data. Among numerous classification techniques, the Support Vector Machine (SVM) is one of the most well-known large-margin classifiers and has achieved great success in many ap- plications (Boser, Guyon, and Vapnik 1992; Cortes and Vapnik 1995). The basic concept behind the binary SVM is to find a separating hyperplane with maximum separation be- tween the two classes. Because of its flexibility in estimating the decision boundary using kernel learning as well as its ability in handling high-dimensional data, the SVM has be- come a very popular classifier and has been widely applied in many different fields. More details about the SVM can be found, for example, in the works of Cristianini and Shawe- Taylor (2000), Hastie, Tibshirani, and Friedman (2001), Schölkopf and Smola (2002). -
The Multitopic Ω–Category of All Multitopic Ω–Categories by M. Makkai (Mcgill University) September 2, 1999; Corrected: June 5, 2004
The multitopic ω–category of all multitopic ω–categories by M. Makkai (McGill University) September 2, 1999; corrected: June 5, 2004 Introduction. Despite its considerable length, this paper is only an announcement. It gives two definitions: that of "multitopic ω-category", and that of "the (large) multitopic set of all (small) multitopic ω-categories". It also announces the theorem that the latter is a multitopic ω-category. The work has two direct sources. One is the paper [H/M/P] in which, among others, the concept of "multitopic set" was introduced. The other is the author's work on FOLDS, first order logic with dependent sorts. The latter was reported on in [M2]. A detailed account of the work on FOLDS is in [M3]. For the understanding of the present paper, what is contained in [M2] suffices. In fact, section 1 of this paper gives the definitions of all that's needed in this paper; so, probably, there won't be even a need to consult [M2]. The concept of multitopic set, the main contribution of [H/M/P], was, in turn, inspired by the work of J. Baez and J. Dolan [B/D]. Multitopic sets are a variant of opetopic sets of loc. cit. The name "multitopic set" refers to multicategories, a concept originally due to J. Lambek [L], and given an only moderately generalized formulation in [H/M/P]. The earlier "opetopic set" is based on a concept of operad; see [B/D]. I should say that the exact relationship of the two concepts ("multitopic set" and "opetopic set") is still not clarified. -
Ends and Coends
THIS IS THE (CO)END, MY ONLY (CO)FRIEND FOSCO LOREGIAN† Abstract. The present note is a recollection of the most striking and use- ful applications of co/end calculus. We put a considerable effort in making arguments and constructions rather explicit: after having given a series of preliminary definitions, we characterize co/ends as particular co/limits; then we derive a number of results directly from this characterization. The last sections discuss the most interesting examples where co/end calculus serves as a powerful abstract way to do explicit computations in diverse fields like Algebra, Algebraic Topology and Category Theory. The appendices serve to sketch a number of results in theories heavily relying on co/end calculus; the reader who dares to arrive at this point, being completely introduced to the mysteries of co/end fu, can regard basically every statement as a guided exercise. Contents Introduction. 1 1. Dinaturality, extranaturality, co/wedges. 3 2. Yoneda reduction, Kan extensions. 13 3. The nerve and realization paradigm. 16 4. Weighted limits 21 5. Profunctors. 27 6. Operads. 33 Appendix A. Promonoidal categories 39 Appendix B. Fourier transforms via coends. 40 References 41 Introduction. The purpose of this survey is to familiarize the reader with the so-called co/end calculus, gathering a series of examples of its application; the author would like to stress clearly, from the very beginning, that the material presented here makes arXiv:1501.02503v2 [math.CT] 9 Feb 2015 no claim of originality: indeed, we put a special care in acknowledging carefully, where possible, each of the many authors whose work was an indispensable source in compiling this note. -
Equivalence of Multicategory SVM and Simplex Cone SVM: Fast Computations and Statistical Theory
Equivalence of Multicategory SVM and Simplex Cone SVM: Fast Computations and Statistical Theory Guillaume A. Pouliot 1 Abstract attempts have been made at extending the methodology to The multicategory SVM (MSVM) of Lee et al. accommodate classification with K>2 categories (Sun et (2004) is a natural generalization of the classical, al., 2017; Dogan et al., 2016; Lopez et al., 2016; Kumar binary support vector machines (SVM). However, et al., 2017, survey available in Ma and Guo, 2014). Lee, its use has been limited by computational diffi- Lin and Wahba (2004) propose what is arguably the natural culties. The simplex-cone SVM (SCSVM) of multicategory generalization of binary SVM. For instance, Mroueh et al. (2012) is a computationally ef- their multicategory SVM (MSVM) is Fisher consistent (i.e., ficient multicategory classifier, but its use has the classification rule it produces converges to the Bayes been limited by a seemingly opaque interpreta- rule), which is a key property and motivation for the use tion. We show that MSVM and SCSVM are in standard SVM. Furthermore, it encompasses standard SVM fact exactly equivalent, and provide a bijection as a special case. between their tuning parameters. MSVM may However, the method has not been widely used in applica- then be entertained as both a natural and com- tion, nor has it been studied from a statistical perspective, putationally efficient multicategory extension of the way SVM has been. Amongst the machine learning SVM. We further provide a Donsker theorem for community, MSVM has not gathered popularity commen- finite-dimensional kernel MSVM and partially surate to that of SVM.