Fast High-Quality Noise

Total Page:16

File Type:pdf, Size:1020Kb

Fast High-Quality Noise Downloaded from orbit.dtu.dk on: Oct 08, 2021 Fast High-Quality Noise Frisvad, Jeppe Revall; Wyvill, Geoff Published in: Proceedings of GRAPHITE 2007 Link to article, DOI: 10.1145/1321261.1321305 Publication date: 2007 Link back to DTU Orbit Citation (APA): Frisvad, J. R., & Wyvill, G. (2007). Fast High-Quality Noise. In Proceedings of GRAPHITE 2007: 5th International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast Asia ACM. https://doi.org/10.1145/1321261.1321305 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Fast High-Quality Noise Jeppe Revall Frisvad Geoff Wyvill Technical University of Denmark University of Otago Abstract At the moment the noise functions available in a graphics program- mer’s toolbox are either slow to compute or they involve grid-line artifacts making them of lower quality. In this paper we present a real-time noise computation with no grid-line artifacts or other regularity problems. In other words, we put a new tool in the box that computes fast high-quality noise. In addition to being free of artifacts, the noise we present does not rely on tabulated data (ev- erything is computed on the fly) and it is easy to adjust quality vs. quantity for the noise. The noise is based on point rendering (like spot noise), but it extends to more than two dimensions. The fact that it is based on point rendering makes art direction of the (a) 628.1 s (b) 1.2 s noise much easier. Figure 1: Reference noise (and CPU rendering time in seconds). CR Categories: I.3.3 [Computer Graphics]: Picture/Image Gener- From left to right: (a) Pseudo-white noise filtered with a Gaussian ation I.3.7 [Computer Graphics]: Three-Dimensional Graphics and kernel. (b) The same noise filtered with a cubic. Realism 1 Keywords: Noise, point rendering, GPU. 1 0,8 0,8 1 Introduction 0,6 0,6 We present a fast, high-quality noise computation based on raster- 0,4 ization. The noise function we implement is the sparse convolu- 0,4 tion noise advocated by J. P. Lewis [1984; 1989]. We have chosen 0,2 0,2 sparse convolution noise since it has several qualitative advantages as compared to more commonly used noise functions such as im- 0 0 proved Perlin noise. Sparse convolution noise is generally believed -0,1 -0,05 0 0,05 0,1 -0,1 -0,05 0 0,05 0,1 to be expensive to compute, but in this paper we challenge that consensus by exploiting the programmability of modern graphics Figure 2: Filter kernels. From left to right: (a) The Gaussian kernel hardware. Our approach has strong relations to van Wijk’s [1991] used in Figure 1a. It never falls off to zero. (b) The cubic kernel spot noise, but we take the concept to the next level by computing used in Figure 1b. It has compact support. solid noise using three-dimensional spots. With a few tweaks, the Perlin noise function seems to be the most This problem can also be remedied, but we have already proved our efficient way of getting individual noise values of decent quality. point; it is worth considering different approaches. At the moment It is, however, not the only way to go. By our implementation of Perlin’s very fast noise function of decent quality seems to be the sparse convolution noise for the GPU, we intend to broaden the de facto standard which everybody uses. There should be an option range of noise functions available in a graphics programmer’s tool- of at least one better quality noise function which is still fast. box. The new tool in the box is a way of computing better quality noise without a heavy efficiency penalty. 2 Reference Noise Why do we need better noise? If you happen to pick a grid-aligned 2D slice from the standard 3D implementation of improved Per- What noise functions in general try to achieve is a good approxima- lin noise [Perlin 2002], gridline artifacts will be relatively obvious, tion of white noise filtered with some Gaussian kernel [Lewis 1989; since the noise function is forced to return zero at every grid node. Ebert et al. 2002]. But as Perlin points out “this approach would ne- We might be able to fix this problem, but visually the gradient noise cessitate building a volume of white noise and then blurring it all at still seems to show a recognizable pattern, especially when grid once. This is quite impractical” [Ebert et al. 2002, p. 340]. To get a aligned. This is perhaps due to the fact that improved Perlin noise feeling for what good noise looks like, it is nevertheless interesting chooses from only a small set of different gradients at each node. to compute this reference noise. A sufficient number of pseudo- randomly placed impulses with a pseudo-random value in [−1, 1] gives a good imitation of white noise [Lewis 1989]. Suppose we are looking at a noise image with the size of 512 by 512 units (pixels) and that we use a Gaussian filter with standard deviation σ = 16/3. This gives approximately 16 Gaussian blobs across the width of the c ACM, 2007. This is the author’s version of the work. It is posted image. The resulting noise image is shown in Figure 1a. here by permission of ACM for your personal use. Not for redis- tribution. The definitive version was published in Proceedings of This Gaussian reference noise is quite expensive to compute, since GRAPHITE 2007, ACM, pp. 243–248+315, December 2007. the filter never falls off to zero, see Figure 2a. This means that every impulse contributes to every pixel. With hardly any impact on quality, we choose a cubic filter instead, see Figure 2b. Let r denote Listing 1: The fragment shader replacing an alpha texture with the filter radius (r = 16 in this case to get the same number of filter precomputed weights w(d). kernels across the image as with the Gaussian) and let d denote the uniform float filter_size_sqr; distance from the impulse to the point where we wish to compute varying vec2 winspace_vert_pos; the noise value. Then the cubic filter (which has continuous first float weight(float t) { return t*t*t; } and second derivatives) replacing the Gaussian is void main() 3 { 1 − d2/r2 , d2 < r2 w(d) = . vec2 v = gl_FragCoord.xy - winspace_vert_pos; 0 , d2 ≥ r2 float dist_sqr = dot(v, v); float w = dist < filter_size_sqr ? weight(1.0 - dist_sqr/filter_size_sqr) Now, for each noise value, we throw away all the impulses outside : 0.0; the filter radius. This greatly improves the efficiency. The result is shown in Figure 1b and is hardly distinguishable from the reference. gl_FragColor = vec4(gl_Color.rgb, w); } To have noise in different frequency ranges, we simply change the filter size r. We refer to the number of filter diameters across the width of a 2D noise image as the scale of the noise. Using this ter- minology, the noise in Figure 1 is of scale s = 16. A good quality The blending function is set such that the value measure for the sparse convolution noise is the average number n of n = 15 sources under each filter kernel. For example gives noise of vi decent quality while n = 30 gives noise of excellent quality. How- w(d) (2n1/D) ever, as n increases so does the cost of computing noise values. The two adjustable parameters s and n are convenient to have as input, is added to every pixel covered by point i. To take into account and from those we find that the number of pseudo-randomly placed that some sources are positive and some are negative, we do as fol- sources needed for a D-dimensional noise image is nsD. lows: The vertices corresponding to sources with positive values are rendered with standard additive alpha blending, while the ones 3 Point Rendering Approach with negative values are rendered with reversed subtractive alpha blending. In the reference approach described above, a filter kernel is centered at each pixel, and we need to find the distance to each source in The range of the resulting noise image is [0, 1] (this interval is ob- order to know whether it should be included in the noise calculation tained subsequently for the reference noises described in the pre- or rejected. By calculating the noise the other way around, using a vious section). The d in w(d) may be off by up to half a pixel rasterization approach, we are able to render each source as a point width because we use a texture. Otherwise we obtain the same re- and obtain exactly the same result. sult as presented in Figure 1b. Perhaps with lower precision if we do not have a high precision color buffer available, but now we have The advantage of a point rendering approach is that the graphics the result in real-time (0.0083 seconds for the image in Figure 1b) pipeline (almost for free) finds the pixels influenced by the filter even on old graphics hardware that does not support programmable kernel around a source.
Recommended publications
  • Perlin Textures in Real Time Using Opengl Antoine Miné, Fabrice Neyret
    Perlin Textures in Real Time using OpenGL Antoine Miné, Fabrice Neyret To cite this version: Antoine Miné, Fabrice Neyret. Perlin Textures in Real Time using OpenGL. [Research Report] RR- 3713, INRIA. 1999, pp.18. inria-00072955 HAL Id: inria-00072955 https://hal.inria.fr/inria-00072955 Submitted on 24 May 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Perlin Textures in Real Time using OpenGL Antoine Mine´ Fabrice Neyret iMAGIS-IMAG, bat C BP 53, 38041 Grenoble Cedex 9, FRANCE [email protected] http://www-imagis.imag.fr/Membres/Fabrice.Neyret/ No 3713 juin 1999 THEME` 3 apport de recherche ISSN 0249-6399 Perlin Textures in Real Time using OpenGL Antoine Miné Fabrice Neyret iMAGIS-IMAG, bat C BP 53, 38041 Grenoble Cedex 9, FRANCE [email protected] http://www-imagis.imag.fr/Membres/Fabrice.Neyret/ Thème 3 — Interaction homme-machine, images, données, connaissances Projet iMAGIS Rapport de recherche n˚3713 — juin 1999 — 18 pages Abstract: Perlin’s procedural solid textures provide for high quality rendering of surface appearance like marble, wood or rock.
    [Show full text]
  • Procedural Generation of a 3D Terrain Model Based on a Predefined
    Procedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Bachelor of Science Thesis in Applied Information Technology Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström Department of Applied Information Technology Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2017 Bachelor of Science Thesis Procedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström Department of Applied Information Technology Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2017 The Authors grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Procedural Generation of a 3D Terrain Model Based on a Predefined Road Mesh Matilda Andersson Kim Berger Fredrik Burhöi Bengtsson Bjarne Gelotte Jonas Graul Sagdahl Sebastian Kvarnström © Matilda Andersson, 2017.
    [Show full text]
  • Nuke Survival Toolkit Documentation
    Nuke Survival Toolkit Documentation Release v1.0.0 Tony Lyons | 2020 1 About The Nuke Survival Toolkit is a portable tool menu for the Foundry’s Nuke with a hand-picked selection of nuke gizmos collected from all over the web, organized into 1 easy-to-install toolbar. Installation Here’s how to install and use the Nuke Survival Toolkit: 1.) Download the .zip folder from the Nuke Survival Toolkit github website. https://github.com/CreativeLyons/NukeSurvivalToolkit_publicRelease This github will have all of the up to date changes, bug fixes, tweaks, additions, etc. So feel free to watch or star the github, and check back regularly if you’d like to stay up to date. 2.) Copy or move the NukeSurvivalToolkit Folder either in your User/.nuke/ folder for personal use, or for use in a pipeline or to share with multiple artists, place the folder in any shared and accessible network folder. 3.) Open your init.py file in your /.nuke/ folder into any text editor (or create a new init.py in your User/.nuke/ directory if one doesn’t already exist) 4.) Copy the following code into your init.py file: nuke.pluginAddPath( "Your/NukeSurvivalToolkit/FolderPath/Here") 5.) Copy the file path location of where you placed your NukeSurvivalToolkit. Replace the Your/NukeSurvivalToolkit/FolderPath/Here text with your NukeSurvivalToolkit filepath location, making sure to keep quotation marks around the filepath. 6.) Save your init.py file, and restart your Nuke session 7.) That’s it! Congrats, you will now see a little red multi-tool in your nuke toolbar.
    [Show full text]
  • Fast, High Quality Noise
    The Importance of Being Noisy: Fast, High Quality Noise Natalya Tatarchuk 3D Application Research Group AMD Graphics Products Group Outline Introduction: procedural techniques and noise Properties of ideal noise primitive Lattice Noise Types Noise Summation Techniques Reducing artifacts General strategies Antialiasing Snow accumulation and terrain generation Conclusion Outline Introduction: procedural techniques and noise Properties of ideal noise primitive Noise in real-time using Direct3D API Lattice Noise Types Noise Summation Techniques Reducing artifacts General strategies Antialiasing Snow accumulation and terrain generation Conclusion The Importance of Being Noisy Almost all procedural generation uses some form of noise If image is food, then noise is salt – adds distinct “flavor” Break the monotony of patterns!! Natural scenes and textures Terrain / Clouds / fire / marble / wood / fluids Noise is often used for not-so-obvious textures to vary the resulting image Even for such structured textures as bricks, we often add noise to make the patterns less distinguishable Ех: ToyShop brick walls and cobblestones Why Do We Care About Procedural Generation? Recent and upcoming games display giant, rich, complex worlds Varied art assets (images and geometry) are difficult and time-consuming to generate Procedural generation allows creation of many such assets with subtle tweaks of parameters Memory-limited systems can benefit greatly from procedural texturing Smaller distribution size Lots of variation
    [Show full text]
  • Synthetic Data Generation for Deep Learning Models
    32. DfX-Symposium 2021 Synthetic Data Generation for Deep Learning Models Christoph Petroll 1 , 2 , Martin Denk 2 , Jens Holtmannspötter 1 ,2, Kristin Paetzold 3 , Philipp Höfer 2 1 The Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB) 2 Universität der Bundeswehr München (UniBwM) 3 Technische Universität Dresden * Korrespondierender Autor: Christoph Petroll Institutsweg 1 85435 Erding Germany Telephone: 08122/9590 3313 Mail: [email protected] Abstract The design freedom and functional integration of additive manufacturing is increasingly being implemented in existing products. One of the biggest challenges are competing optimization goals and functions. This leads to multidisciplinary optimization problems which needs to be solved in parallel. To solve this problem, the authors require a synthetic data set to train a deep learning metamodel. The research presented shows how to create a data set with the right quality and quantity. It is discussed what are the requirements for solving an MDO problem with a metamodel taking into account functional and production-specific boundary conditions. A data set of generic designs is then generated and validated. The generation of the generic design proposals is accompanied by a specific product development example of a drone combustion engine. Keywords Multidisciplinary Optimization Problem, Synthetic Data, Deep Learning © 2021 die Autoren | DOI: https://doi.org/10.35199/dfx2021.11 1. Introduction and Idea of This Research Due to its great design freedom, additive manufacturing (AM) shows a high potential of functional integration and part consolidation [1]-[3]. For this purpose, functions and optimization goals that are usually fulfilled by individual components must be considered in parallel.
    [Show full text]
  • IWCE 2015 PTIG-P25 Foundations Part 2
    Sponsored by: Project 25 College of Technology Security Services Update & Vocoder & Range Improvements Bill Janky Director, System Design IWCE 2015, Las Vegas, Nevada March 16, 2015 Presented by: PTIG - The Project 25 Technology Interest Group www.project25.org – Booth 1853 © 2015 PTIG Agenda • Overview of P25 Security Services - Confidentiality - Integrity - Key Management • Current status of P25 security standards - Updates to existing services - New services 2 © 2015 PTIG PTIG - Project 25 Technology Interest Group IWCE 2015 I tell Fearless Leader we broke code. Moose and Squirrel are finished! 3 © 2015 PTIG PTIG - Project 25 Technology Interest Group IWCE 2015 Why do we need security? • Protecting information from security threats has become a vital function within LMR systems • What’s a threat? Threats are actions that a hypothetical adversary might take to affect some aspect of your system. Examples: – Message interception – Message replay – Spoofing – Misdirection – Jamming / Denial of Service – Traffic analysis – Subscriber duplication – Theft of service 4 © 2015 PTIG PTIG - Project 25 Technology Interest Group IWCE 2015 What P25 has for you… • The TIA-102 standard provides several standardized security services that have been adopted for implementation in P25 systems. • These security services may be used to provide security of information transferred across FDMA or TDMA P25 radio systems. Note: Most of the security services are optional and users must consider that when making procurements 5 © 2015 PTIG PTIG - Project 25 Technology
    [Show full text]
  • Generating Realistic City Boundaries Using Two-Dimensional Perlin Noise
    Generating realistic city boundaries using two-dimensional Perlin noise Graduation thesis for the Doctoraal program, Computer Science Steven Wijgerse student number 9706496 February 12, 2007 Graduation Committee dr. J. Zwiers dr. M. Poel prof.dr.ir. A. Nijholt ir. F. Kuijper (TNO Defence, Security and Safety) University of Twente Cluster: Human Media Interaction (HMI) Department of Electrical Engineering, Mathematics and Computer Science (EEMCS) Generating realistic city boundaries using two-dimensional Perlin noise Graduation thesis for the Doctoraal program, Computer Science by Steven Wijgerse, student number 9706496 February 12, 2007 Graduation Committee dr. J. Zwiers dr. M. Poel prof.dr.ir. A. Nijholt ir. F. Kuijper (TNO Defence, Security and Safety) University of Twente Cluster: Human Media Interaction (HMI) Department of Electrical Engineering, Mathematics and Computer Science (EEMCS) Abstract Currently, during the creation of a simulator that uses Virtual Reality, 3D content creation is by far the most time consuming step, of which a large part is done by hand. This is no different for the creation of virtual urban environments. In order to speed up this process, city generation systems are used. At re-lion, an overall design was specified in order to implement such a system, of which the first step is to automatically create realistic city boundaries. Within the scope of a research project for the University of Twente, an algorithm is proposed for this first step. This algorithm makes use of two-dimensional Perlin noise to fill a grid with random values. After applying a transformation function, to ensure a minimum amount of clustering, and a threshold mech- anism to the grid, the hull of the resulting shape is converted to a vector representation.
    [Show full text]
  • CMSC 425: Lecture 14 Procedural Generation: Perlin Noise
    CMSC 425 Dave Mount CMSC 425: Lecture 14 Procedural Generation: Perlin Noise Reading: The material on Perlin Noise based in part by the notes Perlin Noise, by Hugo Elias. (The link to his materials seems to have been lost.) This is not exactly the same as Perlin noise, but the principles are the same. Procedural Generation: Big game companies can hire armies of artists to create the immense content that make up the game's virtual world. If you are designing a game without such extensive resources, an attractive alternative for certain natural phenomena (such as terrains, trees, and atmospheric effects) is through the use of procedural generation. With the aid of a random number generator, a high quality procedural generation system can produce remarkably realistic models. Examples of such systems include terragen (see Fig. 1(a)) and speedtree (see Fig. 1(b)). terragen speedtree (a) (b) Fig. 1: (a) A terrain generated by terragen and (b) a scene with trees generated by speedtree. Before discussing methods for generating such interesting structures, we need to begin with a background, which is interesting in its own right. The question is how to construct random noise that has nice structural properties. In the 1980's, Ken Perlin came up with a powerful and general method for doing this (for which he won an Academy Award!). The technique is now widely referred to as Perlin Noise (see Fig. 2(a)). A terrain resulting from applying this is shown in Fig. 2(b). (The terragen software uses randomized methods like Perlin noise as a starting point for generating a terrain and then employs additional operations such as simulated erosion, to achieve heightened realism.) Perlin Noise: Natural phenomena derive their richness from random variations.
    [Show full text]
  • State of the Art in Procedural Noise Functions
    EUROGRAPHICS 2010 / Helwig Hauser and Erik Reinhard STAR – State of The Art Report State of the Art in Procedural Noise Functions A. Lagae1,2 S. Lefebvre2,3 R. Cook4 T. DeRose4 G. Drettakis2 D.S. Ebert5 J.P. Lewis6 K. Perlin7 M. Zwicker8 1Katholieke Universiteit Leuven 2REVES/INRIA Sophia-Antipolis 3ALICE/INRIA Nancy Grand-Est / Loria 4Pixar Animation Studios 5Purdue University 6Weta Digital 7New York University 8University of Bern Abstract Procedural noise functions are widely used in Computer Graphics, from off-line rendering in movie production to interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one of its main attractions. This state-of-the-art report is motivated by the inherent importance of noise in graphics, the widespread use of noise in industry, and the fact that many recent research developments justify the need for an up-to-date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and well established methods. We first formally define procedural noise functions based on stochastic processes and then classify and review existing procedural noise functions. We discuss how procedural noise functions are used for modeling and how they are applied on surfaces. We then introduce analysis tools and apply them to evaluate and compare the major approaches to noise generation.
    [Show full text]
  • Hardware-Accelerated Gradient Noise for Graphics
    Hardware-Accelerated Gradient Noise for Graphics Josef B. Spjut Andrew E. Kensler Erik L. Brunvand School of Computing SCI Institute School of Computing University of Utah University of Utah University of Utah [email protected] [email protected] [email protected] ABSTRACT techniques trade computation for memory. This is impor- A synthetic noise function is a key component of most com- tant since as process technology scales, compute resources puter graphics rendering systems. This pseudo-random noise will increasingly outstrip memory speeds. For texturing sur- function is used to create a wide variety of natural looking faces, the memory reduction can be two-fold: first there textures that are applied to objects in the scene. To be is the simple reduction in texture memory itself. Second, useful, the generated noise should be repeatable while ex- 3D or \solid" procedural textures can eliminate the need for hibiting no discernible periodicity, anisotropy, or aliasing. explicit texture coordinates to be stored with the models. However, noise with these qualities is computationally ex- However, in order to avoid uniformity and produce visual pensive and results in a significant fraction of the run time richness, a simple, repeatable, pseudo-random function is for scenes with rich visual complexity. We propose modifi- required. Noise functions meet this need. Simply described, a noise function in computer graphics is cations to the standard algorithm for computing synthetic N noise that improve the visual quality of the noise, and a par- an R ! R mapping used to introduce irregularity into an allel hardware implementation of this improved noise func- otherwise regular pattern.
    [Show full text]
  • Tile-Based Method for Procedural Content Generation
    Tile-based Method for Procedural Content Generation Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By David Maung Graduate Program in Computer Science and Engineering The Ohio State University 2016 Dissertation Committee: Roger Crawfis, Advisor; Srinivasan Parthasarathy; Kannan Srinivasan; Ken Supowit Copyright by David Maung 2016 Abstract Procedural content generation for video games (PCGG) is a growing field due to its benefits of reducing development costs and adding replayability. While there are many different approaches to PCGG, I developed a body of research around tile-based approaches. Tiles are versatile and can be used for materials, 2D game content, or 3D game content. They may be seamless such that a game player cannot perceive that game content was created with tiles. Tile-based approaches allow localized content and semantics while being able to generate infinite worlds. Using techniques such as aperiodic tiling and spatially varying tiling, we can guarantee these infinite worlds are rich playable experiences. My research into tile-based PCGG has led to results in four areas: 1) development of a tile-based framework for PCGG, 2) development of tile-based bandwidth limited noise, 3) development of a complete tile-based game, and 4) application of formal languages to generation and evaluation models in PCGG. ii Vita 2009................................................................B.S. Computer Science, San Diego State
    [Show full text]
  • Prime Gradient Noise
    Computational Visual Media https://doi.org/10.1007/s41095-021-0206-z Research Article Prime gradient noise Sheldon Taylor1,∗, Owen Sharpe1,∗, and Jiju Peethambaran1 ( ) c The Author(s) 2021. Abstract Procedural noise functions are fundamental 1 Introduction tools in computer graphics used for synthesizing virtual geometry and texture patterns. Ideally, a Visually pleasing 3D content is one of the core procedural noise function should be compact, aperiodic, ingredients of successful movies, video games, and parameterized, and randomly accessible. Traditional virtual reality applications. Unfortunately, creation lattice noise functions such as Perlin noise, however, of high quality virtual 3D content and textures exhibit periodicity due to the axial correlation induced is a labour-intensive task, often requiring several while hashing the lattice vertices to the gradients. months to years of skilled manual labour. A In this paper, we introduce a parameterized lattice relatively cheap yet powerful alternative to manual noise called prime gradient noise (PGN) that minimizes modeling is procedural content generation using a discernible periodicity in the noise while enhancing the set of rules, such as L-systems [1] or procedural algorithmic efficiency. PGN utilizes prime gradients, a noise [2]. Procedural noise has proven highly set of random unit vectors constructed from subsets of successful in creating computer generated imagery prime numbers plotted in polar coordinate system. To (CGI) consisting of 3D models exhibiting fine detail map axial indices of lattice vertices to prime gradients, at multiple scales. Furthermore, procedural noise PGN employs Szudzik pairing, a bijection F : N2 → N. is a compact, flexible, and low cost computational Compositions of Szudzik pairing functions are used in technique to synthesize a range of patterns that may higher dimensions.
    [Show full text]