<<

Appendix: Media for Growth of

A. The medium for Euglena gracilis Z will serve for other highly heterotrophic strains of E. gracilis, such as var. bacillaris.

COMPOUND GRAMS/LITER MOLES/LITER

K3P04 0.20 (as K) 0.003 MgS04"7H2O 0.10 0.0004 MgC03 0.50 0.006 CaC03 0.10 0.001 DL-Malic acid l.50 0.011 L-Glutamic acid l.50 0.010 Glucose 10.00 0.055 Urea l.00 0.017 Succinic acid 0040 0.003 Glycine l.00 0.013 DL-Aspartic acid l.50 0.011 DL-Lactic acid 0.60 0.007 Thiamine HCl (Vitamin B1) 5.0 X 10-4 Cyanocobalamin (Vitamin Bd 2.0 X 10-6 "Metals 47" 0.56

174 Appendix: Media for ,Growth of Euglena 175

METALS 47 GRAMS/LITER

Zn as Zn(S04)2'7H20 2.64 Mn as MnS04,H20 1.24 Fe as Fe(NH4MS04)2,6H20 1.40 Co as CoS04'7H20 0.24 Cu as CuS04'5H20 0.04 Mo as (NH4)6Mo7024,4H20 0.018 Vas Na3V04,16H20 0.018 Bas HaBOa 0.057

All the ingredients of this medium may be stored and dispensed as a dry mix, except for the lactic acid, which is added separately. For use, the ingredients are dissolved in distilled water with the aid of gentle warming, and the medium is sterilized. One millimeter of the metals solution is added per 100 ml of medium. The pH of the final medium is 3.3 to 3.6 (See Hutner et aI., 1958).

B. Hutner et ai. (I966) have devised several new media which give more rapid growth as well as greener and denser cultures.

Heterotrophic Acidic Medium

COMPOUND GRAMS / LITER MOLES/LITER

KH2P04 0.40 (as K) 0.002 MgS04'3H2O 0.10 (as Mg) 0.0006 MgCOa 0.40 (as Mg) 0.005 CaCOa 0.10 (as Ca) 0.001 DL-Malic acid 5.00 0.037 L-Glutamic acid 5.00 0.034 Glucose (anhydrous) 10.00 0.055 Urea 0.40 0.007 Na2 succinate-6H2O 0.10 (as succinate) 0.0004 Glycine 2.50 0.033 DL-Aspartic acid 2.00 0.015 "Metals 60A" 0.20 Thiamine HCI (Vitamin B1) 6.0 X 10-4 Vitamin B12 5.0 X 10-7 pH = 3.1-3.4 176 Euglena

Metals 60A

GRAMS PER 1,000 MILLIGRAMS METAL LITERS FINAL PER 100 ML COMPOUND MEDIUM FINAL MEDIUM

Fe(NH4h(S04)206H20 42.0 Fe 0.6 MnS04oH 2O 15.5 Mn 0.5 ZnS0407H2O 22.0 Zn 0.5 (NH4)6M07024 04 H 2O 3.6 Mo 0.2 CuS04 (anhydrous) 1.0 Cu 0.04 Na3V04016H2O 3.7 V 0.04 CoS0 07H 0 ,. 0048, 1:10 trit. Co om 4 ,. 2 H 3 B03 0.57, 1: 10 trit. B 0.01

,. To ensure even distribution, the Co and B salts are dispensed as 1:10 triturates with pentaerythritol, e.g., a 1: 10 triturate of CoS0407H20 is prepared by grinding together 1 g of the salt and 9 g of pentaerythritol.

Low-pH "A uta trophic" Growth Medium

COMPOUND GRAMS/LITER MOLES/LITER

KH2P04 0.15 0.001 MgS0403H20 0.20 0.001 MgC03 0.3 0.004 CaC03 0.02 0.0002 K3 citra teo H 20 0040 0.001 Citric acidoH 20 4.00 0.020 NH4HC03 0.50 0.006 L-Histidine HCloH20 1.00 0.005 Thiamine HCl (Vitamin B1) 0.001 Vitamin B12 2.0 X 10-5 HEDTA 0.20 "Metals 60A" 0.18

pH adjusts to 3.2-3.5 Appendix: Media for Growth of Euglena 177

Neutral Medium

COMPOUND GRAMS/LITER MOLES/LITER

MgS04'7H20 0.50 0.002 Kg citrate' H 20 1.00 0.003 Na acetate'3H20 1.00 0.007 Glycine ethyl ester HCI 1.00 0.007 L-Glutamic acid y-ethyl ester HCI 1.00 0.005 L-Asparagine-H 20 1.50 0.010 N a2glycerophosphate'5H20 0.50 0.002 (NH4)2S04 0.02 0.001 Thiamine HCI (Vitamin B1) 0.01 Vitamin B12 4.0 X 10-6

In addition, trace metals are required (in milligrams): Fe, 1.0; Mn, 0.8; Zn, 0.5; Mo, 0.05; Cu, 0.05; Co, 0.05; B, 0.01; V, 0.005; I, 0.004; Se, 0.002. pH = 6.8.

Alkaline Medium

COMPOUND GRAMS / LITER MOLES/LITER

K2CgH7P06 0.40 0.0016 MgS04'7H20 0.25 (0£ Mg) 0.0010 (0£ Mg) NH2CH2COOH (glycine) 2.00 0.026 L-Asparagine· H 20 1.50 0.010 Sodium butyrate 1.00 0.009

(N H4)6Mo7024·4 H 20 2.0 X 10-4 (0£ Mo) 1.1 X 10-6 (0£ Mo) Na3V04'16H20 4.0 X 1;)-5 (0£ V) 5.9 X 10-7 (0£ V) N itriloacetic acid 0.10 Thiamine HCI (Vitamin B1) 5.0 X 10-4 Vitamin B12 4.0 X 10-6 "Metals 44" 0.28 178 Euglena

For studies at alkaline pH's:

MEDIUM 18 GRAMS/LITER

K2C3H7P06 0.40 MgS04'7H20 0.25 NH2CH2COOH 2.00 L-Asparagine 1.50 Sodium butyrate 1.00 (N H4)6Mo7024 ,4 H 20 2.0 X 10-4 Na3V04'16H20 4.0 X 10-5 Nitriloacetic acid 0.10 4 Thiamine HCl (Vitamin B 1) 5.0 X 10- Vitamin B12 4.0 X 10-6 "Metals 44" 0.28

One millimeter of metals solution per 100 ml of medium.

METALS 44 GRAMS/LITER EDTA 2.5 ZnS04'7H2 0 17.6 MnS04'H20 9.2 CuS04'5H20 0.25 Fe(NH4)6(S04h,6H20 0.70 H 3B03 0.57 CoS04'7H20 0.04

Adjust pH with KOH. Check stability of pH by pressure cooking (KOH may contain much carbonate, which gives up CO2 on autoclaving, with a rise in pH). Appendix: Media for Growth of Euglena 179

Euglena High-Yield Medium *

COMPOUND GRAMS / LITER MOLES/LITER

KH2P04 0_27 0_002 MgCOa 0.80 0.010 CaCOa 0.16 0.001 (NH4)2S04 0.27 0.002 NH4 HCOa 0.27 0.003 DL-Malic acid 8.0 0.60 L-Glutamic acid 5.0 0.34 Na2 succinate·6H20 0.14 0.0005 Glycine 0.27 0.004 L-Aspartic acid 0.27 0.002 L-Arginine 0.14 0.008

Thiamine HCI (Vitamin B1) 0.14 (mg) as trit. Cyanocobalamin (Vitamin B12) 7.0 (mg) as trit. "Metals 61" 0.13

Note: These ingredients have been chosen for compatibility as a dry pre• mix which can be stored at room temperature. The triturates are made up with pentaerythritol. Mannitol can also be used .

.. Unpublished results of S. H. Hutner (1966), private communication. 180 Euglena

Metals 61

GRAMS 1,000 FINAL CONC. GRAVIMETRIC LITERS FINAL METAL, MG% DRY MIX FACTOR g MEDIUM

Fe 0.6 as Fe(NH4MS04ho6 H20 X 7.0 X 10,000 42.0 Mn 0.5 as MnS04oH 2O X 3.1 X 10,000 15.5 Zn 0.5 as ZnS0407H2O X 4.4 X 10,000 22.0 Mo 0.2 as (NH4)6M07024oH20 X 1.8 X 10,000 3.6 Cu 0.04 as CuS04 (anhydrous) X 2.5 X 10,000 1.0 V 0.02 as NH4V03 X 2.3 X 10,000 0.46 Co om as CoS0407H 2O X 4.8 X 10,000 0.48 B 0.01 as H 3B03 X 5.7 X 10,000 0.57 Ni 0.01 as NiS0406H2O X 4.5 X 10,000 0.45

According to our calculations this metals mix should be used at 8.6 mg percent to yield the indicated final concentrations of trace metals; however, we have found that we get highest yield with Euglena when this mix is used at 13.0 mg percent. Therefore, the actual metal concentrations in the final "high-yield" medium are as follows (in mg percent): Fe 1.0 Mn 0.8 Zn 0.8 Mo 0.325 Cu 0.065 V 0.03 Co 0.016 B 0.016 Ni 0.016 References

AARONSON, s., and H. BAKER. 1961. Lipid and sterol content of some . J. Protozool., 8:274. ACKERMAN, E. 1962. Biophysical Science, 489, Englewood Cliffs, N. J., Prentice• Hall. ALLEN, M. B., C. s. FRENCH, and ]. s. BROWN. 1960. Native and extractable forms of chlorophyll in various algal groups. In Allen, M. B., ed., Comparative Biochemistry of Photoreactive Systems, 33, New York, Academic Press. ARNOLD, w., and R. K. CLAYTON. 1960. The first step in : evidence for its electronic nature. Proc. Nat. Acad. Sci. U. S. A., 46:769. ---, and H. K. SHERWOOD. 1957. Are semiconductors? Proc. Nat. Acad. Sci. U. S. A., 43: 105. ARNON, D. I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol., 24: 1. ---. 1965. Ferredoxin and photosynthesis. Science, 149:1460. ASTBURY, w. T., and N. N. SAHA. 1953. Structure of algal flagella. Nature (London), 171 :280. BAAS-BECKING, L. G. M., and E. A. HANSON. 1937. Note on the mechanism of photo• synthesis. Proc. Kon. Nederl. Akad. Wet., 40:752: BAM]I, M. S., and N. I. KRINSKY. 1965. Carotenoid de-expoxidations in algae ex• poxidations. Enzymatic conversion of antheraxanthin to zeaxanthin. J. BioI. Chern., 240:467. BARTSCH, R. G., and M. D. KAMEN. 1960. Isolation and properties of two soluble heme proteins in extracts of the photoanaerobe Chromatium. J. BioI. Chern., 235:825. BASSHAM, ]. A., and M. CALVIN. 1957. The Path of Carbon in Photosynthesis, Englewood Cliffs, N. J., Prentice-Hall. BATRA, P., and G. TOLLIN. 1964. Phototaxis in Euglena I. Isolation of the eyespot granules and identification of the eyespot pigments. Biochim. Biophys. Acta, 79:371. BENSON, A. A. 1964. lipid metabolism. Proc. Int. Congo Biochem., 6:340. BERNAL, ]. D. 1933. Liquid crystals and anisotropic melts: a general discussion. Trans. Faraday Soc., 29: 1082. BLOCH, KONRAD. 1965. Lipid patterns in the evolution of organisms. In Bryson, 181 182 References

v., and H. J. Vogel, eds., Evolving Genes and Proteins, New York, Academic Press. BOGORAD, L. 1960. Biosynthesis of protochlorophyll. In Allen, M. B., ed., Compara• tive Biochemistry of Photoreactive Systems, 227, New York, Academic Press. ---. 1965. Chlorophyll biosynthesis. In Goodwin, T. W., ed., Chemistry and Biochemistry of Plant Pigments, 127-174, New York, Academic Press. BRANTON, D., and H. MOOR. 1964. Fine structure in freeze-etched Allium cepa L. root tips. J. Ultrastruct. Res., II :401. BRAWERMAN, G., and E. CHARGAFF. 1959. Changes in protein and ribonucleic acid during the formation of chloroplasts in Euglena. Biochim. Biophys. Acta, 31:164. ---, and J. M. EISENSTADT. 1964. DNA from the chloroplasts of Euglena gracilis. Biochim. Biophys. Acta, 91(3):477. BROWN, H. P. 1945. On the structure and mechanics of the protozoan . Ohio J. Sci., 45:247. BROWN, J. S., and c. S. FRENCH. 1959. Absorption spectra and relative photo• stability of the different forms of chlorophyll in Chiarella. Plant Physiol., 34:305. ---, and ---. 1961. The long wavelength forms of chlorophyll a. Biophys. J., 1:539. BROWN, P. K. 1961. A system for microspectrophotometry employing a commercial recording spectrophotometer. J. Opt. Soc. Amer., 51: 1000. BRUCE, v. G., and c. s. PITTENDRIGH. 1957. Endogenous rhythms in insects and microorganisms. Amer. Naturalist, 91: 179. ---, and ---. 1956. Temperature independence in a unicellular "clock." Proc. Nat. Acad. Sci. U. S. A., 42:676. BVNNI!"G, E. 1956. Endogene Aktivitatsrhythmen. In Ruhland, W., ed., Handbuch der Pflanzenphysiologie, vol. II, 878, Berlin, Springer-Verlag. ---. 1958. Cellular clocks. Nature (London), 181:1169. ---, and G. SCHNEIDERHOHN. 1956. eber das Aktionspecktrum der phototaki- schen Reaktionen von Euglena. Arch. Mikrobiol., 24:80. CALVI!", M. 1959. From microstructure to macrostructure and function in the photochemical structure. In The Photochemical Apparatus. Brookhaven Sympos. Bio!., no. II, 160. CARREL, A. 1935. Man, the Unknown, New York, Harper and Row. CARTER, H. E., K. OHNO, S. NOJIMA, Z. L. TIPTON, and N. z. STANAZEV. 1961. Wheat flour lipids. II. Isolation and characterization of glyco lipids of wheat flour and other plant sources. J. Lipid Res., 2:215. CASPERSSON, T. o. 1950. Cell Growth and Cell Function, New York, W. W. Norton. ---. 1961. Quantitative cytochemistry for the study of normal and abnormal growth. Fed. Proc., 20:858. ---, and G. M. LOMAKKA. 1962. Scanning microscopy techniques for high resolution quantitative cytochemistry. Ann. N. Y. Acad. Sci., 97:449. ---, G. M. LOMAKKA, G. SVENSSON, and R. SAFTSROM. 1955. A versatile ultra• microspectograph for multiple line surface scanning high resolution meas- References 183

urements employing automatized data analysis. Exp. Cell. Res., SuppI. 3:30. CASTLE, E. s. 1935. Photic excitation and phototropism in single plant cells. Sympos. Quant. BioI., 3:224. CHANCE, B., and J. M. OLSON. 1960. Primary metabolic events associated with photo• synthesis. Arch. Biochem., 88:54. ---, R. PERRY, L. AKERMAN, and B. THORELL. 1959. Highly sensitive recording microspectrophotometer. Rev. Sci. Instrum., 30:735. CLARKE, A. E., and B. A. STONE. 1960. Structure of the paramylum from Euglena gracilis. Biochim. Biophys. Acta, 44: 161. CLAYTON, R. K. 1953. Studies in the phototaxis of Rhodospirillum rubrum. I. Ac• tion spectrum, growth in green light, and Weber law adherence. Arch. MikrobioI., 19: 107. COLMANO, G., and J. J. WOLKEN. 1963. A simplified method for extraction of re• duced cytochrome-552 and -556 from Euglena gracilis (Z). Nature (London), 198(4882):783. CRAMER, M., and J. MYERS. 1952. Growth and photosynthetic characteristics of Euglena gr·acilis. Arch. MikrobioI., 17:384. CRANE, R. K., and F. LIPMANN. 1953. The effect of arsenate on aerobic phosphory• lation. J. BioI. Chern., 201 :235. DANIELLI, J. F., and H. DAVSON. 1935. A contribution to the theory of permeability of thin films. J. Cell. Compo PhysioI., 5:495. DAVENPORT, H. E., and R. HILL. 1952. The preparation and some properties of cyto• chrome f. Proc. Roy. Soc. [BioI.], 139B:327. DAVIES, H. G., M. H. F. WILKINS, J. CHAYEN, and L. F. LA COUR. 1954. The use of the interference microscope to determine dry mass in living cells and as a quantitative cytochemical method. Quart. J. Micr. Sci., 95:271. DAVSON, H., and J. F. DANIELLI. 1943. The permeability of natural membranes, Cambridge, Cambridge University Press. DELBRiicK, M., and W. REICHARDT. 1956. System analysis for the light growth re• actions in phycomyces. In Rudnick, D., ed., Cellular Mechanisms in Dif• ferentiation and Growth, 3-44, Princeton, N. J., Princeton University Press. DENTON, E. J. 1959. The contributions of the oriented photosensitive and other molecules to the absorption of whole retina. Proc. Roy. Soc. [BioI.], 150:78. DIEHN, B., and G. TOLLIN. 1966. Phototaxis in Euglena. II. Physical factors deter• mining the rate of phototactic response. Photochem. PhotobioI., 5:523. ---, and ---. 1966. Phototaxis in Euglena. III. LAG phenomena and the overall mechanism of the tactic response to light. Photochem. Photo• bioI., 5:839. DOBELL, c. Antony van Leeuwenhoek and His "Little Animals." 1932. New York. Harcourt, Brace. DUBOS, R. 1950. Louis Pasteur, Boston, Little, Brown. EDELMAN, M. 1965. Studies of chloroplast development in Euglena. XII. ---, J. H. SCHIFF, and H. T. EPSTEIN. 1965. Two types of satellite DNA. J. Molec. BioI., I I :769. 184 References

ELBERS, P. F., K. MINNAERT, and J. B. THOMAS. 1957. Submicroscopic structure of some chloroplasts. Acta Bot. Neerl., 6:345. EMERSON, R., and W. ARNOLD. 1932a. A separation of the reactions in photosyn• thesis by means of intermittent light. J. Gen. Physiol., 15:391. ---, and w. ARNOLD. 1932b. The photochemical reaction in photosynthesis. J. Gen. PhysioI., 16:191. ENGLEMANN, T. w. 1882. Ueber Licth- und Farbenperception niederster Organ• ismen. Arch. Physioi. Pfliiger's, 29:387. ERWIN, J., and K. BLOCH. 1962. The linoleic acid content of some photosynthetic microorganisms. Biochem. Biophys. Res. Commun., 9: 103. ---, and ---. 1963. Polyunsaturated fatty acids in some photosynthetic microorganisms. Biochem. Z., 338:496. EVERSOLE, R. A., and J. J. WOLKEN. 1958. Photochemical activity of digitonin ex• tracts of chloroplasts. Science, 127:1287. FAURE-FREMIET, E. 1958. The origin of the metazoa and the stigma of the phyto• flagellates. Quart. J. M icr. Sci., 99: 123. ---, and c. ROUILLER. 1957. Le flagelle interne d'une Chrysomondale: Chromulina psammobia. C. R. Soc. BioI. (Paris), 244:2655. FAWCETT, D. W., and K. R. PORTER. 1952. A study of the fine structure of ciliated epithelial cells with the electron microscope. Anat. Rec., 113:539. ---, and ---. 1954. A study of the fine structure of ciliated epithelia. J. Morph., 94:221. FERNANDEZ·MORAN, ~. 1960. Low temperature preparation techniques for electron microscopy of biological specimens based on rapid freezing. Ann. N. Y. Acad. Sci., 85:869. ---. 1961. The fine structure of vertebrate and invertebrate photoreceptors as revealed by low-temperature electron microscopy. In G. K. Smelser, ed., The Structure of the Eye, 521, New York, Academic Press. FINKLE, B. J., and D. APPLEMAN. 1953. The effect of magnesium concentration on growth of Chlorella. Plant PhysioI., 28:664. FISCHER, H., and A. STERN. 1943. Die chemie des Pyrolles. Akademische Verlag. M. B. H., Leipzig, 1940. Photolithographic edition, vol. II, part 2, 55, Ann Arbor, Edward Bros. FISKE, c. H., and Y. SUBBAROW. 1925. The colorimetric determination of phospho• rous. J. BioI. Chern., 66:375. FOGG, G. E. 1953. The Metabolism of Algae, 112, London, Methuen. FOX, D. L. 1953. Animal Biochromes and Structural Colours, 63-190, Cambridge, Cambridge University Press. FRAENKEL, G. s., and D. L. GUNN. 1961. The Orientation of Animals: Kinesis, Taxis, and Compass Reactions, New York, Dover. FRANK, s. R. 1946. The effectiveness of the spectrum in chlorophyll formation. J. Gen. Physiol., 29:157. ---. 1951. The relation between carotenoid and chlorophyll pigments in Avena coleoptiles. Arch. Biochem., 30:52. References 185

FRENCH, C. s. 1962. Photosynthesis. In Johnson, W. H., and W. C. Steere, eds., This is Life, 3-38, New York, Holt, Rinehart, and Winston. FREY-WYSSLING, A. 1957. Macromolecules in Cell Structure, 61-63, Cambridge, Harvard University Press. FUJIMORI, E., and R. LIVINGSTON. 1957. Interactions of chlorophyll in its triplet state with oxygen, carotene, etc. Nature (London), 180: 1036. GIBBS, s. P. 1962. Nuclear envelope-chloroplast relationship in algae. J. Cell. BioI., 14:433. GIBOR, A., and s. GRANICK. 1962a. The plastid system of normal and bleaching Euglena gracilis. J. Protozool., 9:327. ---, and ---. 1962b. Ultraviolet sensitive factors in the that affect the differentiation of Euglena plastids. J. Cell. Res., 15:579. ---, and ---. 1964. Plastids and mitochondria: inheritable systems. Science, 145: 890. GODNEV, T. N., and s. v. KALISHEVICH. 1940. Chlorophyll concentration in chloro• plasts of Mnium medium. C. R. Acad. Sci. U.S.R.S., 27:832. GOEDHEER, J. c. 1955. Orientation of the pigment molecules in the chloroplast. Biochim. Biophys. Acta, 16:471. GOJDICS, M. 1953. The Genus Euglena, Madison, Wis., University of Wisconsin Press. GOODWIN, T. w. 1952. Comparative Biochemistry of Carotenoids, London, Chap• man and Hall. ---. 1953. The biogenesis of carotenoids. J. Sci. Food Agric., 5:209. ---. 1959. The biosynthesis and function of carotenoid pigments. Advances Enzym., 21:295. ---. 1960. Algal carotenoids. In Goodwin, T. W., ed., Chemistry and Bio• chemistry of Plant Pigments, 127-174, New York, Academic Press. ---. 1964. The plastid pigments of flagellates. In Hutner, S. H., ed., Bio• chemistry and Physiology of Protozoa, vol. 3, 319-339, New York, Academic Press. ---, and J. A. GROSS. 1958. Carotenoid distribution in bleached substrains of Euglena gracilis. J. Protozool., 5:292. ---, and M. JAMIKORN. 1954. Studies in carotenogenesis. Some observations on carotenoid synthesis in two varieties of Euglena gracilis. J. Protozool., 1:216. GOSSEL, I. 1957. Dber das Aktinosspektrum der phototaxis chlorophylIfreier Eu• glenen und liber die Absorption des Augenflecks. Arch. Mikrobiol., 27:288. GOVINDJEE, and E. RABINOWITCH. 1960. Two forms of chlorophyll a in vivo with distinct photochemical functions. Science, 132:355. GRANICK, s. 1948. Magnesium protoporphyrin as a precursor of chlorophyll in Chlorella. J. BioI. Chern., 175:333. ---. 1950. Magnesium vinyl ph eo porphyrin ai>' another intermediate in the biological synthesis of chlorophyll. J. BioI. Chern., 183:713. ---. 1958. Porphyrin biosynthesis in erythrocytes. I. Formation of r -amino• levulinic acid in erythrocytes. J. BioI. Chern., 232:IIOI. 186 References

---, and D. MAUZERALL. 1958. Porphyrin biosynthesis in erythrocytes. II. Enzymes converting ~ -aminolevulinic acid to coproporphyrinogen .. J. BioI. Chern., 232: 1119. GRELL, K. G. 1956. Protozoologie, Berlin, Springer-Verlag. GROSS, J. A. 1955. A comparison of different criteria for determining the effects of antibiotics on Tetrahymena pyriformis E. J. ProtoZOOI., 2:42. ---. 1965. Pressure-induced color mutation of Euglena gracilis. Science, 147:741. ---, T. L. JAHN, and E. BERNSTEIN. 1955. Effect of antihistamines on the pig• ments of green protista. J. Protozool., 2:71. ---, and J. J. WOLKEN. 1960. Two c-type cytochromes from light- and dark• grown Euglena. Science, 132:357. HALLDAL, P. 1964. Phototaxis in protozoa. In Hutner, S. H., ed., Biochemistry and Physiology of Protozoa, vol. III, 277-296, New York, Academic Press. HASTINGS, J., and B. M. SWEENEY. 1957. The mechanisms of temperature inde• pendence in a biological clock. Proc. Nat. Acad. Sci. U. S. A., 43:804. HEDGES, E. J. 1932. Liesegang Ring and Other Periodic Structures, London, Chap• man and Hall. HENRY, B., and H. COLE. 1959. Single crystal CdSe as soft X-ray detector. Rev. Sci. Instrum., 30:90. HILL, A. v. 1926. The laws of muscular motion. Proc. Roy. Soc. [Biol.]. 100B:87. HILL, H. Z., H. T. EPSTEIN, and J. A. SCHIFF. 1966a. Studies of chloroplast develop• ment in Euglena. XIV. Sequential interactions of ultraviolet light and photoreactivating light in green colony formation. Biophys. j., 6:135. ---, H. T. EPSTEIN, and J. A. SCHIFF. 1966b. Studies of chloroplast develop- ment in Euglena. XIII. Variation of ultraviolet sensitivity with extent of chloroplast development. Biophys. j., 6: 125. HILL, R., and F. BENDALL. 1960. Function of the two cytochrom~ components in chloroplasts: a working hypothesis. Nature (London), 186: 136. ·HODGE, A. J., J. D. MC LEAN, and F. v. MERCER. 1955. Ultrastructure of the lamellae and grana in the chloroplasts of Zea mays L. J. Biophys. Biochem. Cytol., 1 :605. HOLMES, S. J. 1903. Phototaxis in Volvox. BioI. Bull., 4:319. HOLT, A. s. 1965. Nature, properties and distribution of chlorophyll. In Goodwin, T. W., ed., Chemistry and Biochemistry of Plant Pigments, 3-74, New York, Academic Press. HOLWILL, M. E. J. 1966. Physical aspect of flagellar movement. Physiol. Rev., 46:696. HOOGENHOUT, H., and J. AMESZ. 1965. Growth rates of photosynthetic microorgan• isms in laboratory cultures. Arch. Mikrobiol., 50: 10. HOOKE, R. 1665. Micrographia. In Gunther, R. T., 1938, Early Science in Ox• ford, 116, Oxford, Oxford University Press. HUBBARD, R. 1954. The molecular weight of rhodopsin and the nature of the rhodopsin-digitonin complex. j. Gen. Physiol., 37:381. References 187

HULANICKA, D., J. ERWIN, and K. BLOCH. 1964. Lipid metabolism of Euglena gracilis. J. BioI. Chern., 239:2778. HUTNER, s. H., ed. 1964. Biochemistry and Physiology of Protozoa, vol. III, New York, Academic Press. ---, M. K. BACH, and G. 1. ROSS. 1956. A sugar-containing basal medium for vitamin BI2-assay with Euglena; application to body fluids. J. Protozool., 3:101. ---, A. CURY, and H. BAKER. 1958. Microbiological assays. Anal. Chern., 30:849. ---, and A. LWOFF, eds. 1955. Biochemistry and Physiology of Protozoa, vol. II, New York, Academic Press. ---, and L. PROVASOLI. 1951. The phytoflagellates. In Lwoff, A., ed., Biochem• istry and Physiology of Protozoa, vol. I, 27-128, New York, Academic Press. ---, and ---. 1955. Comparative biochemistry of flagellates. In Hutner, S. H., and A. Lwoff, eds., Biochemistry and Physiology of Protozoa, vol. II, 1-40, New York, Academic Press. ---, and ---. 1965. Comparative physiology: nutrition. Ann. Rev. Physiol., 27: 19. ---, A. C. ZAHALSKY, S. AARONSON, H. BAKER, and o. FRANK. 1966. Culture media for Euglena gracilis. In Prescott, D. M., ed., Methods in Cell Physiology, 217-228, vol. II, New York, Academic Press. JACOBS, E. E., A. E. VATTNER, and A. S. HOLT. 1954. Crystalline chlorophyll and bacteriochlorophyll. Arch. Biochem., 53:228. JAHN, T. L. 1946. Euglenophyta. Quart. Rev. BioI., 21:246. ---. 1951. Euglenophyta. In Smith, G. M., ed., Manual of Phycology, Waltham, Mass., Chronica Botanica Co. ---, and E. C. BOVEE. 1964. Protoplasmic movement and locomotion of protozoa. In Hutner, S. H., ed., Biochemistry and Physiology of Protozoa, vol. III, 62-129, New York, Academic Press. ---, and F. F. JAHN. 1949. How to Know the Protozoa. Dubuque, Iowa, W. C. Brown Co. JENNINGS, H. s. 1906. Behavior of the Lower Organisms, New York, Columbia University Press. JOHNSON, F. H., H. EYRING, and M. J. POLISSAR. 1954. The Kinetic Basis of Molecu• lar Biology, New York, Wiley. JOHNSON, L. P., and T. L. JAHN. 1942. Cause of the green-red color change in Euglena rubra. Physiol. Zool., 15:89. KAMEN, M. D. 1956. Hematin compounds in metabolism of photosynthetic tissues. In Gaebler, O. H., ed., Enzymes: Units of Biological Structure and Func• tion, 483, New York, Academic Press. ---. 1960. In Allen, M. B., ed., Comparative Biochemistry of Photoreactive Systems, 323-327, New York, Academic Press. KARRER, P., and E. JUCKER. 1950. Carotenoids, New York, Elsevier. KATZ, E. 1949. Chlorophyll fluorescence as an energy flow meter for photosyn• thesis. In Franck, J., and W. E. Loomis, eds., Photosynthesis in Plants, Ames, Iowa, Iowa State College Press. 188 References

KAY, D. 1963. Techniques for Electron Microscopy, Oxford, Blackwell. KIDDER, G. w. 1951. Nutrition and metabolism of protozoa. Ann. Rev. Microbiol., 5:3558. KORN, E. D. 1964a. Biosynthesis of unsaturated fatty acids in Acanthamoeba Sp. J. BioI. Chern., 239:396. ---. 1964b. The fatty acids of Euglena gracilis. J. Lipid Res., 5:352. KOSKI, v. M., and J. H. C. SMITH. 1948. The isolation and spectral absorption prop• erties of protochlorophyll from etiolated barley seedlings. J. Amer. Chern. Soc., 70:3558. KREGER, D. R., and B. J. D. MEE\JSE. 1952. X-ray diagrams of Euglena paramylen, of the acid-insoluble glucan of yeast cells and of laminarin. Biochim. Biophys. Acta, 9:699. KRINSKY, N. I. 1964. Carotenoid de-epoxidations in algae. I. Photochemical trans• formation of antheraxanthin to zeaxanthin. Biochim. Biophys. Acta, 88:487. ---, and T. H. GOLDSMITH. 1960. Carotenoids of Euglena gracilis (Z strain). Fed. Proc., 19:329. LEE, J. w. 1954a. The effect of pH on forward swimming in Euglena and Chilomonas. Physiol. Zool., 27:272. ---. 1954b. The effect of temperature on forward swimming in Euglena and Chilomonas. Physiol. Zool., 27:275. LEEDALE, G. F. 1958. Mitosis and chromosome numbers in the Euglenineae (Flagellata). Nature (London), 181:502. ---. 1965. Structure and physiology of Euglena spirogyra. III-VI. Arch. Mikrobiol., 50:133. ---, B. J. D. MEEUSE, and E. G. PRINGSHEIM. 1965. Structure and physiology of Euglena spirogyra. III-VI. Arch. Mikrobiol., 50: 133. LEHNINGER, A. L. 1961. How cells transform energy. Sci. Amer., 205:62. ---. 1965. Bioenergetics, the Molecular Basis of Biological Energy Trans- formation, New York, Benjamin. LEWIN, R. A. 1955. Flagella: variations and enigmas. New BioI., 19:27. ---. 1962. Physiology and Biochemistry of Algae, New York, Academic Press. LIEBMAN, P. A. 1962. In situ microspectrophotometric studies on the pigments of single retinal rods. Biophys. J., 2:161. LINDES, D. A., B. DIEHN, and G. TOLLIN. 1965. Phototaxigraph: recording instrument for determination of rate of response of phototactic microorganisms to light of controlled intensity and wavelength. Rev. Sci. Instrum., 36: 1721. LOEB, J. 1918. Forced Movements, Tropism and Animal Conduct, Philadelphia, Lippincott. LOWE, M. B., and J. N. PHILLIPS. 1961. Catalysis of metalloporphyrin formation: a possible enzyme model for haeme iron incorporation. Nature (London), 190:262. LOWNDES, A. G. 1944a. The swimming of unicellular flagellate organisms. Proc. Zool. Soc. (London), 113A:99. References 189

---. 1944b. The swimming of Monas stigmatica Pringsheim, Peranama tri• chophorum and Volvox sp. Proc. Zool. Soc. (London), 114A:325. LYMAN, H., H. T. EPSTEIN, and J. SCHIFF. 1959. Ultraviolet inactivation and photo• reactivation of chloroplast development in Euglena without cell death. J. Protozool., 6:264. LYNCH, v. H., and M. CALVIN. 1953. CO2 fixation by Euglena. Ann. N. Y. Acad. Sci., 56:890. LYTHGOE, R. S., and J. P. QUILLIAM. 1938. The thermal decomposition of visual purple. J. Physiol., 93:24. LWOFF, A. 1932. Recherches Biochimiques sur la Nutrition des Protozoaires; Ie Pouvoir de Synthese, Paris, Masson et Cie. ---. 1944. L'Evolution Physiologique, Paris, Hermann et Cie. ---. 1951. Introduction to biochemistry of protozoa. In Lwoff, A., ed., Bio- chemistry and Physiology of Protozoa, vol. I: 1·26, New York, Academic Press. ---, and H. DUS!. 1936. La nutrition de l'Euglenien Astasia chattoni. CR Soc. BioI. (Paris), 202:248. MC DONALD, E. 1947. Neutron Radiation on Living Cells, Baltimore, Williams and Wilkins CO. MCKINNEY, G. 1941. Absorption of light by chlorophyll solutions. J. BioI. Chern., 140:315. MAC NICHOL, E. F. 1964. Three pigment color vision. Sci. Amer., 211 :48. MANTEN, A. 1948a. Phototaxis in the purple bacterium Rhodospirillum rubrum and the relation between phototaxis and photosynthesis. Antonie Leeuw• enhoek, 14:65. ---. 1948b. Phototaxis, phototropism and photosynthesis in purple bacteria and blue-green algae. Thesis, Utrecht, Holland, Drukkerij. Fa. Schotanus and Jens. MANTON, I. 1952. The fine structure of plant cilia. Sympos. Soc. Exp. BioI., 6:306. MAST, s. o. 1911. Light and the Behavior of Organisms, New York, Wiley. MAUZERALL, D., and s. GRANICK. 1958. Porphyrin biosynthesis in erythrocytes. III. Uroporphyrinogen and its decarboxylase. J. BioI. Chern., 232: 1141. MILLER, G. L., and K. J. I. ANDERSSON. 1942. Ultracentrifuge and diffusion studies on native and reduced insulin in Duponol solution. J. BioI. Chern., 144:475. MILLOT, N. 1960. The photosensitivity of sea urchins. In Allen, M. B., ed., Com• parative Biochemistry of Photoreactive Systems, New York, Academic Press. MONTGOMERY, P. o'B., ed. 1962. Scanning techniques in biology and medicine. Ann. N. Y. Acad. Sci., 97:331. MOOR, H., K. MUHLETHALER, K. WALDNER, and A. FREY-WYSSLING. 1961. A new freezing microtome. J. Biophys. Biocpem. Cytol., 10: 1. MORTENSON, L. E., R. C. VAT,ENTINE, and J. E. CARNAHAN. 1962. An electron trans· port factor from Clostridium pasteurianum. Biochem. Biophys. Res. Commun., 7:448. MYERS, J. 1951. Physiology of the algae. Ann. Rev. Microbiol., 5: 157. 190 References

NAKA, K. I. 1960. Recording of retinal action potentials from single cells in the insect compound eye. J. Gen. Physiol., 44:571. NEILANDS, J. B., and P. K. STUMPF. 1958. Outline of Enzyme Chemistry, New York, Wiley. NELSON, R. c. 1957. Some photoelectric properties of chlorophyll. J. Chern. Phys., 27:284. NIEMAN, R. H., and B. VENNESLAND. 1957. Cytochrome c photooxidase of spinach chloroplasts. Science, 125:353. NISHIMURA, M. 1959. A new hematin compound isolated from Euglena gracilis. J. Biochem., 46:219. ---, and H. HUZISIGE. 1959. Studies on the chlorophyll formation in Euglena gracilis with special reference to the action spectrum of the process. J. Biochem., 46:225. NOACK, K., and w. KIESSLING. 1929. Zur Entstehung des Chlorophylls und seiner Beziehung wm Blutfarbstoff. I. Mitteilung. Hoppe Seyler Z. Physiol. Chern., 182: 13. ---, and ---. 1930. Zur Entstehung des Chlorophylls und seiner Bezie• hung wm Blutfarbstoff. II. Mitteilung. Hoppe Seyler Z. Physiol. Chern., 193:97. OLSON, R. A., and E. K. ENGLE. 1959. Chlorophyll absorption microscopy of in vivo, cell-free, and fragmented ChloTella chloroplasts. In The Photochemical Ap• paratus: Its Structure and Function. Brookhaven Sympos. BioI., no. 11, p.303. PALADE, G. E. 1952a. The fine structure of mitochondria. Anat. Rec., 114:427. ---. 1952b. A study of fixation for electron microscopy. J. Exp. Med., 95:285. ---. 1953. An electron microscope study of the mitochondrial structure. J. Histochem. Cytochem., I: 188. ---. 1954. The Fixation of Tissues for Electron Microscopy. Proc. Int. Con£. Electron Microscopy (London), p. 129. ---, and K. R. PORTER. 1954. Studies on the endoplasmic reticulum. I. Its identification in cells in situ. J. Exp. Med., 100:641. ---, and P. SIEKEVITZ. 1956. Liver microsomes. An integrated morphological and biochemical study. J. Biophys. Biochem. Cytol., 2: 171. PEASE, D. c. 1964. Histological Techniques for Electron Microscopy, 2d ed., New York, Academic Press. PITELKA, D. R. 1963. Electron-Microscopic Structure of Protozoa, New York, Per• gamon Press. ---, and F. M. CHILD. 1964. The locomotor apparatus of and flagel• lates: relations between structure and function. In Hutner, S. H., ed., Bio• chemistry and Physiology of Protozoa, vol. 111:131-198, New York, Aca• demic Press. ---, and c. N. SCHOOLEY. 1955. Comparative Morphology of Some Protistan Flagella, Berkeley, University of California Press. References 191

---, and ---. 1958. The fine structure of the flagellar apparatus in . J. Morph., 102:199. PITTENDRIGH, c. s. 1954. On temperature independence in the clock system con• trolling emergence time in Drosophila. Proc. Nat. Acad. Sci. U. S. A., 40:1018. POGO, B. G. T., and A. o. POGO. 1965. Inhibition by chloramphenicol of chlorophyll and protein synthesis in Euglena. J. Protozool., 12(1):96. POHL, R. 1948. Tagershythmus in photoaktischen Verhalten der Euglena gracilis. Z. Naturforsch. [B], 3b:367. POLLISTER, A. W., and L. ORNSTEIN. 1959. The photometric chemical analysis. In Mellors, R. C., ed., Analytical Cytology, 2d ed., 431, New York, McGraw• Hill. PORTER, K. R. 1953. Observations on a submicroscopic basophilic component of cytoplasm. J. Ex. Med., 97:727. PRINGSHEIM, E. G. 1956. Contributions toward a monograph of the genus Euglena. Nova Acta Leopoldina, 18: 125. ---. 1963. Farblose algen. Ein Beitrog zur Evolutionsforschung, Stuttgart, Gustav Fischer. ---. 1964. Pure Cultures of Algae, New York, Hafner. ---, and R. HOVASSE. 1948. The loss of chromatophores in Euglena gracilis. New Phytologist, 47:52. ---, and o. PRINGSHEIM. 1952. Experimental elimination of chromatophores and eye spot in Euglena gracilis. New Phytologist, 51:65. PROVASOLI, L., S. H. HUTNER, and I. J. PINTNER. 1951. Destruction of chloroplasts by streptomycin. Sympos. Quant. BioI., 16: 113. ---, s. H. HUTNER, and A. SCHATZ. 1948. Streptomycin-induced chlorophyll-less races of Euglena. Proc. Soc. Exp. BioI. IVIed., 69:279. PUCK, T. T., P. I. MARCUS, and s. J. CIECIURA. 1956. Colonial growth of mammalian cells in vitro. Growth characteristics of colonies from single Hela cells with and without a "feeder" layer. J. Exp. Med., 103:273. PUTNAM, F. w. 1948. The interactions of proteins and synthetic detergents. Ad• vances Protein Chern., 4:79. RABINOWITCH, E. 1. 1945. Photosynthesis and Related Processes, vol. 1, New York, Interscience. ---. 1951. Photosynthesis, vol. 2, part 1; vol 3, art. 1, p. 798, New York, Interscience. ---. 1956. Photosynthesis and Related Processes, vol. 2, part 2, New York, Interscience. RAY, D. S., and P. C. HANAWALT. 1964. Properties of the satellite DNA associated with the chloroplasts of Euglena gracilis. J. Molec. BioI., 9:812. ROBERTSON, J. D. 1960. The molecular structure and contact relationship of cell membranes. Progr. Biophys., 10:343. ROSENBERG, A. 1963. A comparison of lipid patterns in photosynthesizing cells of E. gracilis. Biochemistry (Wash.), 2(5):1l48. 192 References

---, and M. PECKER. 1963. Lipid salts in E. gracilis cells during light induced greening. Biochemistry (Wash.), 3(2):254. ROSENBERG, B. 1958. Photoconductivity and the visual receptor processes. J. Opt. Soc. Amer., 48:581. ---. 1959. Photoconduction and cis-trans isomerism in ,a-carotene. J. Chern. Phys., 31 :238. ---. 1961a. Photoconduction activation energies in cis-trans isomers of ,a-carotene. J. Chern. Phys., 34:63. ---. 1961b. Photoconduction in a hindered cis-isomer of ,a-carotene and its relation to a theory of the visual receptor process. J. Opt. Soc. Amer., 51:238. RUDOLPH, H. 1933. Dber die Einwirkung des farbingen Lichtes auf die Entstehung der Chloroplastenfarbstoffe. Planta Med., 21: 104. RUNGE, w. ]. 1966. A recording microfluorospectrophotometer. Science, 151:1499. SAGER, R. 1959. The architecture of the chloroplast in relation to its photosyn• thetic activities. In The Photochemical Apparatus: Its Structure and Func• tion. Brookhaven Sympos. BioI., no. II, pp. 101-117. ---, and M. ZALOKAR. 1958. Pigments and photosynthesis in a carotenoid• deficient mutant of Chlamydomonas. Nature (London), 182:98. ST. GEORGE, R. c. 1952. Interplay of light and heat in bleaching rhodopsin. J. Gen. PhysioI., 35:495. SCHNEIDER, E., and c. A. PRICE. 1962. Decreased RNA levels: possible cause of growth inhibition in zinc deficiency. Biochim. Biophys. Acta, 55:406. SCHOENBORN, H. w. 1946. Studies on the nutrition of colorless euglenoid flagellates. II. Growth of Astasia in an inorganic medium. PhysioI. ZooI., 19:430. ---. 1953. Lethal effect of u.v. and X-radiation on the protozoan flagellate Astasia longa. PhysioI. ZooI., 26:312. SEYBOLD, A., and K. EGLE. 1938. Lichtfeld und Blattfarstoffe. II. Planta Med., 28:87. ---, and ---. 1939. Zur Kenntis des Protochlorophylls. II. Planta Med., 29:119. SHIBATA, K., A. A. BENSON, and M. CALVIN. 1954. The absorption spectra of sus• pensions of living microorganisms. Biochim. Biophys. Acta, 15:461. SIEGEL, B. M. 1964. Modern Developments in Electron Microscopy, New York, Academic Press. S]OSTRAND, F. s. 1949. An electron microscope study of the retinal rods of the guinea pig eye. J. Cell. Compo PhysioI., 33:383. ---. 1953a. The ultrastructure of the inner segments of the retinal rods of the guinea pig as revealed by the electron microscope. J. Cell. Compo PhysioI., 42:45. ---. 1953b. The ultrastructure of the outer segments of rods and cones of the eye as revealed by the electron microscope. J. Cell. Compo PhysioI., 42:15. SMITH, E. L. 1941a. The action of sodium dodecyl sulfate on the chlorophyll• protein compound of the spinach leaf. J. Gen. PhysioI., 24:583. References 193

---. 1941b. The chlorophyll-protein compound of the green leaf. J. Gen. Physiol., 24:565. ---, and E. G. PICKELS. 1940. Micelle formation in aqueous solutions of digitonin. Proc. Nat. Acad. Sci. U. S. A., 26:272. ---, and ---. 1941. The effect of detergents on the chlorophyll-protein compound of spinach as studied in the ultracentrifuge. J. Gen. Physiol., 24:753. SMITH, J. H. c. 1948. Protochlorophyll, precursor of chlorophyll. Arch. Biochem., 19:449. ---. 1960. In Allen, M. B., ed., Comparative Biochemistry of Photoreactive Systems, 257-277, New York, Academic Press. ---, and D. w. KUPKE. 1956. Some properties of extracted protochlorophyll holochrome. Nature (London), 178:751. ---, and v. M. K. YOUNG. 1956. Chlorophyll formation and accumulation in plants. In Hollaender, A., ed., Radiation Biology, 393-442, New York, McGraw-Hill. STANIER, R. Y. 1959. Formation and function of the photosynthetic pigment system in purple bacteria. In The photochemical apparatus: its structure and func• tion. Brookhaven Sympos. BioI., no. II, pp. 43-53. STRAIN, H. H. 1938. Leaf xanthophylls. Carnegie Institute of Washington publ. no. 490. STERN, K. H. 1954. The Liesegang phenomenon. Chern. Rev., 54:79. ---. 1944. Chloroplast pigments. Ann. Rev. Biochem., 13:591. ---. 1946. Indispensable leaf yellow. J. Chern. Educ., 23:262. ---.1951. Manual of Phycology, 243-262, Waltham, Mass., Chronica Botanica Co. STROTHER, G. K., and J. J. WOLKEN. 1959. A simplified microspectrophotometer. Science, 130: 1084. ---, and ---. 1960. Microspectrophotometry of Euglena chloroplast and eyespot. Nature (London), 188:601. ---, and J. J. WOLKEN. 1961. In vivo absorption spectra of Euglena: chloro• plast and eyespot. .T. Protozool., 8:261. SWIFT, H., and E. RASCH. 1956. Microspectrophotometry with visible light. In Oster, G., and A. W. Pollister, eds., Physical Techniques in Biological Re• search, vol. 3, 353, New York, Academic Press. SZENT GYORGYI, A. 1960. Introduction to a Submolecular Biology, New York, Academic Press. TAKASHIMA, S. 1952. Chlorophyll-lipoprotein obtained in crystals. Nature (Lon• don), 169: 182. TAYLOR, G. I. 1951. Analysis of the swimming of microscopic organisms. Proc. Roy. Soc. [A.], 209:447. ---. 1952. The action of waving cylindrical tails in propelling microscopic organisms. Proc. Roy. Soc. [A.], 2II:225. THOMAS, J. B. 1955. The structure and function of the chloroplast. Progr. Biophys., 5:109. 194 References

---. 1958. Chloroplast structure and function. Endeavour, 17:156. TISCHER, J. 1936. Ober das Euglenarhodon und andere Carotinoide einer roten Euglene. (Carotinoide der Susswasseralgen, I. Teil.). Hoppe Seyler Z. PhysioI. Chern., 239:257. TRURNIT, H. J., and G. COLMANO. 1958. Chloroplast studies. I. Absorption spectra of chlorophyll monolayers at liquid interfaces. Biochim. Biophys. Acta, 31:434. VAN NEIL, C. B. 1941. The bacterial photosyntheses and their importance for the general problem of photosynthesis. Advances Enzym., 1:263. ---, ed. 1963. Selected Papers of E. G. Pringsheim, New Brunswick, N. J., Institute of Microbiology, Rutgers, The State University Press. VANDENHEUVEL, F. A. 1966. Lipid-protein interactions and cohesional forces in the lipoprotein systems of membranes. J. Amer. Oil Chemists' Soc., 43:258. VON EULER, H. 1948. Nukleinsauren als Wuchstoffe in Gegenwart von Colchicin und von Streptomycin. Arch. Kemi Mineral. GeoI., 25A(8): 1. ---. 1953. Einfluss von Streptomycin und Dihydro-streptomycin auf keimende Samen grliner Pflanzen. Hoppe Seyeler Z. PhysioI. Chern., 295:411. ---, B. BERGMAN, and H. HELLSTROM. 1934. Ober das Verhaltnis von Chloro• plastenzahl und Chlorophyll-konzentration bei Elodea densa. Ber. Deutsch Botan. Ges., 52:458. WALD, G. 1953. The biochemistry of vision. Ann. Rev. Biochem., 22:497. ---. 1956. The biochemistry of visual excitation. In Gaebler, O. H., ed., Enzymes: Units of Biological Structure and Function, 355-367, New York, Academic Press. ---. 1960. The distribution and evolution of visual systems. In Comparative Biochemistry, vol. I, 311, New York, Academic Press. WALLACE, P. M. M. 1958. Ultraviolet microspectrophotometry. In Danielli, J. F., ed., General Cytochemical Methods, vol. I, 163, New York, Academic Press. WEIBUL, c. 1951. Some analytical evidence for the purity of Proteus flagella pro• tein. Acta Chern. Scand., 5:529. WICHTERMAN, R. 1955. Survival and other effects following x-radiation of the flagellate Euglena gracilis. BioI. Bull., 109:371. ---, and c. M. HONEGGER. 1958. Action of x-rays on the two common . Proc. Pa. Acad. Sci., 22:240. WILLMER, E. N. 1955. The physiology of vision. Ann. Rev. PhysioI., 17:339. WOLKEN, J. J. 1956a. A molecular morphology of Euglena gracilis var. bacillaris. J. ProtozooI., 3:211. ---. 1956b. Photoreceptor structures. I. Pigment monolayers and molecular weight. J. Cell. Compo PhysioI., 48:349. ---. 1957. Comparative study of photoreceptors. Trans. N. Y. Acad. Sci., 19:315. ---. 1958. Studies of photoreceptor structure. Ann. N. Y. Acad. Sci., 74: 164. ---. 1959a. The chloroplast and photosynthesis-a structural basis for func- tion. Amer. Sci., 47:202. References 195

---. 1959b. The photochemical apparatus: its structure and function. Brook• haven Sympos. BioI., no. 11, 87. ---. 1959c. The structure of the chloroplast. Ann. Rev. Plant Physiol., 10:71. ---. 1960. In Allen, M. B., ed., Comparative Biochemistry of Photoreactive Systems, 145·167, New York, Academic Press. ---. 1961a. The chloroplast: its lamellar structure and molecular organiza• tion. In Edds, M. V., Jr., ed., Macromolecular Complexes, New York, Ronald. ---. 1961b. The photoreceptor structure. In Bourne, G. H., and J. H. Dani• eBi, eds., Int. Rev. Cytol., 11: 195. ---. 1962. Photoreceptor structures: their molecular organization for energy transfer. J. Theor. BioI., 3: 192. ---. 1963a. The chloroplast structure in photosynthesis. In Kok, B., ed., Photosynthetic Mechanisms of Green Plants, Washington, D. C., National Academy of Sciences, National Research Council. ---. 1963b. The structure and molecular organization of retinal photore• ceptors. J. Opt. Soc. Amer., 53(1): 1. ---. 1966a. Vision: Biophysics and Biochemistry of Retinal Photoreceptors, Springfield, Ill., Charles C Thomas. ---. 1966b. Microspectrophotometry. In Clark, G. L., ed., Encyclopedia of Chemistry, New York, Reinhold. ---. 1966c. Lipids and the molecular structure of photoreceptors. J. Amer. Oil Chemists' Soc., 43(5):271. ---, R. FORSBERG, G. GALLIK, and R. FLORIDA. 1966. Development of new micro• spectrophotometric instrumentation. Eleventh Annual Report, Biophysical Research Laboratory, Pittsburgh, Pa., and Report N66-24968, National Aeronautics and Space Administration, Washington, D. C. ---, and J. A. GROSS. 1963. The development and characteristics of the Euglena c-type cytochrome. J. Protozool., 10:189. ---, and A. D. MELLON. 1956. The relationship between chlorophyll and the carotenoids in the algal flagellate, Euglena. J. Gen. Physiol., 10:71. ---, A. D. MELLON, and c. L. GREENBLATT. 1955. Environmental factors affect· ing growth and chlorophyll synthesis in Euglena. I. Physical and chemical. II. The effectiveness of the spectrum for chlorophyll synthesis. J. Protozool., 2:89. ---, and G. E. PALADE. 1953. An electron microscope study of two flagellates. Chloroplast structure and variation. Ann. N. Y. Acad. Sci., 56:873. ---, and F. A. SCHWERTZ. 1953. Chlorophyll monolayers in chloroplasts. J. Gen. Physiol., 37: 111. ---, and E. SHIN. 1958. Photo motion in Euglena gracilis. I. Photokinesis. II. Phototaxis. J. Protozool., 5:39. ---, and G. K. STROTHER. 1963. Microspectrophotometry. Appl. Optics, 2:889. ZECHMEISTER, L. 1944. Cis-trans isomerization and stereochemistry of carotenoids and diphenylpolyenes. Chern. Rev., 34:267. 196 References

---. 1962. Carotenoids: Cis-Trans Isomeric Carotenoids, Vitamins A, and Arylpolyenes, New York, Academic Press. ZSCHEILE, F. P., and c. L. CONMAR. 1941. Influence of preparative procedure on the purity of chlorophyll components as shown by absorption spectra. Bot. Gaz., 102:463. A uthor Index

Complete references are given on pages indicated by italics

Aaronson, S. 103, 181, 187 Calvin, M. 66, 100,109, lID, 181, 182, Ackerman, E. 181 189,192 Akerman, L. 183 Carnahan, J. E. 189 Allen, M. B. 48, 181 Carrel, A. I, 182 Amesz, J. 22, 186 Carter, H. E. 104, 182 Andersson, K. J. 1. 189 Caspersson, T. O. IS, 16,182 Appleman, D. 94, 184 Castle, E. S. 163, 183 Arnold, W. 125, 135, 181, 184 Chance, B. 16, 114, 183 Arnon, D. 1. 44, 62, 119, 181 Chargaff, E. 30, 182 Astbury, W. T. 35, 181 Chayen, J. 183 Child, F. M. 142, 190 Baas·Becking, L. G. M. 64, 181 Cieciura, S. J. 191 Bach, M. K. 187 Clarke, A. E. 24, 183 Baker, H. 103, 181, 187 Clayton, R. K. 135, ISO, 153, 161,181, Bamji, M. S. 47,181 183 Bartsch, R. G. 114,115,181 Cole, H. 17,186 Bassham, J. A. 100, 181 Colmano, G. 51,55,183,194 Batra, P. ISO, 181 Conmar, C. L. 40, 196 Bendall, F. 114, lIS, 186 Cramer, M. 74, lID, 183 Benson, A. A. 103,181,192 Crane, R. K. 133, 183 Bergman, B. 194 Cury, A. 187 Bernal, J. D. 139, 181 Bernstein, E. 186 Danielli, J. F. 103, 183 Bloch, K. 103, 104, 181, 184, 186 Davenport, H. E. 1I4, ll5, 183 Bogorad, L. 37, 182 Davies, H. G. 67,183 Bovee, E. C. 142, 187 Davson, H. 103, 183 Branton, D. 12, 182 Delbriick, M. 163, 183 Brawerman, G. 30, 182 Denton, E. J. 16, 183 Brown, H. P. 182 Diehn, B. ISO, 167,183,188 Brown, J. S. 48,181,182 Dobell, C. 5, 183 Brown, P. K. 16, 155, 156, 182 Dubos, R. 70, 183 Bruce, V. G. 167,182 Dusi, H. 3, 189 Biinning, E. ISO, 153, 155, 156, 167, 182 Edelman, M. 31,183 197 198 Author Index

Egle, K. 75, 192 Hanson, E. A. 64, 181 Eisenstadt, J. M. 30, 182 Hastings, J. 167,186 Elbers, P. F. 64, 183 Hedges, E. J. 137, 186 Emerson, R. 125, 184 Hellstrom, H. 194 Engelmann, T. W. 142, 184 Henry, B. 17,186 Engle, E. K. 52, 190 Hill, A. V. 186 Epstein, H. T. 31,183, 186, 188, 189 Hill, H. Z. 186 Erwin, J. 103,184,186 Hill, R. 101, 114, 115, 142, 183, 186 Eversole, R. A. 109, 184 Hodge, A. J. 66, 186 Eyring, H. 187 Holmes, S. J. 145, 186 Holt, A. S. 67, 186,187 Faure-Fn?miet, E. 163, 184 Honegger, C. M. 101,194 Fawcett, D. W. 35, 184 Hoogenhout, H. 22, 186 Fermindez-Moran, H. 12, 184 Hooke, R. 10, 186 Finkle, B. J. 94, 184 Hovasse, R. 31, 58, 191 Fischer, H. 74, 184 Hubbard, R. 124, 186 Fiske, C. H. 133, 184 Hulanicka, D. 104,186 Florida, R. 195 Hutner, S. H. 2, 3, 10, 22, 24, 54, 98, Fogg, G. E. 110,184 175, 179,187,191 Forsberg, R. 195 Huxley, T. H. 2 Fox, D. L. 37,184 Huzisige, H. 86, 190 Fraenkel, G. S. 143, 184 Frank, O. 86, 187 Jacobs, E. E. 67, 187 Frank, S. R. 75, 76, 87, 184 Jahn, F. F. 6, 187 French, C. S. 48, 181, 182, 184 Jahn, T. L. 3,6, 35, 52, 142,186,187 Frey·Wyssling, A. 64, 67, 69, 185, 189 Jamikorn, M. 46, 75, 185 Fu jimori, E. 108, 185 Jane, F. W. 7 Jennings, H. S. 142, 187 Gallik, G. 195 Johnson, F. H. 129,187 Gibbs, S. P. 28, 185 Johnson, L. P. 52, 187 Gibor, A. 30, 60, 185 Jucker, E. 37, 42, 187 Godnev, T. N. 185 Goedheer, J. C. 67, 185 Kalishevich, S. V. 185 Gojdics, M. 4, 6, 185 Kamen, M. D. 114, 115,181,187 Goldsmith, T. H. 47,188 Karrer, P. 37, 42, 187 Goodwin, T. W. 37, 44, 45, 46, 47, 52, Katz, E. 135, 187 75, 100, 185 Kay, D. 13, 188 Gosse!, I. 54, 185 Kidder, G. W. 94, 188 Govindjee 48, 185 Kiessling, W. 86, 190 Granick, S. 30, 37, 40, 41, 60, 75, 82, Korn, E. D. 103,188 83,87,185,189 Koski, V. M. 78, 82, 188 Greenblatt, C. I. 195 Kreger, D. R. 24, 188 Grell, K. G. 4, 186 Krinsky, N. I. 47, 181,187, 188 Gross, J. A. 46, 55, 88, 100, I 15, 119, Kupke, D. W. 125, 193 172, 185, 186, 195 Gunn, D. L. 143, 184 La Cour, L. F. 183 Lee, J. W. 148, 149, 188 Halldal, P. 150,186 Leedale, G. F. 21, 24, 100, 101, 188 Hanawalt, P. C. 30, 31, 191 Lehninger, A. L. 32, 188 Author Index 199

Lewin, R. A. 3, 7, 142,188 Pa1ade, G. E. 12, 27, 28, 32, 33, 70, Liebman, P. A. 16, 188 190, 195 Liesegang 136, 137 Pease, D. C. 13,190 Lindes, D. A. 188 Peeker, M. 103, 192 Lipmann, F. 133,183 Perry, R. 183 Livingston, R. 108, 185 Phillips, J. N. 137, 140, 188 Loeb, J. 150, 188 Picke1s, E. G. 124, 125, 193 Lomakka, G. M. 15, 182 Pintner, 1. J. 191 Lowe, M. B. 137,140,188 Pitelka, D. R. 35, 142, 190 Lowndes, A. G. 155, 188 Pittendrigh, C. S. 167, 182, 191 Lwoff, A. 2, 3, 74, 187, 189 Pogo, A. O. 101, 191 Lyman, H. 101, 189 Pogo, B. G. T. 101, 191 Lynch, V. H. 109, 110, 189 Pohl, R. 167, 191 Lythgoe, R. S. 129, 189 Polissar, M. J. 187 Pollister, A. W. 16, ·191 McDonald, E. 102, 189 Porter, K. R. 33,35,184,189,190,191 McKinney, G. 44, 189 Price, C. A. 96, 192 McLean, J. D. 186 Pringsheim, E. G. 1, 4, 22, 24, 32, 58, MacNichol, E. F. 16,189 60, 172, 173,188,191 Manten, A. 150, 151, 155,189 Pringsheim, O. 191 Manton, 1. 35, 189 Provasoli, L. 4, 10, 22, 54, 98, 172, Marcus, P. 1. 191 187,191 Mast, S. O. 142, 145, 150,189 Puck, T. T. 22, 191 Mauzerall, D. 40, 185, 189 Putnam, F. W. 120, 191 Meeuse, B. J. D. 24, 188 Mellon, A. D. 75, 76, 82, 85, 88, 107, Quilliam, J. P. 129, 189 128,195 Mercer, F. V. 186 Rabinowitch, E. 1. 37, 47, 48, 66, 185, Miller, G. L. 189 191 Millot, N. 156, 189 Rasch, E. 16, 193 Minnaert, K. 183 Ray, D. S. 30, 31, 191 Montgomery, P. O'B. 16, 189 Reichardt, W. 163, 183 Moor, H. 12,182,189 Robertson, J. D. 103,191 Mortenson, L. E. 119, 189 Rosenberg, A. 104, 191 Muhlethaler, K. 189 Rosenberg, B. 103, 135, 155, 166, 192 Myers, J. 21, 22, 74, 110, 183, 189 Ross, G. 1. 187 Rouiller, C. 163, 184 Naka, K. 1. 166, 190 Rudolph, H. 75, 192 N eilands, J. B. 56, 190 Runge, W. J. 16, 192 Nelson, R. C. 135, 190 Nieman, R. H. 132, 190 Saftsrom, R. 182 Nishimura, M. 86, 114, 115, 190 Sager, R. 58, 108, 192 Noack, K. 86, 190 Saha, N. N. 35,181 Nojima, S. 182 St. George, R. C. 131, 192 Schatz, A. 191 Ohno, K. 182 Schiff, J. 31,183,186,189 Olson, J. M. 114, 183 Schneider, E. 96, 192 Olson, R. A. 52, 190 SchneiderhOhn, G. 150, 155, 156, 182 Ornstein, L. 16, 191 Schoenborn, H. W. 101, 192 200 Author Index

Schooley, C. N. 35,190 Tischer, J. 52, 194 Schwertz, F. A. 27, 52, 64, 195 Tollin, G. 150, 167, 181,183,188 Seybold, A. 75, 192 Trurnit, H. J. 51,194 Sherwood, H. K. 135, 181 Shibata, K. 44, 192 Valentine, R. C. 189 Shin, E. 148, 195 Vandenheuvel, F. A. 103, 194 Siegel, B. M. 13, 192 van Neil, C. B. 2, 106, 194 Siekevitz, P. 33, 190 Vattner, A. E. 187 Sjostrand, F. S. 161, 192 Vennesland, B. 132, 190 Smith, E. L. 124, 125, 192, 193 Von Euhler, H. 194 Smith, J. H. C. 78, 82, 86, 125, 188, 193 Wald, G. 40, 121, 194 Stanazev, N. Z. 182 Waldner, K. 189 Stanier, R. Y. 107, 193 Wallace, P. M. M. 16, 194 Stern, A. 74, 137, 184 Weibul, C. 35, 194 Stern, K. H. 193 Wichterman, R. 101, 194 Stone, B. A. 24, 183 Wilkins, M. H. F. 183 Strain, H. H. 37, 75, 193 Willmer, E. N. 161, 194 Strother, G. K. 16, 17,48, 52, 54,193, Wolken, J. J. 16, 17, 27, 28, 40, 47, 195 48, 51, 52, 54, 55, 60, 64, 70, Stumpf, P. K. 56, 190 75, 76, 82, 85, 88, 95, 103, 107, Subbarow, Y. 133, 184 109, 115, 119, 121, 123, 128, Svensson, G. 182 148, 161, 171, 183, 184, 186, Sweeney, B. M. 167, 186 193, 194 Swift, H. 16, 193 Szent Gyorgyi, A. 135, 193 Young, V. M. K. 193 Takashima, S. 125, 193 Taylor, G. I. 156, 193 Zahalsky, A. C. 187 Thomas, J. B. 67,171,183,193,194 Zalokar, M. 108, 192 Thorell, B. 183 Zechmeister, L. 37, 195, 196 Tipton, Z. L. 182 Zscheile, F. P. 40, 196 Subject Index

Adenosine monophosphate (AMP) Carotenoids-Continued 133 xanthophylls-Continued Adenosine triphosphate (ATP) 132, cryptoxanthin 47 141 lutein 44, 54 Amino acids 35 neoxanthin 47, 54 Antheraxanthin; see Carotenoids, zeaxanthin 47 Xanthophylls Cell fixatives 12, 60 Ascorbate 133 Cell membrane; see Pellicle Astacene; see Carotenoids, Xantho• Chlamydomonas reinhardi 4, 108, 145 phylls Chlorella 22, 48, 51, 75, 94, 100, 102, Astasia 6 110 Astaxanthin; see Carotenoids, Xantho• Chlorophyll macromolecule phylls holochrome 125 Autotrophs 3, 105 lipoprotein 68, 125 Azaserine 100, 101 molecular weight 69 Chlorophylls 28, 37, 44, 52, 60, 62, 64, Bacterial chlorophyll 107 65, 66, 70, 72, 74, 75, 76, 78, cytochromes 119 79, 80, 84, 87, 90, 94, 95, 96, photosynthesis 106, 107 97, 101, 104, 107, 108, 109, Barbital 100 110, Ill, 119, 125, 135, 169, Beer's law 13 171 Boron 95, 96, 97 bacterial chlorophyll 107, 108 Bovine albumin 121 chlorophyll a 4, 38, 39, 40, 44, 45, n-Butyl methacrylate 12 46, 48, 62, 67, 72, 74, 135 chlorophyll b 4, 38, 39, 44, 45, 46, Cadmium selenide 17 108, 135 Carbohydrate synthesis 102 Chloroplast 21, 27, 32, 44, 103, 120 Carbon dioxide fixation 109, 110 absorption spectra 48 Carotenoids 28, 37, 40, 42, 44, 45, 46, chlorophyll concentration in 63, 67 47, 54, 57, 63, 65, 66, 87, 107, lipids 90, 120 132 structure 58-68 {I-carotene 46, 47, 54, 108, 135, 155 Chloroplastin 120-135, 137, 172 'Y-carotene 47 molecular weight 125 xanthophylls Chromatium 115 antheraxanthin 47 Chromatography 44-47 astacene 47, 52 Chromosomes 21 astaxanthin 47, 52 Chromulina 163 201 202 Subject Index

Cobalt 95, 96 Eyespot 6, 21, 27, 33, 34, 44, 47, 52, Colchicine 100 53, 54, 55, 58, 98, 99, 148, 155, Copper 95, 96 157, 159, 160, 163, 166 Corn leaves 78 Eyespot and flagellum 161, 172 Cryptoxanthin; see Carotenoids, Xanthophylls Ferredoxin 119 Cyanide 98 Flagella 21, 27, 34, 35, 141, 155, 156, Cytochromes 55-57, 113, 114-119, 170 157, 159, 160, 161, 163; see bacterial cytochrome 119 also Eyespot cytochrome bs 114 Formaldehyde; see Cell fixatives cytochrome c 114, 115, 133 Fungi 4 cytochrome f 114, 115, 119 cytochrome-552 55-57, 119 Gelatin 137 cytochrome-556 55-57, 119 Glucan 24, 134 Glucose 6-phosphate dehydrogenase Deoxyribonucleic acid (DNA) 30, 31, 134 32 Glutamic acid 24 satellites 31 Gluteraldehyde; see Cell fixatives Detergents 120-124 Gonyaulax 167 digitonin 109, 120, 121, 123, 124, Growth 21 172 Gullet 26, 34, 169 nacconal 120 tergitol 120 Haematococcus pluvialis 52 2,6-Dichlorobenzenoneindophenol Hela cells 21 131, 132 Helium II 12 Digitonin; see Detergents Hematochrome 54, 55 Diphenylamine 100 Hemoglobin 171 Heterotroph 3 Echinenone 47 Hexane 44 Electron microscopy 11, 12-13, 24, 29, Hexokinase 134 33,60 Holochrome; see Chlorophyll macro• negative staining 12-13 molecule Elodea densa 66 Hydroxylamine 98 Endoplasmic reticulum 33 Endosome 99 Epoxides 12, 108, 109 Iron 95, 96, 106 Escherichia coli 100 Isoprene 42 Ethy lenediaminetetraacetit acid (EDTA) 97 a-Ketoglutarate 133 Euglena granulata 6, 54 Krebs cycle 23, 24, 98 Euglena heliorubescens 52 Euglena mutants Lambert's law 13 heat-bleached (HB) 57, 103 Lead salts; see Cell fixatives streptomycin (SM) 57 Liesegang phenomenon 136, 137 Euglenarhodon 52 Lipids 60, 67, 103; see also Chloro- Eutreptia 5 plast Exoskeleton; see Pellicle galacto lipid 103, 104 Eye 161, 166, 169 a-linolenate 103, 104 retina 52 Lipoprotein 60; see also Chlorophyll rods and cones 161, 163 macromolecule Subject Index 203

Liquid-crystal 137, 139, 141 Phycomyces 161, 163 Lutein; see Carotenoids, Xanthophylls Phytoene 108 Phytol 38, 65, 108 Magnesium 94,95,97, 103, 133 Platinum chloride; see Cell fixatives radioactive 95 Porphyria 100 Magnetic fields effect on Porphyrins 37, 38, 40, 60, 63, 64 chlorophyll synthesis 87 Potassium chromate; see Cell fixatives growth rate 87 Potassium dichromate 137; see also Manganese 95, 96, 97 Cell fixatives Mercury 98 Potassium permanganate; see Cell fixa- Microsomes 103 tives Microspectrophotometry, 15, 16, 17, 18, Poteriochromonas stipitata 64 44, 48, 72 Pressure effects on 88 Mitochondria 2, 27, 32, 98, 103 Proplastid 60 Mitosis 21, 100 Protein synthesis 102 Mnium 66 Protochlorophyll 39, 40, 75, 82, 84, Molybdenum 95, 96, 97 86, 170 Myelin 139 in various plants 86 Protoporphyrin 83 Nacconal; see Detergents magnesium 40 Neoxanthin; see Carotenoids, Xantho• Protozoa 3 phylls Purines 24, 100, 101 Nucleus 21, 27, 30, 35, 98, 99 Pyrenoid 32 Nutrient medium 10, Appendix Pyribenzamine 100 Pyrimidines 24, 100 Osmium tetroxide; see Cell fixatives . analogs 101 Oxalacetic acid 98 Pyruvic acid 98 Oxygen 108 Radiation, ionizing 101 Palmelloid 6, 74, 100 Radio-frequency field effect 87, 88 Paraflagellar body 34; see also Eyespot Respiration IIO, II 1 Paramecium 149 Retina; see Eye Paramylum 24, 35 Rhodopsin 52, 121, 129, 131 Pellicle 27, 28, 100 Rhodospirillum rubrum 152, 161 4, 173 Riboflavin 133 Phaseolus multiflorus 75, 125 Ribonucleic acid (RNA) 30, 31, 96 Pheophytin 72,74,90, 101, 171 Rods and cones; see Eye pheophytin a 39, 74 Scenedesmus 109 pheophytin b 39 Serum 137 Phosphatase 94 Silver dichromate 137 Phosphotungstic acid 13 Spectroscopy 13, 14 Photobacterium phosphoreum 133 Stigma; see Eyespot Photoconductivity 135, 155 Streptomycin 98, 99, 101 Photodynamic action 108 Photokinesis 143, 153 Temperature, effects on Photosynthesis 98, IIO, II I, II3 chlorophyll synthesis 88, 90 bacterial 106, 107 chloroplasts 90 Photosynthetic bacteria II4 growth 89 Phototaxis 143, 150, 154, 155, 161 Tergitol; see Detergents Phototropisms 40 Tetrahymena 94, IIO 204 Subject Index

Time clocks 166, 167 Vanadium salts; see Cell fixatives light-compass reaction 166 Vitamin A 52 Tolypothrix 155 Vitamin B2 ; see Riboflavin Triphosphopyridine nucleotide (TPN) Vitamin BI2 24, 97 119, 134 Vitamin K 133 reductase 119 Volvox 145, 149

Ultraviolet radiation 10 1 Zeaxanthin; see Carotenoids, Xantho• Uranyl acetate 13 phylls Uranyl nitrate; see Cell fixatives Zinc 95, 96