The 1-Type of Algebraic K-Theory As a Multifunctor Yaineli Valdes

Total Page:16

File Type:pdf, Size:1020Kb

The 1-Type of Algebraic K-Theory As a Multifunctor Yaineli Valdes Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2018 The 1-Type of Algebraic K-Theory as a Multifunctor Yaineli Valdes Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES THE 1-TYPE OF ALGEBRAIC K-THEORY AS A MULTIFUNCTOR By YAINELI VALDES A Dissertation submitted to the Department of Mathematics in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2018 Copyright © 2018 Yaineli Valdes. All Rights Reserved. Yaineli Valdes defended this dissertation on April 10, 2018. The members of the supervisory committee were: Ettore Aldrovandi Professor Directing Dissertation John Rawling University Representative Amod Agashe Committee Member Paolo Aluffi Committee Member Kate Petersen Committee Member Mark van Hoeij Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii ACKNOWLEDGMENTS The completion of this research was only made possible through the assistance and support from so many throughout my educational career. I am very thankful to my committee members for their dedication as they not only served in my supervisory committee for my dissertation, but as well for my candidacy exam. I also had the immense pleasure of taking some of their courses as a graduate student and I owe much of my research achievements to their great teaching. I am especially thankful to my major professor Dr. Aldrovandi who has been my insight, professor, and guide throughout this research project, and has eloquently taught me so much of what I know today. This would definitely have not been possible if it were not for his support throughout these last several years. I am proud of the work Dr. Aldrovandi and I have completed together and am so grateful to him and everyone else that invested even a minute of their life to help me with this mission. I cannot leave out my family who have always been there for me unconditionally, especially my husband Alejandro who has supported and encouraged me to help me realize my dream. Finally, and most importantly, to my Lord and Savior, the One I owe everything to, for His unconditional love. I am beyond blessed and very hopeful for what the future holds in store! iii TABLE OF CONTENTS Abstract . vi 1 Introduction 1 2 Preliminaries 3 3 (Closed, Symmetric) Multicategories 6 3.1 Definitions . .6 3.2 Examples and Properties . .8 4 Waldhausen Categories 9 4.1 Definitions and Examples . .9 4.2 The closed structure on Wald ............................... 11 4.3 The S∗ Construction . 12 4.4 K-theory for a Waldhausen Category . 13 4.5 K-theory Simplices from Total Simplicial Set . 15 4.6 Classical K-theory of a Ring . 18 5 Picard Groupoids 19 5.1 Definitions and Examples . 19 5.2 The closed structure on Pic ................................ 23 6 Stable Quadratic Modules 25 6.1 Definitions and Properties . 25 6.2 An Algebraic Model for the 1-type of K(W) as a Stable Quadratic Module . 26 7 Crossed Modules 29 7.1 Definitions and Examples . 29 7.2 Properties . 30 8 Determinant Functor 32 8.1 Definitions and Examples . 32 8.2 Universal Determinant Functor for a Waldhausen Category . 34 9 P1K as a Multifunctor 36 9.1 Proof of Main Theorem . 40 iv Appendix A Computations for Proofs 44 A.1 ! defines a natural transformation on morphisms . 44 A.2 ! is a well-defined symmetric, monoidal functor . 50 Bibliography . 52 Biographical Sketch . 54 v ABSTRACT It is known that the category of Waldhausen categories is a closed symmetric multicategory and algebraic K-theory is a functor from the category of Waldhausen categories to the category of spectra. By assigning to any Waldhausen category the fundamental groupoid of the 1-type of its K-theory spectrum, we get a functor from the category of Waldhausen categories to the category of Picard groupoids, since stable 1-types are classified by Picard groupoids. We prove that this functor is a multifunctor to a corresponding multicategory of Picard groupoids. vi CHAPTER 1 INTRODUCTION Given any Waldhausen category, W, we can construct its K-theory spectrum, K(W), and for any exact functor of Waldhausen categories W!V, we get a morphism of spectra K(W) ! K(V). It is well known that given an infinite loop space X its 1-type can be realized as a Picard groupoid, P1(X) [5]. Therefore, realizing the 1-type of the K-theory of a Waldhausen category as a Picard groupoid gives us a functor from the category of Waldhausen categories to the category of Picard groupoids: Wald −−−!P1K Pic W 7! P1(K(W)) We also know that although the category of Waldhausen categories does not have a symmetric monoidal structure, it does have a (closed) symmetric multicategorical structure. (Blumberg and Mandell gave a proof of this in [4], as well as Zakharevich in [2].) We call the multifunctors of Waldhausen categories multiexact functors. Similarly, we can show that Picard groupoids also form a (closed) symmetric multicategory when equipped with multimonoidal functors. Therefore, since P1K is a functor between categories underlying multicategories, a natural question to ask is if it extends to a multifunctor. Our main result answers this question in the affirmative, namely we prove the following theorem: Theorem 9.1. Wald −−−!P1K Pic extends to a multifunctor. To be clear, if a map between multicategories is a just a functor between their underlying categories, then we say it \extends to a multifunctor" if there is a multifunctor between the multi- categories such that when seen as a functor between the underlying categories, it agrees with the original one. This is defined in Definition 3.3. This theorem is based on two main ingredients: (1) the existence of a universal determinant functor detW : wW! P1K(W) 1 that satisfies certain properties, described in detail in section 8.1, where wW is the subcategory of weak equivalences of W; and (2) the closed multicategorical structures on Wald and Pic. The former is known thanks to [2], [4] and we give some attention to the latter. With these premises, our key ingredient is that the functor P1K \respects the closed structures" in the following sense: P1K(Wald(W; V)) ! Pic(P1K(W);P1K(V)) which allows us to prove the theorem. An application of this result is to use this multifunctor to study the algebraic structures on the crossed modules, which model Picard groupoids, coming from multiexact maps of Waldhausen categories. Aldrovandi shows there is an equivalence between bimonoidal functors and biexten- sions of crossed modules, which in fact extends to multimonoidal functors and multiextensions [3]. Therefore, an application of our results is to study the multiextensions corresponding to the multimonoidal functors of Picard groupoids under the multifunctor, PD·. ∗ ∗ ∗ This thesis is organized as follows: we start with reminding the reader of relevant algebraic structures such as Waldhausen categories, Picard groupoids, and stable quadratic modules. We cover universal determinant functors as they play a major role in proving the main result. We also recall the K-theory construction for a Waldhausen category by forming the S-construction. Finally, we end with stating and proving two propositions that allow us to prove the main theorem. Certain cumbersome but necessary computations are in the appendix. 2 CHAPTER 2 PRELIMINARIES Definition 2.1. Let [n] denote the finite, nonempty, totally ordered set f0 < 1 < ··· < ng considered as a category. This means the objects are 0; 1; : : : ; n and 8 ; j > k <> Hom[n](j; k) = idj j = k :>j ! k j < k Definition 2.2. For any two categories C and D, we can form another category Fun(C; D) called the functor category whose objects are functors F : C!D and whose morphism are natural transformations between these functors. Definition 2.3. The arrow category of some category C is Ar C := Fun([1]; C). This is truly the category of arrows in C because any object in Ar C is a functor from [1] !C and such a functor just chooses two objects in C and a morphism between them since there is only two objects in [1] and one non-identity morphism. One particular arrow category used in this thesis is Ar[n]. Definition 2.4. The ordinal category ∆ is the category whose objects are the ordered sets [n] and whose morphisms are order preserving maps. Specifically, f :[m] ! [n] is a morphism in ∆ if whenever i < j in [m], then f(i) ≤ f(j) in [n]. There are special maps in ∆ called the coface and codegeneracy maps. For n ≥ 0, the n + 1 coface maps are the injections di :[n − 1] ! [n], which send j 7! j for all j < i and j 7! j + 1 for j ≥ i. For n ≥ 0, the n + 1 codegeneracy maps are the surjections si :[n + 1] ! [n], which send j 7! j for all j ≤ i and j 7! j − 1 for j > i. These morphisms satisfy several relations and it can be verified that every morphism in ∆ is a composite of coface and codegeneracy maps. A nice reference on this is in [16]. 3 Definition 2.5. A simplicial set is a contravariant functor from the ordinal category to the category of sets. More generally, for any category C, a simplicial object in C, X, is a contravariant functor from the ordinal category to C X : ∆op !C So the data of a simplicial object in C comprises of an object in C for every natural number and face and degeneracy maps, denoted di and si respectively, which are the images of the coface and codegeneracy maps in ∆.
Recommended publications
  • New Multicategory Boosting Algorithms Based on Multicategory Fisher-Consistent Losses by Hui
    The Annals of Applied Statistics 2008, Vol. 2, No. 4, 1290–1306 DOI: 10.1214/08-AOAS198 © Institute of Mathematical Statistics, 2008 NEW MULTICATEGORY BOOSTING ALGORITHMS BASED ON MULTICATEGORY FISHER-CONSISTENT LOSSES BY HUI ZOU1,JI ZHU AND TREVOR HASTIE University of Minnesota , University of Michigan and Stanford University Fisher-consistent loss functions play a fundamental role in the construc- tion of successful binary margin-based classifiers. In this paper we establish the Fisher-consistency condition for multicategory classification problems. Our approach uses the margin vector concept which can be regarded as a multicategory generalization of the binary margin. We characterize a wide class of smooth convex loss functions that are Fisher-consistent for multi- category classification. We then consider using the margin-vector-based loss functions to derive multicategory boosting algorithms. In particular, we de- rive two new multicategory boosting algorithms by using the exponential and logistic regression losses. 1. Introduction. The margin-based classifiers, including the support vector machine (SVM) [Vapnik (1996)] and boosting [Freund and Schapire (1997)], have demonstrated their excellent performances in binary classification problems. Re- cent statistical theory regards binary margin-based classifiers as regularized em- pirical risk minimizers with proper loss functions. Friedman, Hastie and Tibshi- rani (2000) showed that AdaBoost minimizes the novel exponential loss by fitting a forward stage-wise additive model. In the same spirit, Lin (2002) showed that the SVM solves a penalized hinge loss problem and the population minimizer of the hinge loss is exactly the Bayes rule, thus, the SVM directly approximates the Bayes rule without estimating the conditional class probability.
    [Show full text]
  • Introduction to Category Theory (Notes for Course Taught at HUJI, Fall 2020-2021) (UNPOLISHED DRAFT)
    Introduction to category theory (notes for course taught at HUJI, Fall 2020-2021) (UNPOLISHED DRAFT) Alexander Yom Din February 10, 2021 It is never true that two substances are entirely alike, differing only in being two rather than one1. G. W. Leibniz, Discourse on metaphysics 1This can be imagined to be related to at least two of our themes: the imperative of considering a contractible groupoid of objects as an one single object, and also the ideology around Yoneda's lemma ("no two different things have all their properties being exactly the same"). 1 Contents 1 The basic language 3 1.1 Categories . .3 1.2 Functors . .7 1.3 Natural transformations . .9 2 Equivalence of categories 11 2.1 Contractible groupoids . 11 2.2 Fibers . 12 2.3 Fibers and fully faithfulness . 12 2.4 A lemma on fully faithfulness in families . 13 2.5 Definition of equivalence of categories . 14 2.6 Simple examples of equivalence of categories . 17 2.7 Theory of the fundamental groupoid and covering spaces . 18 2.8 Affine algebraic varieties . 23 2.9 The Gelfand transform . 26 2.10 Galois theory . 27 3 Yoneda's lemma, representing objects, limits 27 3.1 Yoneda's lemma . 27 3.2 Representing objects . 29 3.3 The definition of a limit . 33 3.4 Examples of limits . 34 3.5 Dualizing everything . 39 3.6 Examples of colimits . 39 3.7 General colimits in terms of special ones . 41 4 Adjoint functors 42 4.1 Bifunctors . 42 4.2 The definition of adjoint functors . 43 4.3 Some examples of adjoint functors .
    [Show full text]
  • Arxiv:1005.0156V3
    FOUR PROBLEMS REGARDING REPRESENTABLE FUNCTORS G. MILITARU C Abstract. Let R, S be two rings, C an R-coring and RM the category of left C- C C comodules. The category Rep (RM, SM) of all representable functors RM→ S M is C shown to be equivalent to the opposite of the category RMS . For U an (S, R)-bimodule C we give necessary and sufficient conditions for the induction functor U ⊗R − : RM→ SM to be: a representable functor, an equivalence of categories, a separable or a Frobenius functor. The latter results generalize and unify the classical theorems of Morita for categories of modules over rings and the more recent theorems obtained by Brezinski, Caenepeel et al. for categories of comodules over corings. Introduction Let C be a category and V a variety of algebras in the sense of universal algebras. A functor F : C →V is called representable [1] if γ ◦ F : C → Set is representable in the classical sense, where γ : V → Set is the forgetful functor. Four general problems concerning representable functors have been identified: Problem A: Describe the category Rep (C, V) of all representable functors F : C→V. Problem B: Give a necessary and sufficient condition for a given functor F : C→V to be representable (possibly predefining the object of representability). Problem C: When is a composition of two representable functors a representable functor? Problem D: Give a necessary and sufficient condition for a representable functor F : C → V and for its left adjoint to be separable or Frobenius. The pioneer of studying problem A was Kan [10] who described all representable functors from semigroups to semigroups.
    [Show full text]
  • Generalized Enrichment of Categories
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 168 (2002) 391–406 www.elsevier.com/locate/jpaa Generalized enrichment of categories Tom Leinster Department of Pure Mathematics and Mathematical Statistics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WB, UK Received 1 December 1999; accepted 4 May 2001 Abstract We deÿne the phrase ‘category enriched in an fc-multicategory’ and explore some exam- ples. An fc-multicategory is a very general kind of two-dimensional structure, special cases of which are double categories, bicategories, monoidal categories and ordinary multicategories. Enrichment in an fc-multicategory extends the (more or less well-known) theories of enrichment in a monoidal category, in a bicategory, and in a multicategory. Moreover, fc-multicategories provide a natural setting for the bimodules construction, traditionally performed on suitably co- complete bicategories. Although this paper is elementary and self-contained, we also explain why, from one point of view, fc-multicategories are the natural structures in which to enrich categories. c 2001 Elsevier Science B.V. All rights reserved. MSC: 18D20; 18D05; 18D50; 18D10 A general question in category theory is: given some kind of categorical structure, what might it be enriched in? For instance, suppose we take braided monoidal cat- egories. Then the question asks: what kind of thing must V be if we are to speak sensibly of V-enriched braided monoidal categories? (The usual answer is that V must be a symmetricmonoidal category.) In another paper, [7], I have given an answer to the general question for a certain family of categorical structures (generalized multicategories).
    [Show full text]
  • Adjoint and Representable Functors
    What underlies dual-process cognition? Adjoint and representable functors Steven Phillips ([email protected]) Mathematical Neuroinformatics Group, Human Informatics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566 JAPAN Abstract & Stanovich, 2013, for the model and responses to the five criticisms). According to this model, cognition defaults to Despite a general recognition that there are two styles of think- ing: fast, reflexive and relatively effortless (Type 1) versus slow, Type 1 processes that can be intervened upon by Type 2 pro- reflective and effortful (Type 2), dual-process theories of cogni- cesses in response to task demands. However, this model is tion remain controversial, in particular, for their vagueness. To still far from the kinds of formal, computational explanations address this lack of formal precision, we take a mathematical category theory approach towards understanding what under- that prevail in cognitive science. lies the relationship between dual cognitive processes. From our category theory perspective, we show that distinguishing ID Criticism of dual-process theories features of Type 1 versus Type 2 processes are exhibited via adjoint and representable functors. These results suggest that C1 Theories are multitudinous and definitions vague category theory provides a useful formal framework for devel- C2 Type 1/2 distinctions do not reliably align oping dual-process theories of cognition. C3 Cognitive styles vary continuously, not discretely Keywords: dual-process; Type 1; Type 2; category theory; C4 Single-process theories provide better explanations category; functor; natural transformation; adjoint C5 Evidence for dual-processing is unconvincing Introduction Table 2: Five criticisms of dual-process theories (Evans & Intuitively, at least, human cognition involves two starkly dif- Stanovich, 2013).
    [Show full text]
  • On the Geometric Realization of Dendroidal Sets
    Fabio Trova On the Geometric Realization of Dendroidal Sets Thesis advisor: Prof. Ieke Moerdijk Leiden University MASTER ALGANT University of Padova Et tu ouvriras parfois ta fenˆetre, comme ¸ca,pour le plaisir. Et tes amis seront bien ´etonn´esde te voir rire en regardant le ciel. Alors tu leur diras: “Oui, les ´etoiles,¸came fait toujours rire!” Et ils te croiront fou. Je t’aurai jou´eun bien vilain tour. A Irene, Lorenzo e Paolo a chi ha fatto della propria vita poesia a chi della poesia ha fatto la propria vita Contents Introduction vii Motivations and main contributions........................... vii 1 Category Theory1 1.1 Categories, functors, natural transformations...................1 1.2 Adjoint functors, limits, colimits..........................4 1.3 Monads........................................7 1.4 More on categories of functors............................ 10 1.5 Monoidal Categories................................. 13 2 Simplicial Sets 19 2.1 The Simplicial Category ∆ .............................. 19 2.2 The category SSet of Simplicial Sets........................ 21 2.3 Geometric Realization................................ 23 2.4 Classifying Spaces.................................. 28 3 Multicategory Theory 29 3.1 Trees.......................................... 29 3.2 Planar Multicategories................................ 31 3.3 Symmetric multicategories.............................. 34 3.4 (co)completeness of Multicat ............................. 37 3.5 Closed monoidal structure in Multicat ....................... 40 4 Dendroidal Sets 43 4.1 The dendroidal category Ω .............................. 43 4.1.1 Algebraic definition of Ω ........................... 44 4.1.2 Operadic definition of Ω ........................... 45 4.1.3 Equivalence of the definitions........................ 46 4.1.4 Faces and degeneracies............................ 48 4.2 The category dSet of Dendroidal Sets........................ 52 4.3 Nerve of a Multicategory............................... 55 4.4 Closed Monoidal structure on dSet ........................
    [Show full text]
  • Groupoids and Homotopy Types Cahiers De Topologie Et Géométrie Différentielle Catégoriques, Tome 32, No 1 (1991), P
    CAHIERS DE TOPOLOGIE ET GÉOMÉTRIE DIFFÉRENTIELLE CATÉGORIQUES M. M. KAPRANOV V. A. VOEVODSKY ∞-groupoids and homotopy types Cahiers de topologie et géométrie différentielle catégoriques, tome 32, no 1 (1991), p. 29-46. <http://www.numdam.org/item?id=CTGDC_1991__32_1_29_0> © Andrée C. Ehresmann et les auteurs, 1991, tous droits réservés. L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute uti- lisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ CAHIERS DE TOPOLOGIE VOL. XXXII-1 (1991) ET CEOMETRIE DIFFERENTIELLE ~-GROUPOIDS AND HOMOTOPY TYPES by M.M. KAPRANOV and V.A. VOEVODSKY RESUME. Nous pr6sentons une description de la categorie homotopique des CW-complexes en termes des oo-groupoïdes. La possibilit6 d’une telle description a dt6 suggeree par A. Grothendieck dans son memoire "A la poursuite des champs". It is well-known [GZ] that CW-complexes X such that ni(X,x) =0 for all i z 2 , x E X , are described, at the homotopy level, by groupoids. A. Grothendieck suggested, in his unpublished memoir [Gr], that this connection should have a higher-dimensional generalisation involving polycategories. viz. polycategorical analogues of groupoids. It is the pur- pose of this paper to establish such a generalisation. To do this we deal with the globular version of the notion of a polycategory [Sl], [MS], [BH2], where a p- morphism has the "shape" of a p-globe i.e.
    [Show full text]
  • Categories and Functors, the Zariski Topology, and the Functor Spec
    Categories and functors, the Zariski topology, and the functor Spec We do not want to dwell too much on set-theoretic issues but they arise naturally here. We shall allow a class of all sets. Typically, classes are very large and are not allowed to be elements. The objects of a category are allowed to be a class, but morphisms between two objects are required to be a set. A category C consists of a class Ob (C) called the objects of C and, for each pair of objects X; Y 2 Ob (C) a set Mor (X; Y ) called the morphisms from X to Y with the following additional structure: for any three given objects X; Y and Z there is a map Mor (X; Y ) × Mor (Y; Z) ! Mor (X; Z) called composition such that three axioms given below hold. One writes f : X ! Y or f X −! Y to mean that f 2 Mor (X; Y ). If f : X ! Y and g : Y ! Z then the composition is denoted g ◦ f or gf. The axioms are as follows: (0) Mor (X; Y ) and Mor (X0;Y 0) are disjoint unless X = X0 and Y = Y 0. (1) For every object X there is an element denoted 1X or idX in Mor (X; X) such that if g : W ! X then 1X ◦ g = g while if h : X ! Y then h ◦ 1X = h. (2) If f : W ! X, g : X ! Y , and h : Y ! Z then h ◦ (g ◦ f) = (h ◦ g) ◦ f (associativity of composition). The morphism 1X is called the identity morphism on X and one can show that it is unique.
    [Show full text]
  • Models of Classical Linear Logic Via Bifibrations of Polycategories
    Models of Classical Linear Logic via Bifibrations of Polycategories N. Blanco and N. Zeilberger School of Computer Science University of Birmingham, UK SYCO5, September 2019 N. Blanco and N. Zeilberger ( School of ComputerModels Science of Classical University Linear of Logic Birmingham, via Bifibrations UK ) of PolycategoriesSYCO5, September 2019 1 / 27 Outline 1 Multicategories and Monoidal categories 2 Opfibration of Multicategories 3 Polycategories and Linearly Distributive Categories 4 Bifibration of polycategories N. Blanco and N. Zeilberger ( School of ComputerModels Science of Classical University Linear of Logic Birmingham, via Bifibrations UK ) of PolycategoriesSYCO5, September 2019 2 / 27 Multicategories and Monoidal categories Outline 1 Multicategories and Monoidal categories N. Blanco and N. Zeilberger ( School of ComputerModels Science of Classical University Linear of Logic Birmingham, via Bifibrations UK ) of PolycategoriesSYCO5, September 2019 3 / 27 Multicategories and Monoidal categories Tensor product of vector spaces In linear algebra: universal property C A; B A ⊗ B In category theory as a structure: a monoidal product ⊗ Universal property of tensor product needs many-to-one maps Category with many-to-one maps ) Multicategory N. Blanco and N. Zeilberger ( School of ComputerModels Science of Classical University Linear of Logic Birmingham, via Bifibrations UK ) of PolycategoriesSYCO5, September 2019 3 / 27 Multicategories and Monoidal categories Multicategory1 Definition A multicategory M has: A collection of objects Γ finite list of objects and A objects Set of multimorphisms M(Γ; A) Identities idA : A ! A f :Γ ! A g :Γ ; A; Γ ! B Composition: 1 2 g ◦i f :Γ1; Γ; Γ2 ! B With usual unitality and associativity and: interchange law: (g ◦ f1) ◦ f2 = (g ◦ f2) ◦ f1 where f1 and f2 are composed in two different inputs of g 1Tom Leinster.
    [Show full text]
  • Introduction to Categories
    6 Introduction to categories 6.1 The definition of a category We have now seen many examples of representation theories and of operations with representations (direct sum, tensor product, induction, restriction, reflection functors, etc.) A context in which one can systematically talk about this is provided by Category Theory. Category theory was founded by Saunders MacLane and Samuel Eilenberg around 1940. It is a fairly abstract theory which seemingly has no content, for which reason it was christened “abstract nonsense”. Nevertheless, it is a very flexible and powerful language, which has become totally indispensable in many areas of mathematics, such as algebraic geometry, topology, representation theory, and many others. We will now give a very short introduction to Category theory, highlighting its relevance to the topics in representation theory we have discussed. For a serious acquaintance with category theory, the reader should use the classical book [McL]. Definition 6.1. A category is the following data: C (i) a class of objects Ob( ); C (ii) for every objects X; Y Ob( ), the class Hom (X; Y ) = Hom(X; Y ) of morphisms (or 2 C C arrows) from X; Y (for f Hom(X; Y ), one may write f : X Y ); 2 ! (iii) For any objects X; Y; Z Ob( ), a composition map Hom(Y; Z) Hom(X; Y ) Hom(X; Z), 2 C × ! (f; g) f g, 7! ∞ which satisfy the following axioms: 1. The composition is associative, i.e., (f g) h = f (g h); ∞ ∞ ∞ ∞ 2. For each X Ob( ), there is a morphism 1 Hom(X; X), called the unit morphism, such 2 C X 2 that 1 f = f and g 1 = g for any f; g for which compositions make sense.
    [Show full text]
  • Tom Leinster
    Theory and Applications of Categories, Vol. 12, No. 3, 2004, pp. 73–194. OPERADS IN HIGHER-DIMENSIONAL CATEGORY THEORY TOM LEINSTER ABSTRACT. The purpose of this paper is to set up a theory of generalized operads and multicategories and to use it as a language in which to propose a definition of weak n-category. Included is a full explanation of why the proposed definition of n- category is a reasonable one, and of what happens when n ≤ 2. Generalized operads and multicategories play other parts in higher-dimensional algebra too, some of which are outlined here: for instance, they can be used to simplify the opetopic approach to n-categories expounded by Baez, Dolan and others, and are a natural language in which to discuss enrichment of categorical structures. Contents Introduction 73 1 Bicategories 77 2 Operads and multicategories 88 3 More on operads and multicategories 107 4 A definition of weak ω-category 138 A Biased vs. unbiased bicategories 166 B The free multicategory construction 177 C Strict ω-categories 180 D Existence of initial operad-with-contraction 189 References 192 Introduction This paper concerns various aspects of higher-dimensional category theory, and in partic- ular n-categories and generalized operads. We start with a look at bicategories (Section 1). Having reviewed the basics of the classical definition, we define ‘unbiased bicategories’, in which n-fold composites of 1-cells are specified for all natural n (rather than the usual nullary and binary presentation). We go on to show that the theories of (classical) bicategories and of unbiased bicategories are equivalent, in a strong sense.
    [Show full text]
  • Reinforced Multicategory Support Vector Machines
    Supplementary materials for this article are available online. PleaseclicktheJCGSlinkathttp://pubs.amstat.org. Reinforced Multicategory Support Vector Machines Yufeng L IU and Ming YUAN Support vector machines are one of the most popular machine learning methods for classification. Despite its great success, the SVM was originally designed for binary classification. Extensions to the multicategory case are important for general classifica- tion problems. In this article, we propose a new class of multicategory hinge loss func- tions, namely reinforced hinge loss functions. Both theoretical and numerical properties of the reinforced multicategory SVMs (MSVMs) are explored. The results indicate that the proposed reinforced MSVMs (RMSVMs) give competitive and stable performance when compared with existing approaches. R implementation of the proposed methods is also available online as supplemental materials. Key Words: Fisher consistency; Multicategory classification; Regularization; SVM. 1. INTRODUCTION Classification is a very important statistical task for information extraction from data. Among numerous classification techniques, the Support Vector Machine (SVM) is one of the most well-known large-margin classifiers and has achieved great success in many ap- plications (Boser, Guyon, and Vapnik 1992; Cortes and Vapnik 1995). The basic concept behind the binary SVM is to find a separating hyperplane with maximum separation be- tween the two classes. Because of its flexibility in estimating the decision boundary using kernel learning as well as its ability in handling high-dimensional data, the SVM has be- come a very popular classifier and has been widely applied in many different fields. More details about the SVM can be found, for example, in the works of Cristianini and Shawe- Taylor (2000), Hastie, Tibshirani, and Friedman (2001), Schölkopf and Smola (2002).
    [Show full text]