Cell Surface Glycoconjugates of Euglena Gracilis (Euglenozoa

Total Page:16

File Type:pdf, Size:1020Kb

Cell Surface Glycoconjugates of Euglena Gracilis (Euglenozoa Cell Surface Glycoconjugates of Euglena gracilis (Euglenozoa): Modifications under Potassium and Magnesium Deficiency Angelika Preisfeld*, Gabriele Scholten-Beck, Hans Georg Ruppel Universität Bielefeld, Fakultät für Biologie, Postfach 100131, D-33501 Bielefeld, Bundesrepublik Deutschland Z. Naturforsch. 52c, 33-41 (1997); received September 20/0ctober 29, 1996 Deficiency, Euglena gracilis, Lectin Assay, Mucilage Biochemical and ultrastructural examinations on the pellicle of autotrophically grown Eu­ glena gracilis were carried out after three days under potassium and magnesium deficiency. Cell-surface changes were detected by lectin assay. Compared to cells grown in complete medium, deficient cells become larger in shape, accompanied by rising carbohydrate, chloro­ phyll and protein content, bind more and other lectin molecules: an increase of mainly galac­ tose and N-acetylgalactosamine receptors was observed. Investigations with the mucilage stains alcian blue and ruthenium red indicated that mucilaginous material is released under deficient conditions, whereas the control cells show a strong precipitate of these stains well inside the cells beneath the pellicle. Introduction 12-17% lipids (Barras and Stone, 1965; Hofmann A model organism suitable for measuring the and Bouck, 1976; Nakano et al., 1987). influence of deficient nutrition on the cell, and Some surfaces of euglenoid cells have already here especially on the cell membrane, is the green been tested in regard to their lectin binding capac­ flagellated protist Euglena gracilis (Euglenozoa) ity (Vannini et al., 1981; Bre et al., 1986; Strycek with its complex and unusual surface structure. et al., 1992). When the nutrition of Euglena gracilis This unicellular organism possesses a cell mem­ is varied drastically, a change in the cell envelope brane complex, the pellicle. It is composed of re­ with its glycoresidue-rich membrane can be de­ petitive membrane domains - the ridges and tected. It was shown by lectin binding studies that grooves - in an undulating manner, underlaid a lack of cobalamine (vitamine B12) leads to a loss with an epiplasmatic layer of fibrils and a regular of N-acetyl-galactosamine (GalNAc) residues on pattern of microtubules which are interpreted as the one hand (Lefort-Tran et al., 1980; Bre and the peripheral membrane skeleton (Dubreuil and Lefort-Tran, 1984; Bre et al., 1986) and to a muci­ Bouck, 1988). The intussusceptive surface growth laginous layer outside of the cell on the other hand takes place by inserting a new ridge between two (Bre and Lefort-Tran, 1978). old ones (Hofmann and Bouck, 1976; Nakano et Previous studies using a complement bio-assay al., 1987). (Ruppel and Benninghoff, 1983; Benninghoff The complexity of this structure is also reflected et al., 1986) showed that cultivation of Euglena in the chemical composition of the pellicle: the gracilis in magnesium (Mg2+) and potassium (K+) pellicle dry weight consists of about 70-80% pro­ deficient media leads to a change in the comple­ tein, between 6 and 17% carbohydrates and ment binding capacity. A possible explanation is that the sugar residues vary according to the starv­ ing conditions so that the proteins of the human complement system cannot be activated via the al­ ternative pathway, leading to complete inhibition Abbreviations: BS-I, Bandeiraea simplicifolia; ConA, of cytolysis by complement (Johnson, 1994). Canavalia ensiformis; HPA, Helix pomatia; LCH. Lens Deficiency of potassium as main intracellular culinaris; LPH, Limulus polyphemus; RCA, Ricinus cation shows a direct influence on cells. Beside in­ communis; TGA, Tetragonolobus purpureas; WGA, Trit- icum vulgaris; FITC, fluorescein-isothiocyanate hibition of cell proliferation, potassium starvation Reprint requests to Dr. A. Preisfeld. leads to a decrease of the deficient cation in the Fax: 0521-1066-6039. cell. Potassium effects through its important role 0939-5075/97/0100-0033 $ 06.00 © 1997 Verlag der Zeitschrift für Naturforschung. All rights reserved. D Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung This work has been digitalized and published in 2013 by Verlag Zeitschrift in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der für Naturforschung in cooperation with the Max Planck Society for the Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Advancement of Science under a Creative Commons Attribution Creative Commons Namensnennung 4.0 Lizenz. 4.0 International License. 34 A. Preisfeld et al. ■ Euglena Mucilage as cofactor for a series of enzymatic reactions in KH2P04 was replaced in each buffer system by photophosphorylation on photosynthesis, in gly­ NaH2P04. Cells were then resuspended in PBS colysis on carbohydrate metabolism and in binding (phosphate buffer containing 140 mM NaCl). of mRNA to ribosomes on protein synthesis (Ltittge and Clarkson, 1989; for review see Bhan- Growth analysis del and Malik, 1988). Magnesium is cofactor for a lot of enzymatic reactions, too, structural compo­ Number of cells, protein content (Lowry et al., nent of ribosomes and nucleic acids and part of 1951), carbohydrate (Roe, 1955) and chlorophyll chlorophyll in photoautotrophic organisms (Hilt content (Schmid, 1971) were determined every et al., 1987). Deficiency leads to inhibition of cell 24h at the end of dark period. division and shows direct effects on the cellular level of potassium ions because of its influence on Lectin assay Na-K-Cl-cotransport (Smith and Maguire, 1993). For detection of carbohydrate residues on the Both cations are considered to influence the per­ pellicle of Euglena gracilis the following lectins meability of membranes (Ryan, 1993). (Table I) conjugated with fluoresceine isothiocya- In our subsequent investigations on surface gly- nate (FITC, Sigma, Deisenhofen, Germany) have coconjugates of Euglena gracilis we examined by been used. lectin binding studies whether lack of magnesium 200 |_il cellsuspension (106 cells/ml PBS) were in­ and potassium initiated a change of the carbohy­ cubated with diluted FITC-lectin (final concentra­ drate residues. Electron microscopic investigations tion of lectin 100 [il/ml in PBS, except W GA and after treatment of cells with ruthenium red gave LPH: 200 (il/ml) for 30 min at 25 °C. After rinsing an insight into the mucilage deposition in the con­ three times with PBS cells were picked up in 200 fil trol and the “starved” pellicle. PBS and measured in a FacScan flowcytometer counting the fluorescence of 5.000 cells each run Materials and Methods (Becton Dickinson; Software Simulset, Hewlett- Cultivation o f Euglena gracilis Packard). An aliquot was examined with an Or­ thoplan / Leitz Fluorescence Microscope, BP 450- Euglena gracilis strain Z (Klebs 1224-5/25) ob­ 490 nm; LP 515 nm. Images were taken with a Ko­ tained from Algensammlung Göttingen was grown dak Ektachrom slide film, 400 ASA. For determin­ under axenic conditions with a light/dark change ing the specifity of lectins a control was performed of 14:10 h at 30 °C. Cell suspension was bubbled using the appropriate sugar(s) as inhibitors prior with air containing 3% C 02. Every three days at to lectin assay (lactose with RCA and BS-I; N- the end of a dark period, the culture was diluted: acetylgalactosaminewith HPA and BS-I; N-Acetyl- 10 ml (0.5 x 106 cells/ml) of the suspension were neuraminic acid with WGA and LPH; a-methyl- transferred to 100 ml fresh medium (Cramer and D-mannoside with ConA and LCH; glucose with Myers, 1952). The deficient media differed from ConA and fucose with TGA). the normal “control” media only in regard to the “starved” minerals: MgS04 x 7 H20 was substi­ Staining o f Euglena gracilis with alcian blue for tuted with K2S04 for the magnesium deficient me­ light microscopy dium; whereas KH2P 0 4 was replaced by NaH2P 04 for the potassium deficient medium. Higher con­ Anionic groups of mucus can be demonstrated centrations of ions needed for substitution (so­ in the pellicle of Euglena gracilis (Cogburn and dium and potassium) did not influence the cells in Schiff, 1984) by histochemical staining with alcian previous investigations (Scholten-Beck, 1996). blue (Sigma). Cells were harvested after three Control cells were rinsed and resuspended with days of cultivation in each media by centrifugation fresh deficient media. For further investigations of 10 ml cellsuspension (106 cells/ml) immediately cells were harvested after three days at the end of after the dark period. For the histochemical pro­ a dark period and rinsed three times with phos­ cedure cells were stained in a solution containing phate buffer (0.02 m KH2P 0 4-Na2H P 0 4, pH 7.2). 0.1% alcian blue in 0.5 m acetic acid (pH 2.5) at In experiments with potassium deficient cells room temperature for 15 min, rinsed three times A. Preisfeld et al. ■ Euglena Mucilage 35 with water and examined with an Olympus BH nol in distilled water). After infiltration, samples microscope. Images were taken with a 200 ASA were embedded in water-mixable Transmit resin Kodak Ektachrom film with brightfield and phase (TAAB), filled into BEEM capsules and left to contrast optics. polymerize for 24 hours at 70 °C. Ultrathin sections of about 60-70 nm were Staining o f Euglena gracilis with ruthenium red for made with a diamond knife (DuPont) on an Ultra­ electron microscopy cut (Reichert Ultracut E) and put onto 200 mesh Cells were harvested as described for alcian blue Cu-grids. Cells were counter-stained with 2% staining and prepared for electron microscopy as (w/v) aquaeous uranylacetate (Merck) and 2% (w/ follows: v) lead citrate (Merck). Ruthenium red (RR) powder (Sigma) was dis­ solved and a 0.5% (w/v) stock solution was pre­ Results pared. A pellet of 10 ml cellsuspension (106 cells/ Growth analysis ml) rinsed three times with EM buffer (0.05 m NaH2P04-Na2HP04, pH 7.0) was fixed with 2.5% Euglena gracilis grown in potassium and magne­ glutaraldehyde (w/v; Serva, Heidelberg, Germany) sium free media show rapid changes in physiologi­ and 0.1% ruthenium red (v/v) in 0.05 m EM buffer cal behaviour.
Recommended publications
  • Bioremoval of Copper and Nickel on Living and Non-Living Euglena Gracilis
    1 Bioremoval of copper and nickel on living and non-living Euglena gracilis 2 3 4 5 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master 6 of Science in the Faculty of Arts and Sciences 7 8 9 10 11 12 13 TRENT UNIVERSITY 14 Peterborough, Ontario, Canada 15 16 17 18 19 20 21 Environmental and Life Sciences MSc. Graduate Program 22 April 2016 23 © Cameron Winters 2016 24 i 25 Abstract 26 Bioremoval of Copper and Nickel on living and non-living Euglena gracilis 27 Cam Winters 2016 28 This study assesses the ability of a unicellular protist, Euglena gracilis, to remove 29 Cu and Ni from solution in mono- and bi-metallic systems. Living Euglena cells and 30 non-living Euglena biomass were examined for their capacity to sorb metal ions. 31 Adsorption isotherms were used in batch systems to describe the kinetic and equilibrium 32 characteristics of metal removal. In living systems results indicate that the sorption 33 reaction occurs quickly (<30 min) in both Cu (II) and Ni (II) mono-metallic systems and 34 adsorption follows a pseudo-second order kinetics model for both metals. Sorption 35 capacity and intensity was greater for Cu than Ni (p < 0.05) and were described by the 36 Freundlich model. In bi-metallic systems sorption of both metals appears equivalent. In 37 non-living systems sorption occurred quickly (10-30 min) and both Cu and Ni 38 equilibrium uptake increased with a concurrent increase of initial metal concentrations. 39 The pseudo-first-order model was applied to the kinetic data and the Langmuir and 40 Freundlich models effectively described single-metal systems.
    [Show full text]
  • Evolution and Comparative Morphology of the Euglenophyte
    EVOLUTION AND COMPARATIVE MORPHOLOGY OF THE EUGLENOPHYTE PLASTID by PATRICK JERRY PAUL BROWN (Under the Direction of Mark A. Farmer) ABSTRACT My doctoral research centered on understanding the evolution of the euglenophyte protists, with special attention paid to their plastids. The euglenophytes are a widely distributed group of euglenid protists that have acquired a chloroplast via secondary symbiogenesis. The goals of my research were to 1) test the efficacy of plastid morphological and ultrastructural characters in phylogenetic analysis; 2) understand the process of plastid development and partitioning in the euglenophytes; 3) to use a plastid- encoded protein gene to determine a euglenophyte phylogeny; and 4) to perform a multi- gene analysis to uncover clues about the origins of the euglenophyte plastid. My work began with an alpha-taxonomic study that redefined the rare euglenophyte Euglena rustica. This work not only validly circumscribed the species, but also noted novel features of its habitat, cyclic migration habits, and cellular biology. This was followed by a study of plastid morphology and development in a number of diverse euglenophytes. The results of this study showed that the plastids of euglenophytes undergo drastic changes in morphology and ultrastructure over the course of a single cell division cycle. I concluded that there are four main classes of plastid development and partitioning in the euglenophytes, and that the class a given species will use is dependant on its interphase plastid morphology and the rigidity of the cell. The discovery of the class IV partitioning strategy in which cells with only one or very few plastids fragment their plastids prior to cell division was very significant.
    [Show full text]
  • Phylogeny of Deep-Level Relationships Within Euglenozoa Based on Combined Small Subunit and Large Subunit Ribosomal DNA Sequence
    PHYLOGENY OF DEEP-LEVEL RELATIONSHIPS WITHIN EUGLENOZOA BASED ON COMBINED SMALL SUBUNIT AND LARGE SUBUNIT RIBOSOMAL DNA SEQUENCES by BING MA (Under the Direction of Mark A. Farmer) ABSTRACT My master’s research addressed questions about the evolutionary histories of Euglenozoa, with special attention given to deep-level relationships among taxa. The Euglenozoa are a putative early-branching assemblage of flagellated Eukaryotes, comprised primarily by three subgroups: euglenids, kinetoplastids and diplonemids. The goals of my research were to 1) evaluate the phylogenetic potential of large subunit ribosomal DNA (LSU rDNA) gene sequences as a molecular marker; 2) construct a phylogeny for the Euglenozoa to address their deep-level relationships; 3) provide morphological data of the flagellate Petalomonas cantuscygni to infer its evolutionary position in Euglenozoa. A dataset based on LSU rDNA sequences combined with SSU rDNA from thirty-nine taxa representing every subgroup of Euglenozoa and outgroup species was used for testing relationships within the Euglenozoa. Our results indicate that a) LSU rDNA is a useful marker to infer phylogeny, b) euglenids and diplonemdis are more closely related to one another than either is to the kinetoplatids and c) Petalomonas cantuscygni is closely related to the diplonemids. INDEX WORDS: Euglenozoa, phylogenetic inference, molecular evolution, 28S rDNA, LSU rDNA, 18S rDNA, SSU rDNA, euglenids, diplonemids, kinetoplastids, conserved core regions, expansion segments, TOL PHYLOGENY OF DEEP-LEVEL RELATIONSHIPS WITHIN EUGLENOZOA BASED ON COMBINED SMALL SUBUNIT AND LARGE SUBUNIT RIBOSOMAL DNA SEQUENCES by BING MA B. Med., Zhengzhou University, P. R. China, 2002 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2005 © 2005 Bing Ma All Rights Reserved PHYLOGENY OF DEEP-LEVEL RELATIONSHIPS WITHIN EUGLENOZOA BASED ON COMBINED SMALL SUBUNIT AND LARGE SUBUNIT RIBOSOMAL DNA SEQUENCES by BING MA Major Professor: Mark A.
    [Show full text]
  • Flagellum Malfunctions Trigger Metaboly As an Escape Strategy In
    bioRxiv preprint doi: https://doi.org/10.1101/863282; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Flagellum malfunctions trigger metaboly as an escape strategy in Euglena gracilis Yong-Jun Chen* Department of Physics, Shaoxing University, Shaoxing, Zhejiang Province, 312000, China *[email protected] bioRxiv preprint doi: https://doi.org/10.1101/863282; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Euglenoids, a family of aquatic unicellular organisms, present the ability to alter the shape of their bodies, a process referred to as metaboly [1-5]. Metaboly is usually used by phagotrophic cells to engulf their prey. However, Euglena gracilis is osmotrophic and photosynthetic. Though metaboly was discovered centuries ago, it remains unclear why E. gracilis undergo metaboly and what causes them to deform [1-5], and some consider metaboly to be a functionless ancestral vestige [5]. Here, we show that flagellum malfunctions trigger metaboly and metaboly is an escape strategy adopted by E. gracilis when the proper rotation and beating of the flagellum are hindered by restrictions including surface obstruction, sticking, resistance, or limited space. Metaboly facilitates escape in five ways: 1) detaching the body from the surface and decreasing
    [Show full text]
  • Regulation of Cell Shape in Euglena Gracilis. Iii
    y. Cell Set. 74, 219-237 (1985) 219 Printed in Great Britain © Company of Biologists Limited 1985 REGULATION OF CELL SHAPE IN EUGLENA GRACILIS. III. INVOLVEMENT OF STABLE MICROTUBULES CAROLE L. LACHNEY AND THOMAS A. LONERGAN* Department of Biological Sciences, University of New Orleans, Lakefnmt, Netu Orleans, LA 70148, U.SA. SUMMARY The role of cytoplasmic microtubules in a recently reported biological clock-controlled rhythm in cell shape of the alga Euglena gracilis (strain Z) was examined using indirect immunofluorescence microscopy. The resulting fluorescent patterns indicated that, unlike many other cell systems, Euglena cells apparently change from round to long to round cell shape without associated cyto- plasmic microtubule assembly and disassembly. Instead, the different cell shapes were correlated with microtubule patterns, which suggested the movement of stable microtubules to accomplish cell shape changes. In live intact cells, these microtubules were demonstrated by immunofluorescence to be stable to lowered temperature and elevated intracellular Ca2"1" levels, treatments that are commonly used to depolymerize microtubules. In cells extracted in detergent at low temperature or in the presence of elevated Ca2+ levels, the fluorescent image of the microtubules was disrupted. Transmission electron microscopy confirmed the loss of one subset of pellicle microtubules. The difference in microtubule stability to these agents between live intact cells and cells extracted in detergent suggested the presence of a microtubule-stabilizing factor in live cells, which is released from the cell by extraction with detergent, thereby permitting microtubule depolymerization by Ca2+ or lowered temperature. The calmodulin antagonist trifluoperazine prevented the Ca2+- induced disruption of the fluorescent microtubule pattern in cells extracted in detergent.
    [Show full text]
  • Euglena Gracilis Reveals Unexpected Metabolic Capabilities for Cite This: Mol
    Molecular BioSystems View Article Online PAPER View Journal | View Issue The transcriptome of Euglena gracilis reveals unexpected metabolic capabilities for Cite this: Mol. BioSyst., 2015, 11,2808 carbohydrate and natural product biochemistry† Ellis C. O’Neill,a Martin Trick,b Lionel Hill,c Martin Rejzek,a Renata G. Dusi,d Chris J. Hamilton,d Paul V. Zimba,e Bernard Henrissatfgh and Robert A. Field*a Euglena gracilis is a highly complex alga belonging to the green plant line that shows characteristics of both plants and animals, while in evolutionary terms it is most closely related to the protozoan parasites Trypanosoma and Leishmania. This well-studied organism has long been known as a rich source of vitamins A, C and E, as well as amino acids that are essential for the human diet. Here we present de novo transcriptome sequencing and preliminary analysis, providing a basis for the molecular and functional genomics studies that will be required to direct metabolic engineering efforts aimed at enhancing the quality and quantity of high value products from E. gracilis. The transcriptome contains Creative Commons Attribution-NonCommercial 3.0 Unported Licence. over 30 000 protein-encoding genes, supporting metabolic pathways for lipids, amino acids, carbohydrates Received 6th May 2015, and vitamins, along with capabilities for polyketide and non-ribosomal peptide biosynthesis. The metabolic and Accepted 12th August 2015 environmental robustness of Euglena is supported by a substantial capacity for responding to biotic and abiotic DOI: 10.1039/c5mb00319a stress: it has the capacity to deploy three separate pathways for vitamin C (ascorbate) production, as well as producing vitamin E (a-tocopherol) and, in addition to glutathione, the redox-active thiols nor-trypanothione www.rsc.org/molecularbiosystems and ovothiol.
    [Show full text]
  • Investigations of the Biology of Peranema Trichophorum (Euglenineae) by Y
    279 Investigations of the Biology of Peranema trichophorum (Euglenineae) By Y. T. CHEN (University of Pekifig; from the Botany School, Cambridge, England) SUMMARY The feeding apparatus of Peranema trichophorum, consisting of cytostome and rod- organ, is independent of the reservoir system; the latter is the same in structure and function as that of other Euglenineae. There are two flagella, one directed forward, the other backward and adherent to the ventral body surface. The anterior flagellum is longer and thicker than the adherent one. Both flagella are composed of a central core and an outer sheath. Electron micrographs suggest that the core consists of many longitudinal fibrils, and the sheath of many short fibrils radiating from the core, giving the whole flagellum the appearance of a test-tube brush. Treatment with certain protein- dispersing agents cause the unfixed anterior flagellum to dissociate into three fibrils. Peranema multiplies freely on a diet of living yeast-cells; dead yeast is not suitable. Euglena viridis, E. gracilis, and certain other unicellular algae can also serve as food. Egg-yolk, and especially milk, can be used to maintain bacteria-free pure cultures. Casein is suitable in combination with soil-extract or beef-extract, but never as good as milk. With the latter the individuals are larger and more numerous than with yeast as food, although the cultures decline earlier. Clear liquid media of many various kinds did not support growth: particulate food seems to be essential. Peranema is capable of ingesting a great variety of living organisms provided these are motionless. Small organisms are swallowed whole; larger ones are either engulfed or cut open by the rod-organ and their contents sucked out.
    [Show full text]
  • GRAS Notice 697, Dried Biomass of Euglena Gracilis
    GRAS Notice (GRN) No. 697 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm GRAS Notice for Dried Euglena gracilis (ATCC PTA-123017) Prepared for: Office of Food Additive Safety (FHS-200) Center for Food Safety and Applied Nutrition Food and Drug Administration 5100 Campus Drive College Park, MD 20740 March 16, 2017 GRAS Notice for Dried Euglena gracilis (ATCC PTA-123017) Table of Contents Page Part 1. §170.225 Signed Statements and Certification .... ..... ... ... ......................................... ..... .. 3 1.1 Name and Address of Notifier .................................................. .............. .... ...... ... 3 1.2 Common Name of Notified Substance ..... ........................................................... 3 1.3 Conditions of Use .......................................... .... ...... .. ......................... .... .. ... ........ 4 1.4 Basis for GRAS ................................................................................................... 5 1.5 Availability of Information ..................................................................................... 5 1.6 Freedom of Information Act, 5 U.S.C. 552 ........................................................... 5 Part 2. §170.230 Identity, Method of Manufacture, Specifications, and Physical or Technical Effect ................................................................................................. .. ........... 5 2.1 Description .....................................................................................................
    [Show full text]
  • Euglenozoa: Taxonomy, Diversity and Ecology, Symbioses and Viruses
    Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses † † † royalsocietypublishing.org/journal/rsob Alexei Y. Kostygov1,2, , Anna Karnkowska3, , Jan Votýpka4,5, , Daria Tashyreva4,†, Kacper Maciszewski3, Vyacheslav Yurchenko1,6 and Julius Lukeš4,7 1Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Review 2Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia 3Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Cite this article: Kostygov AY, Karnkowska A, Warsaw, Warsaw, Poland 4 Votýpka J, Tashyreva D, Maciszewski K, Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic 5Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic Yurchenko V, Lukeš J. 2021 Euglenozoa: 6Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, taxonomy, diversity and ecology, symbioses Moscow, Russia and viruses. Open Biol. 11: 200407. 7Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic https://doi.org/10.1098/rsob.200407 AYK, 0000-0002-1516-437X; AK, 0000-0003-3709-7873; KM, 0000-0001-8556-9500; VY, 0000-0003-4765-3263; JL, 0000-0002-0578-6618 Euglenozoa is a species-rich group of protists, which have extremely diverse Received: 19 December 2020 lifestyles and a range of features that distinguish them from other eukar- Accepted: 8 February 2021 yotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here.
    [Show full text]
  • Euglena Central Metabolic Pathways and Their Subcellular Locations
    H OH metabolites OH Article Euglena Central Metabolic Pathways and Their Subcellular Locations Sahutchai Inwongwan, Nicholas J. Kruger, R. George Ratcliffe and Ellis C. O’Neill * Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; [email protected] (S.I.); [email protected] (N.J.K.); george.ratcliff[email protected] (R.G.R.) * Correspondence: [email protected]; Tel.: +44-(0)1865-275-024 Received: 30 April 2019; Accepted: 11 June 2019; Published: 14 June 2019 Abstract: Euglenids are a group of algae of great interest for biotechnology, with a large and complex metabolic capability. To study the metabolic network, it is necessary to know where the component enzymes are in the cell, but despite a long history of research into Euglena, the subcellular locations of many major pathways are only poorly defined. Euglena is phylogenetically distant from other commonly studied algae, they have secondary plastids bounded by three membranes, and they can survive after destruction of their plastids. These unusual features make it difficult to assume that the subcellular organization of the metabolic network will be equivalent to that of other photosynthetic organisms. We analysed bioinformatic, biochemical, and proteomic information from a variety of sources to assess the subcellular location of the enzymes of the central metabolic pathways, and we use these assignments to propose a model of the metabolic network of Euglena. Other than photosynthesis, all major pathways present in the chloroplast are also present elsewhere in the cell. Our model demonstrates how Euglena can synthesise all the metabolites required for growth from simple carbon inputs, and can survive in the absence of chloroplasts.
    [Show full text]
  • A Phylogenetic Analysis Using Heat Shock Protein 90
    Euglena: 2013 A Phylogenetic Analysis Using Heat Shock Protein 90 (HSP90) and Concatenated Small Subunit and Large Subunit Ribosomal RNA (18S and 28S) to Determine the Placement of the Hacrobiae within the Eukarya Domain. Austin Iovoli, Steven Cole, Erica Meader, Danielle Reber. Department of Biology, Susquehanna University, Selinsgrove, PA 17870. Abstract We investigated taxa of the Eukarya domain in order to determine the phylogentic placement of the Hacrobiae among the Archaeplastida, Excavata, Unikonta, Alveolatae, and Stramenopile clades. In addition, we examined the different relationships between the phyla within the Hacrobiae. Using heat shock protein 90 (HSP90) and concatenated small and large subunit ribosomal RNA (SSU and LSU rRNA), a maximum likelihood tree for each was constructed using the Jones-Taylor-Thorton (JTT) model and the Jukes-Cantor model, respectively. These molecular trees were used to generate a consensus tree that defined the relationships between the Hacrobiae and other eukaryotic kingdoms. Our consensus tree indicated that the Hacrobiae taxa emerge in an association with the Archaeplastida. This suggests that the phyla of the Hacrobiae should be removed from the Chromalveolata Supergroup and that their relationship with the archaeplastids should be redefined. Please cite this article as: Iovoli, A., S. Cole, E. Meader, and D. Rever. 2013. A phylogenetic analysis using heat shock protein 90 (HSP90) and concatenated small subunit and large subunit ribosomal RNA (18S and 28S) to determine the placement of the Hacrobiae within the Eukarya domain. Euglena. doi:/euglena. 1(2): 66-73. Introduction Cavalier-Smith (2003) united members by the The organization of the phylogenetic presence of plastids that were obtained from red relationships of eukaryotes is a very controversial algae in a secondary endosymbiotic relationship topic (Burki et al.
    [Show full text]
  • Generalized Receptor Law Governs Phototaxis in the Phytoplankton Euglena Gracilis
    Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis Andrea Giomettoa,b,1, Florian Altermattb,c, Amos Maritand, Roman Stockere, and Andrea Rinaldoa,f,1 aLaboratory of Ecohydrology, School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland; bDepartment of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland; cInstitute of Evolutionary Biology and Environmental Studies, University of Zurich, CH-8057 Zurich, Switzerland; dDipartimento di Fisica e Astronomia, Università di Padova, I-35131 Padua, Italy; eRalph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; and fDipartimento di Ingegneria Civile, Edile ed Ambientale, Università di Padova, I-35131 Padua, Italy Edited by Edward F. DeLong, University of Hawaii, Manoa, Honolulu, HI, and approved April 15, 2015 (received for review December 1, 2014) Phototaxis, the process through which motile organisms direct their organisms. Because phytoplankton are responsible for one-half of swimming toward or away from light, is implicated in key ecological the global photosynthetic activity (18, 19) and are the basis of ma- phenomena (including algal blooms and diel vertical migration) that rine and freshwater food webs (20), their behavior and productivity shape the distribution, diversity, and productivity of phytoplankton have strong implications for ocean
    [Show full text]