Photograph 51

Total Page:16

File Type:pdf, Size:1020Kb

Photograph 51 SC 55th Season • 525th Production JULIANNE ARGYROS STAGE / MARCH 3-24, 2019 David Ivers Paula Tomei ARTISTIC DIRECTOR MANAGING DIRECTOR David Emmes & Martin Benson FOUNDING ARTISTIC DIRECTORS presents PHOTOGRAPH 51 by Anna Ziegler Cameron Anderson Elisa Benzoni Jaymi Lee Smith Cricket Myers SCENIC DESIGN COSTUME DESIGN LIGHTING DESIGN SOUND DESIGN Holly Ahlborn Joanne DeNaut, CSa Alyssa Escalante PRODUCTION MANAGER CASTING STAGE MANAGER Directed by Kimberly Senior Joan & Andy Fimiano Jean & Tim Weiss Honorary Producer Honorary Producer BNY Mellon Wealth Management Corporate Honorary Associate Producer This play is the winner of the 2008 STAGE International Script Competition and was developed, in part, through the University of California, Santa Barbara’s STAGE Project by the Professional Artists Lab (Nancy Kawalek, Director) and the California NanoSystems Institute. PHOTOGRAPH 51 was developed by The Ensemble Studio Theatre/Alfred P. Sloan Foundation Science and Technology Project and received its New York premiere at the Ensemble Studio Theatre on October 27, 2010. Originally commissioned and produced by Active Cultures,The Vernacular Theatre for Maryland. Opening Night on Sunday, February 10, 2008. PHOTOGRAPH 51 was developed by the Cape Cod Theatre Project. PHOTOGRAPH 51 is presented by special arrangement with Dramatists Play Service, Inc., New York. Photograph 51 • South CoaSt RepeRtoRy • P1 CAST OF CHARACTERS Don Caspar ..................................................................................... Josh Odsess-Rubin Francis Crick .................................................................................. Anil Margsahayam Rosalind Franklin ..................................................................................... Helen Sadler Ray Gosling ............................................................................................. Riley Neldam James Watson ................................................................................... Giovanni Adams Maurice Wilkins .................................................................................... George Ketsios SETTING 1951-53, various labs and offices in England LENGTH Approximately 1 hour and 40 minutes with no intermission. PRODUCTION STAFF Dramaturg .................................................................................................. Kat Zukaitis Production Assistant .............................................................................. Ruben Bolivar Assistant Director ..................................................................................... Ariella Wolfe Accent Consultant .................................................................................. Ursula Meyer Movement Consultant ................................................................................ Ken Merckx Costume Design Assistant ........................................................... Jaymee Ngernwichit Assistant to the Lighting Designer ......................................................... Avery Reagan Stage Management Intern ..................................................................... Georgi Hughes Light Board Operator .................................................................................. Sean Deuel Sound Board Operator ................................................................................ Jim Busker Dresser ................................................................................................ Lexi Noseworthy Wig and Makeup Technician ............................................................. Gillian Woodson Additional Costume Staff ........................................... Lalena Hutton, Erik Lawrence The Actors and Stage Managers employed in this production are members of Actors’ Equity Association, the Union of Professional Actors and Stage Managers in the United States. Please refrain from unwrapping candy or making other noises that may disturb surrounding patrons and the actors. Videotaping and/or recording of this performance by any means whatsoever are strictly prohibited. Electronic devices should be turned off or set to non-audible mode during the performance. Smoking is not permitted anywhere in the theatre. Photos may be taken before and after the show, and during intermission, but not during the performance. Show your appreciation for the play by using the hashtag #SCR51 and tagging the designers listed on P1. P2 • South CoaSt RepeRtoRy • Photograph 51 The Gene Game by Kat Zukaitis hen Rosalind Franklin arrived at King’s Col- lege in London on January 5, 1951, genet- ics was still in its infancy. Scientists knew that cells contained chromosomes and that within chromosomes lay the material respon- Wsible for heredity—called genes—but there was not yet a widespread awareness of what the hereditary mecha- nism was. Biology had taken a backseat to physics for the first half of the 20th century. These were the decades of Albert Einstein, Marie Curie, Niels Bohr, Werner Heisenberg and Enrico Fermi. New discoveries of rela- tivity, radiation, quantum mechanics and nuclear fission reshaped the known world—and ultimately enabled the development of the atomic bomb, to the chagrin of Photo 51, taken by Raymond Gosling under the supervision of Rosalind Franklin in many of the scientists who had worked on it. It wasn’t May 1952, confirmed the helical structure of DNA and hinted at the presence of a until after World War II that the attention of the world’s double helix. top researchers shifted back to genetics. In 1944, a Viennese Nobel laureate in physics The Biophysics Research Unit at King’s College, named Erwin Schrödinger published a game-changing London, was one of the few groups that took note of an book called What is Life?, in which he argued that the experimental demonstration in the mid-40s that DNA, basic principles of physics could be applied to biology. not protein, was the genetic carrier. The unit’s assistant Experimental instruments and methods had now pro- director, Maurice Wilkins, had obtained a sample of DNA gressed to the point where it was possible to discern with an unusually high molecular weight, which allowed some of the smallest patterns within living beings—and it to be formed into a crystal with rigid, repeating struc- Schrödinger made a compelling case that living organ- tures. He planned to use X-ray crystallography—bom- isms, not just inorganic matter, should be viewed in light barding the crystallized DNA with X-ray particles and of their molecular and atomic structure. Genes, he sug- tracking how the X-rays bounced off of the molecules— gested, held the key to the secret of life and deciphering to deduce the structure of the DNA molecules and thus exactly what they were would pave the way to under- discover how it replicates. standing how they behave. Rosalind Franklin came to King’s in 1951 with the With the publication of Schrödinger’s book, genes understanding that she would be working on proteins became the hottest topic in science. James Watson, research, but her expertise in X-ray crystallography Francis Crick and Maurice Wilkins, who would share the made her a seemingly perfect fit for the DNA team. Her 1962 Nobel Prize in Physiology or Medicine for the dis- colleagues in Paris had admired her remarkable skill covery of the structure of DNA, would all credit What Is and “golden hands”; X-ray crystallography pioneer J.D. Life? with awakening their interest in biology—and for Bernal later described her photographs as “among the jumpstarting the new field of biophysics. most beautiful X-ray photographs of any substance ever At the time, relatively little was known about now- taken.” Using X-ray patterns to mathematically calculate basic questions of biology. There wasn’t widespread the structure of a crystal is a complicated, tedious pro- consensus about what genes were made of—let alone cess, but Franklin possessed the kind of experimental how they replicated and transmitted genetic blueprints brilliance and extreme precision that reliably got results. to new cells. Of the two main ingredients in chromo- With Franklin’s arrival, the biophysics unit at King’s somes—proteins and deoxyribonucleic acid (DNA)— was set to break open one of the great mysteries of the most scientists thought that proteins were a better 20th century. But they weren’t the only team interested candidate for carrying genetic information, as they are in the secret of life. longer molecules with more forms than DNA. The race was on. Photograph 51 • South CoaSt RepeRtoRy • P3 Artist Biographies GIOVANNI ADAMS ful cast and director Kimberly Senior. Thank you to Sha- James Watson ron, Leo and his friends/family for the love and support. is an alumnus of SCR and the Pa- ANIL MARGSAHAYAM cific Playwrights Festival and is Francis Crick excited to return. Last season, he portrayed Colis in the world is making his SCR debut. He is a premiere of Kemp Powers’ Little Bay Area native who attended the Black Shadows at SCR and Neil University of San Francisco and in Donald Margulies’ The Model Apartment at Geffen currently resides in Los Angeles. Playhouse. He was in the world premiere of Kemp Pow- His theatre credits include The ers’ One Night in Miami (Rogue Machine Theatre, LA Clay Cart, The Comedy of Errors, Drama Critics Circle Award and NAACP Theatre Award Our Town, The Music Man, Quixote (Oregon Shake- for Best Ensemble). He has participated in the Bay Area speare Festival), Bombay Dreams (first national Broad- Playwrights Festival, where he worked on Tearrance way tour),
Recommended publications
  • The DNA Helix, Featured Scientist: Rosalind Franklin
    Cover Story Featu red Scientist: The Rosalind DNA Franklin: Helix "Bold John R. Jungck Experimentalist" Downloaded from http://online.ucpress.edu/abt/article-pdf/46/8/430/86225/4447893.pdf by guest on 02 October 2021 On April 25th, 1953, three papers on the struc- Thus, it is disheartening to see a biographer cite ture of DNA appearing in Nature profoundly Rosalind Franklin's work as "not characterized by changed biology. Only the one by James Watson great originality of thought." This same biog- and Francis Crick still seems to receive much at- rapher, the distinguished biology historian, Robert tention. The primary authors of the other two pa- Olby, nonetheless raises the same contradictions as pers were Maurice Wilkins and Rosalind Franklin. above. He describes Franklin as a "bold experi- While The Double Helix by "honest Jim" Watson mentalist" and "a deft experimentalist, keenly ob- (1968) changed many people's perception of sci- servant and with immense capacity for taking ence and rankled many more because of the chau- pains. As a result she was able with difficult mate- vinistic treatment of "Rosy" Franklin, I shall focus rial to achieve a remarkable standard of resolution on what has been largely ignored in our apprecia- in her X-ray diagrams" (Olby 1972). tion of these scientists, especially Franklin. While Similarly, Anne Sayre (1975, p. 84) fleetingly de- one of Franklin's biographers, Anne Sayre, spends scribes Franklin's skill: "When Rosalind was con- much space defending Franklin's role in this major fronted with DNA-an amorphous substance, diffi- discovery of our century, she only briefly discusses cult to handle experimentally, tiresomely recalci- Franklin's tremendous skill as an experimentalist.
    [Show full text]
  • Franklin, Centre Stage
    BOOKS & ARTS COMMENT deal of complicated science into 90 minutes, TEIN capturing both the zeal and the backstab- OODS bing that often accompany the pursuit of G. G G. scientific glory. The compressed format, however, precludes the wealth of detail that appeared in Maddox’s biography, which presents Franklin not just as a dedicated scientist but as an elegant and generous young woman with many friends, who loved hiking and travelling. As in real life, Franklin battles in the play for respect as an accomplished woman scientist in the 1950s. She faces a barrage of belittling rules and remarks, not least from Watson who, as he wrote in The Double Helix, wondered how “Rosy” would look “if she took off her glasses and did something novel with her hair.” The characters in the play inform Franklin, like a chorus of bad fairies, that she might have achieved more if she had been more open, less wary, will- ing to take more risks, make models, move forwards without the certainty of proof. She may have triumphed, they jibe, if she was born at another time — or born a man. The sexism that Franklin faced in the Kristen Bush as Rosalind Franklin in a play about collaboration, competition and pursuing scientific glory. stifling environment of King’s may explain why the playwright HISTORY depicts her as stub- “She may have born, secretive and triumphed, rarely happy. One of they jibe, if she her few moments of was born at Franklin, centre stage serenity comes dur- another time ing an imagined con- — or born Josie Glausiusz enjoys a play capturing the zeal and versation with a close a man.” backstabbing in the race to discover DNA’s structure.
    [Show full text]
  • Rosalind Franklin, Nicole Kidman and Photograph 51
    #Bio Rosalind Franklin, Nicole Kidman and Photograph 51 I must admit that when I first heard that Nicole Kidman, in establishing her career there. This and her strained Clare Sansom winner of the Best Actress Oscar for her portrayal of relationship with Wilkins have been well documented in (Birkbeck College, UK) Virginia Woolf in The Hours, was to take the role of the her biographies. Very early in the play, when Franklin had Downloaded from http://portlandpress.com/biochemist/article-pdf/37/6/45/5486/bio037060045.pdf by guest on 27 September 2021 pioneering structural biologist Rosalind Franklin in a West just arrived in London, we see Wilkins informing her that End play, I was slightly sceptical. However accustomed to she could not accompany him to the college dining room portraying brilliant minds, a blonde Australian seemed to because that was for male academics only. This seems be an odd choice for an upper-middle-class Englishwoman outrageous today, but it was a matter of course only two who was culturally, if not religiously, very much a Jew. But generations ago. Franklin’s angry response showed both I couldn’t resist the idea of a play about one of the most deeply held passion and control. Throughout the play, her crucial moments in the history of molecular biology. I polite and understated feminism and (it has to be said) her was lucky enough to acquire tickets for Anna Ziegler’s reserved and somewhat prickly character bring her into Photograph 51 at the Noel Coward Theatre, and I was not conflict with her male counterparts time after time.
    [Show full text]
  • Year 11 GCSE History Paper 1 – Medicine Information Booklet
    Paper 1 Medicine Key topics 1 and 2 (1250-1500, 1500-1700) Year 11 GCSE History Paper 1 – Medicine Information booklet Medieval Renaissance 1250-1500 1500-1750 Enlightenment Modern 1900-present 1700-1900 Case study: WW1 1 Paper 1 Medicine Key topics 1 and 2 (1250-1500, 1500-1700) Key topic 1.1 – Causes of disease 1250-1500 At this time there were four main ideas to explain why someone might become ill. Religious reasons - The Church was very powerful at this time. People would attend church 2/3 times a week and nuns and monks would care for people if they became ill. The Church told people that the Devil could infect people with disease and the only way to get better was to pray to God. The Church also told people that God could give you a disease to test your faith in him or sometimes send a great plague to punish people for their sins. People had so much belief in the Church no-one questioned the power of the Church and many people had believed this explanation of illness for over 1,000 years. Astrology -After so many people in Britain died during the Black Death (1348-49) people began to look for new ways to explain why they became sick. At this time doctors were called physicians. They would check someone’s urine and judge if you were ill based on its colour. They also believed they could work out why disease you had by looking at where the planets were when you were born.
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • Physics Today - February 2003
    Physics Today - February 2003 Rosalind Franklin and the Double Helix Although she made essential contributions toward elucidating the structure of DNA, Rosalind Franklin is known to many only as seen through the distorting lens of James Watson's book, The Double Helix. by Lynne Osman Elkin - California State University, Hayward In 1962, James Watson, then at Harvard University, and Cambridge University's Francis Crick stood next to Maurice Wilkins from King's College, London, to receive the Nobel Prize in Physiology or Medicine for their "discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material." Watson and Crick could not have proposed their celebrated structure for DNA as early in 1953 as they did without access to experimental results obtained by King's College scientist Rosalind Franklin. Franklin had died of cancer in 1958 at age 37, and so was ineligible to share the honor. Her conspicuous absence from the awards ceremony--the dramatic culmination of the struggle to determine the structure of DNA--probably contributed to the neglect, for several decades, of Franklin's role in the DNA story. She most likely never knew how significantly her data influenced Watson and Crick's proposal. Franklin was born 25 July 1920 to Muriel Waley Franklin and merchant banker Ellis Franklin, both members of educated and socially conscious Jewish families. They were a close immediate family, prone to lively discussion and vigorous debates at which the politically liberal, logical, and determined Rosalind excelled: She would even argue with her assertive, conservative father. Early in life, Rosalind manifested the creativity and drive characteristic of the Franklin women, and some of the Waley women, who were expected to focus their education, talents, and skills on political, educational, and charitable forms of community service.
    [Show full text]
  • Photograph 51 Program
    WHO IS ROSALIND FRANKLIN? Rosalind Franklin (1920-1958) was an English x- ray crystallographer and chemist who made contributions to the understanding of the molecular structures of DNA, RNA, viruses, coal, and graphite. Although the work she did with coal and viruses was appreciated in her lifetime, her contributions to the discovery of the structure of DNA have largely been recognized posthumously ACTOR’S NOTE I love science. The rush I have felt when I made a discovery is second only to the rush of stepping from backstage into the light on opening night. I can only imagine the rush Dr. Franklin must have experienced the moment she looked at Photo 51. Her work. Her discovery. When I was in grad school for my Biology degree I learned I almost didn't get a summer internship because someone said I was "difficult" to work with. When I spoke with my advisor he said not to worry about it, he knew who it was and "he just doesn’t like women." I'm not sure what bothered me more: almost losing a great opportunity solely because I was female or being told not to worry about it. Unfortunately my story is very mild relative to the experiences many women in science have. In a career where the game is publish or perish women have the extra hurdle of just getting to a position where they can have the opportunity to enter the race. In 1968, 10 years after Franklin's death, Watson published his account of the discovery of DNA. He was not generous to Franklin to say the least and dismissed the importance of her role in the work.
    [Show full text]
  • Photograph 51, by Rosalind Franklin (1952) [1]
    Published on The Embryo Project Encyclopedia (https://embryo.asu.edu) Photograph 51, by Rosalind Franklin (1952) [1] By: Hernandez, Victoria Keywords: X-ray crystallography [2] DNA [3] DNA Helix [4] On 6 May 1952, at King´s College London in London, England, Rosalind Franklin photographed her fifty-first X-ray diffraction pattern of deoxyribosenucleic acid, or DNA. Photograph 51, or Photo 51, revealed information about DNA´s three-dimensional structure by displaying the way a beam of X-rays scattered off a pure fiber of DNA. Franklin took Photo 51 after scientists confirmed that DNA contained genes [5]. Maurice Wilkins, Franklin´s colleague showed James Watson [6] and Francis Crick [7] Photo 51 without Franklin´s knowledge. Watson and Crick used that image to develop their structural model of DNA. In 1962, after Franklin´s death, Watson, Crick, and Wilkins shared the Nobel Prize in Physiology or Medicine [8] for their findings about DNA. Franklin´s Photo 51 helped scientists learn more about the three-dimensional structure of DNA and enabled scientists to understand DNA´s role in heredity. X-ray crystallography, the technique Franklin used to produce Photo 51 of DNA, is a method scientists use to determine the three-dimensional structure of a crystal. Crystals are solids with regular, repeating units of atoms. Some biological macromolecules, such as DNA, can form fibers suitable for analysis using X-ray crystallography because their solid forms consist of atoms arranged in a regular pattern. Photo 51 used DNA fibers, DNA crystals first produced in the 1970s. To perform an X-ray crystallography, scientists mount a purified fiber or crystal in an X-ray tube.
    [Show full text]
  • A Brief History of Genetics
    A Brief History of Genetics A Brief History of Genetics By Chris Rider A Brief History of Genetics By Chris Rider This book first published 2020 Cambridge Scholars Publishing Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2020 by Chris Rider All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-5275-5885-1 ISBN (13): 978-1-5275-5885-4 Cover A cartoon of the double-stranded helix structure of DNA overlies the sequence of the gene encoding the A protein chain of human haemoglobin. Top left is a portrait of Gregor Mendel, the founding father of genetics, and bottom right is a portrait of Thomas Hunt Morgan, the first winner of a Nobel Prize for genetics. To my wife for her many years of love, support, patience and sound advice TABLE OF CONTENTS List of Figures.......................................................................................... viii List of Text Boxes and Tables .................................................................... x Foreword .................................................................................................. xi Acknowledgements ................................................................................. xiii Chapter 1 ...................................................................................................
    [Show full text]
  • Science, Between the Lines: Rosalind Franklin Rachael Renzi University of Rhode Island, [email protected]
    University of Rhode Island DigitalCommons@URI Senior Honors Projects Honors Program at the University of Rhode Island 2017 Science, Between the Lines: Rosalind Franklin Rachael Renzi University of Rhode Island, [email protected] Follow this and additional works at: http://digitalcommons.uri.edu/srhonorsprog Part of the Fiction Commons, Molecular Biology Commons, Molecular Genetics Commons, Nonfiction Commons, Structural Biology Commons, and the Technical and Professional Writing Commons Recommended Citation Renzi, Rachael, "Science, Between the Lines: Rosalind Franklin" (2017). Senior Honors Projects. Paper 583. http://digitalcommons.uri.edu/srhonorsprog/583http://digitalcommons.uri.edu/srhonorsprog/583 This Article is brought to you for free and open access by the Honors Program at the University of Rhode Island at DigitalCommons@URI. It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. Scientist, Between the Lines: Rosalind Franklin An Experimental Literary Approach to Understanding Scientific Literature and Lifestyle in Context with Human Tendencies Rachael Renzi Honors Project 2017 Mentors: Catherine Morrison, Ph. D. Dina Proestou, Ph. D. Structure is a common theme in Rosalind Franklin’s research work. Her earliest research focused on the structure of coal, shifted focus to DNA, and then to RNA in the Tobacco Mosaic Virus. Based off of the physical and chemical makeup, Rosalind Franklin sought to understand the function of these molecules, and how they carried out processes such as reproduction or changes in configuration. She was intrigued by the existence of a deliberate order in life, a design that is specific in its purpose, and allows for efficient processes.
    [Show full text]
  • Twisting the Night Away Events at the International Centre for Life (14–17 April, Newcastle, UK)
    HIGHLIGHTS 50TH ANNIVERSARY inspirational people after their ideas more than three people, so would and dedication made 1953 a water- she have been honoured even had shed year in science? she been alive? Regardless, Franklin Francis Harry Compton Crick, the did become something of a feminist Whatever happened to... man who, at the age of 30, in his own icon after Watson was rather dismis- words “essentially knew nothing”,has sive of her in his bestseller of the late continued to address ‘big’ questions 1960s, The Double Helix. Her last since he and James Watson answered working years produced what one of the biggest. Collaborations Watson describes as “very beautiful with the 2002 Nobel laureate Sydney work” on the structure of tobacco Brenner produced ideas on protein mosaic virus. synthesis and the genetic code. Crick James Dewey Watson has joined the Salk Institute in California retained the high profile that he in 1976, and this has remained his gained after widespread recognition affiliation up to the present, where he followed on the heels of the 1953 has focused on the problem of con- breakthrough. After brief stints sciousness. Most recently, he has been working with Alexander Rich, and considering the neural correlates of Crick again, Watson went on to consciousness: the minimal set of Harvard where he collaborated with neuronal events that give rise to a Walter Gilbert. In 1968, he took over specific aspect of a conscious precept. as Director of Cold Spring Harbor Rosalind Elsie Franklin, often Laboratory, which he revitalized by characterized as the wronged hero- focusing on tumour biology, even- ine of the double helix story, died tually becoming its President in four years before Watson, Crick and 1994.
    [Show full text]
  • STS.003 the Rise of Modern Science Spring 2008
    MIT OpenCourseWare http://ocw.mit.edu STS.003 The Rise of Modern Science Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. STS.003 Spring 2007 Keywords for Week 12 Lecture 20: Eugenics Darwin, Descent of Man (1871) Francis Galton, “eugenics” (1883) “the science of improving the stock” Jean Baptiste Lamarck Inheritance of Acquired Characteristics Richard Dugdale, The Jukes: A Study in Crime, Pauperism, Disease and Heredity (1874) Karl Pearson Galton Laboratory for National Eugenics Charles Davenport Cold Spring Harbor Eugenics Record Office Arthur Estabrook, The Jukes in 1915 (1916) Henry Goddard, The Kallikak Family: A Study in the Heredity of Feeble-mindedness (1912) Deborah Kallikak Race Suicide Fitter Family Contests Sterilization Laws Buck v. Bell, 1927 Carrie Buck Justice Oliver Wendell Holmes, Jr. “Three generations of imbeciles is enough” Quotes But are not our physical faculties and the strength, dexterity and acuteness of our senses, to be numbered among the qualities whose perfection in the individual may be transmitted? Observation of the various breeds of domestic animals inclines us to believe that they are, and we can confirm this by direct observation of the human race. Condorcet, Future Progress of the Human Spirit (1795) If a twentieth part of the cost and pains were spent in measures for the improvement of the human race that is spent on the improvement of the breed of horses and cattle, what a galaxy of genius we might create. Francis Galton, “Hereditary Character and Talent” (1864) Both sexes ought to refrain from marriage if they are in any marked degree inferior in body or mind but such hopes are Utopian and will never be even partially realized until the laws of inheritance are thoroughly known.
    [Show full text]