A Cellular Texture Basis Function

Total Page:16

File Type:pdf, Size:1020Kb

A Cellular Texture Basis Function A Cellular Texture Basis Function Steven Worley 1 ABSTRACT In this paper, we propose a new set of related texture basis func- tions. They are based on scattering ªfeature pointsº throughout 3 Solid texturing is a powerful way to add detail to the surface of < and building a scalar function based on the distribution of the rendered objects. Perlin's ªnoiseº is a 3D basis function used in local points. The use of distributed points in space for texturing some of the most dramatic and useful surface texture algorithms. is not new; ªbombingº is a technique which places geometric fea- We present a new basis function which complements Perlin noise, tures such as spheres throughout space, which generates patterns based on a partitioning of space into a random array of cells. We on surfaces that cut through the volume of these features, forming have used this new basis function to produce textured surfaces re- polkadots, for example. [9, 5] This technique is not a basis func- sembling ¯agstone-like tiled areas, organic crusty skin, crumpled tion, and is signi®cantly less useful than noise. Lewis also used paper, ice, rock, mountain ranges, and craters. The new basis func- points scattered throughout space for texturing. His method forms a tion can be computed ef®ciently without the need for precalculation basis function, but it is better described as an alternative method of or table storage. generating a noise basis than a new basis function with a different appearance.[3] In this paper, we introduce a new texture basis function that has INTRODUCTION interesting behavior, and can be evaluated ef®ciently without any precomputation. After de®ning the function and its implementation, Procedural texturing has proved itself valuable in image synthesis, we show some applications demonstrating its utility. allowing for complex surfaces to be rendered without requiring im- age mapping or hand modeling of geometric details. The most use- ful texturing techniques were introduced by Perlin [7] with his in- troduction of a fractal noise basis function which has become the primary tool used in procedural texturing. Since the fractal noise basis does not need any storage or precomputation, and returns a nTH-CLOSEST POINT BASIS FUNCTION 3 value for all locations in < , it is easy to use and applicable to many applications. The scalar value can be directly mapped into a color, We can de®ne a new basis function based on the idea of random fea- but it is often used for spatially perturbing regular patterns. Its de- 3 ture points. Imagine points randomly distributed through all of < . rivatives can be used for bump mapping. [1, 3, 5, 6, 7, 8] x For any location x, there is some feature point which lies closer to Many texture algorithms are not as broadly applicable as noise F (x) x than any other feature point. De®ne 1 as the distance from to because of their limited form. For example, the class of reaction- x F that closest feature point. As is varied, 1 varies smoothly since diffusion textures, as in [10], provides interesting surfaces, with a the distance between the sample location and the ®xed feature point character that provides features such as spots and stripes. An al- varies smoothly. However, at certain cusp locations, the point x will gorithm by Miyata [4] generates impressive stone wall patterns. F (x) be equidistant between two feature points. Here, the value of 1 These methods, while powerful, aren't as generally useful as noise is still well de®ned, since the value is the same no matter which fea- since they require extensive precomputation and don't return a ture point is chosento calculate the distance. Varying the position of scalar value to be used as part of a larger texture. x F will return values of 1 that are still continuous, though the deriv- The simple functional nature of noise makes it an adaptable tool F ative of 1 will change discontinuously as the distance calculation one might call a texture ªbasisº function. A basis function should ªswitchesº from one feature point to its neighbor. 3 be a scalar value, de®ned over < . This allows it to be used in the F same manner noise is applied. Fourier methods [1, 2] produce ef- It can be seen that the locations where the function 1 ªswitchesº fective basis functions, but usually similar appearances can be pro- from one feature point to the next (where its derivative is discon- duced more easily using noise. The immense utility of the noise tinuous) are along the equidistance planes that separate two points 3 function motivates us to ®nd new texture functions that can also be in < . These planes are exactly the planes that are computed by a used as basis functions, so they may be used in the same versatile Voronoi diagram, which by de®nition partitions space into cellular manner that noise is used. regions where all the points within each region are closer to its de- ®ning point than any other point. 1 405 El Camino Real Suite 121, Menlo Park CA 94025 E- F (x) mail: [email protected] The function 2 can be de®ned as the distance between the location x and the feature point which is the second closest to the x F . With similar arguments as before, 2 is continuous everywhere, but its derivative is not at those locations where the second-closest point swaps with either the ®rst-closest or third-closest. Similarly, F (x) x n we can de®ne n as the distance between and the th closest feature point. F F The functions have some interesting properties. n is always F 0 F (x) F (x) F (x): 1 2 3 continuous. n are nondecreasing; F (x) F (x) F n+1 n In general, n by the de®nition of . The gradient F n of n is simply the unit direction vector from the th closest feature point to x. F (x) COMPUTATION OF n within a neighboring cube could quite possibly contain a feature point even closer than the ones we have found already, so we must F To evaluate the functions n , we must ®rst de®ne how feature points iterate among the boundary cubes too. Testing each of 26 bound- are spread through space. The density and distribution of points will ary cubes would be slow, but by checking the closest distance we've change the character of the basis functions. We want an isotropic computed so far (our tentative nth closest feature distance) we can distribution of points to avoid artifacts such as an obvious grid-like throw out whole rows of cubes at once by noting that no point in the pattern. This eliminates any regular lattices such as a cubic spacing. cube could possibly contribute to our list. Typically, only 1±3 cubes Even if the lattice points are jittered, the underlying lattice structure actually need to be tested. F may cause odd patterns. Note that when we compute n we are effectively ®nding val- F ;F ; :::; F 2 n The simplest distribution is simply a Poisson distribution, which ues for 1 simultaneously. In practice our routine re- speci®es a mean density of points in space, with the location of each turns all these values, plus the direction vectors corresponding to point being independent of the other points. The expected number each feature point, plus a unique ID integer for each point (equal of points in any region is simply the point density times the volume to the hashed cube ID plus the index of the feature point as it was of the region. There may be more or less than this expected num- computed). These tend to be useful when using the function to form ber of points in the region; the exact probabilities of any number of solid textures. points in a region can be computed by using the discrete Poisson In practice, computation is extremely ef®cient. A fast, linear con- distribution function. gruential (LCG) random number generator is effectively just an in- Our approach divides space into a grid of uniformly spaced teger multiply and add. By using ®xed point arithmetic, the 32 bit cubes, separated at the integer coordinate locations. Each ªcubeº in random number can be manipulated directly. We avoid square roots space can be uniquely represented by its integer coordinates, and by by sorting on squared distance. Testing a point requires generation simple ¯oor operations we can determine, for example, that a point of its coordinates (three multiplies), computing the squared distance like (1.2, 3.33, 2.3) lies within the cube indexed by (1, 3, 2). to the sample location (three multiplies), and insertion into the best Each cube in space may contain zero, one, or more feature points. candidate list (usually one to three compares.) The computation We determine this on-the-¯y quite simply by noting that the Pois- speed is therefore surprisingly fast. In our implementation, simul- F F 2 son random distribution function describes the exact probabilities of taneously computing 1 and requires about the same amount of each of the possible number of feature points occuring in the cube. time as computing one scale of Perlin's noise. We also found that by varying the point density we were able to For a mean density of feature points per unit volume , the probab- 1 m tune our algorithm. Low requires fewer points to be computed in ( e m!) ility of m points occuring in a unit cube is . Thus we each cube. Higher makes it more likely to ®nd the best points in =0;1;2;3::: can tabulate the probabilities for m and index a ran- the initial cube, reducing the number of neighboring cubes that must dom number into this table to determine how many feature points also be tested.
Recommended publications
  • Perlin Textures in Real Time Using Opengl Antoine Miné, Fabrice Neyret
    Perlin Textures in Real Time using OpenGL Antoine Miné, Fabrice Neyret To cite this version: Antoine Miné, Fabrice Neyret. Perlin Textures in Real Time using OpenGL. [Research Report] RR- 3713, INRIA. 1999, pp.18. inria-00072955 HAL Id: inria-00072955 https://hal.inria.fr/inria-00072955 Submitted on 24 May 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE Perlin Textures in Real Time using OpenGL Antoine Mine´ Fabrice Neyret iMAGIS-IMAG, bat C BP 53, 38041 Grenoble Cedex 9, FRANCE [email protected] http://www-imagis.imag.fr/Membres/Fabrice.Neyret/ No 3713 juin 1999 THEME` 3 apport de recherche ISSN 0249-6399 Perlin Textures in Real Time using OpenGL Antoine Miné Fabrice Neyret iMAGIS-IMAG, bat C BP 53, 38041 Grenoble Cedex 9, FRANCE [email protected] http://www-imagis.imag.fr/Membres/Fabrice.Neyret/ Thème 3 — Interaction homme-machine, images, données, connaissances Projet iMAGIS Rapport de recherche n˚3713 — juin 1999 — 18 pages Abstract: Perlin’s procedural solid textures provide for high quality rendering of surface appearance like marble, wood or rock.
    [Show full text]
  • Fast, High Quality Noise
    The Importance of Being Noisy: Fast, High Quality Noise Natalya Tatarchuk 3D Application Research Group AMD Graphics Products Group Outline Introduction: procedural techniques and noise Properties of ideal noise primitive Lattice Noise Types Noise Summation Techniques Reducing artifacts General strategies Antialiasing Snow accumulation and terrain generation Conclusion Outline Introduction: procedural techniques and noise Properties of ideal noise primitive Noise in real-time using Direct3D API Lattice Noise Types Noise Summation Techniques Reducing artifacts General strategies Antialiasing Snow accumulation and terrain generation Conclusion The Importance of Being Noisy Almost all procedural generation uses some form of noise If image is food, then noise is salt – adds distinct “flavor” Break the monotony of patterns!! Natural scenes and textures Terrain / Clouds / fire / marble / wood / fluids Noise is often used for not-so-obvious textures to vary the resulting image Even for such structured textures as bricks, we often add noise to make the patterns less distinguishable Ех: ToyShop brick walls and cobblestones Why Do We Care About Procedural Generation? Recent and upcoming games display giant, rich, complex worlds Varied art assets (images and geometry) are difficult and time-consuming to generate Procedural generation allows creation of many such assets with subtle tweaks of parameters Memory-limited systems can benefit greatly from procedural texturing Smaller distribution size Lots of variation
    [Show full text]
  • Synthetic Data Generation for Deep Learning Models
    32. DfX-Symposium 2021 Synthetic Data Generation for Deep Learning Models Christoph Petroll 1 , 2 , Martin Denk 2 , Jens Holtmannspötter 1 ,2, Kristin Paetzold 3 , Philipp Höfer 2 1 The Bundeswehr Research Institute for Materials, Fuels and Lubricants (WIWeB) 2 Universität der Bundeswehr München (UniBwM) 3 Technische Universität Dresden * Korrespondierender Autor: Christoph Petroll Institutsweg 1 85435 Erding Germany Telephone: 08122/9590 3313 Mail: [email protected] Abstract The design freedom and functional integration of additive manufacturing is increasingly being implemented in existing products. One of the biggest challenges are competing optimization goals and functions. This leads to multidisciplinary optimization problems which needs to be solved in parallel. To solve this problem, the authors require a synthetic data set to train a deep learning metamodel. The research presented shows how to create a data set with the right quality and quantity. It is discussed what are the requirements for solving an MDO problem with a metamodel taking into account functional and production-specific boundary conditions. A data set of generic designs is then generated and validated. The generation of the generic design proposals is accompanied by a specific product development example of a drone combustion engine. Keywords Multidisciplinary Optimization Problem, Synthetic Data, Deep Learning © 2021 die Autoren | DOI: https://doi.org/10.35199/dfx2021.11 1. Introduction and Idea of This Research Due to its great design freedom, additive manufacturing (AM) shows a high potential of functional integration and part consolidation [1]-[3]. For this purpose, functions and optimization goals that are usually fulfilled by individual components must be considered in parallel.
    [Show full text]
  • Generating Realistic City Boundaries Using Two-Dimensional Perlin Noise
    Generating realistic city boundaries using two-dimensional Perlin noise Graduation thesis for the Doctoraal program, Computer Science Steven Wijgerse student number 9706496 February 12, 2007 Graduation Committee dr. J. Zwiers dr. M. Poel prof.dr.ir. A. Nijholt ir. F. Kuijper (TNO Defence, Security and Safety) University of Twente Cluster: Human Media Interaction (HMI) Department of Electrical Engineering, Mathematics and Computer Science (EEMCS) Generating realistic city boundaries using two-dimensional Perlin noise Graduation thesis for the Doctoraal program, Computer Science by Steven Wijgerse, student number 9706496 February 12, 2007 Graduation Committee dr. J. Zwiers dr. M. Poel prof.dr.ir. A. Nijholt ir. F. Kuijper (TNO Defence, Security and Safety) University of Twente Cluster: Human Media Interaction (HMI) Department of Electrical Engineering, Mathematics and Computer Science (EEMCS) Abstract Currently, during the creation of a simulator that uses Virtual Reality, 3D content creation is by far the most time consuming step, of which a large part is done by hand. This is no different for the creation of virtual urban environments. In order to speed up this process, city generation systems are used. At re-lion, an overall design was specified in order to implement such a system, of which the first step is to automatically create realistic city boundaries. Within the scope of a research project for the University of Twente, an algorithm is proposed for this first step. This algorithm makes use of two-dimensional Perlin noise to fill a grid with random values. After applying a transformation function, to ensure a minimum amount of clustering, and a threshold mech- anism to the grid, the hull of the resulting shape is converted to a vector representation.
    [Show full text]
  • CMSC 425: Lecture 14 Procedural Generation: Perlin Noise
    CMSC 425 Dave Mount CMSC 425: Lecture 14 Procedural Generation: Perlin Noise Reading: The material on Perlin Noise based in part by the notes Perlin Noise, by Hugo Elias. (The link to his materials seems to have been lost.) This is not exactly the same as Perlin noise, but the principles are the same. Procedural Generation: Big game companies can hire armies of artists to create the immense content that make up the game's virtual world. If you are designing a game without such extensive resources, an attractive alternative for certain natural phenomena (such as terrains, trees, and atmospheric effects) is through the use of procedural generation. With the aid of a random number generator, a high quality procedural generation system can produce remarkably realistic models. Examples of such systems include terragen (see Fig. 1(a)) and speedtree (see Fig. 1(b)). terragen speedtree (a) (b) Fig. 1: (a) A terrain generated by terragen and (b) a scene with trees generated by speedtree. Before discussing methods for generating such interesting structures, we need to begin with a background, which is interesting in its own right. The question is how to construct random noise that has nice structural properties. In the 1980's, Ken Perlin came up with a powerful and general method for doing this (for which he won an Academy Award!). The technique is now widely referred to as Perlin Noise (see Fig. 2(a)). A terrain resulting from applying this is shown in Fig. 2(b). (The terragen software uses randomized methods like Perlin noise as a starting point for generating a terrain and then employs additional operations such as simulated erosion, to achieve heightened realism.) Perlin Noise: Natural phenomena derive their richness from random variations.
    [Show full text]
  • State of the Art in Procedural Noise Functions
    EUROGRAPHICS 2010 / Helwig Hauser and Erik Reinhard STAR – State of The Art Report State of the Art in Procedural Noise Functions A. Lagae1,2 S. Lefebvre2,3 R. Cook4 T. DeRose4 G. Drettakis2 D.S. Ebert5 J.P. Lewis6 K. Perlin7 M. Zwicker8 1Katholieke Universiteit Leuven 2REVES/INRIA Sophia-Antipolis 3ALICE/INRIA Nancy Grand-Est / Loria 4Pixar Animation Studios 5Purdue University 6Weta Digital 7New York University 8University of Bern Abstract Procedural noise functions are widely used in Computer Graphics, from off-line rendering in movie production to interactive video games. The ability to add complex and intricate details at low memory and authoring cost is one of its main attractions. This state-of-the-art report is motivated by the inherent importance of noise in graphics, the widespread use of noise in industry, and the fact that many recent research developments justify the need for an up-to-date survey. Our goal is to provide both a valuable entry point into the field of procedural noise functions, as well as a comprehensive view of the field to the informed reader. In this report, we cover procedural noise functions in all their aspects. We outline recent advances in research on this topic, discussing and comparing recent and well established methods. We first formally define procedural noise functions based on stochastic processes and then classify and review existing procedural noise functions. We discuss how procedural noise functions are used for modeling and how they are applied on surfaces. We then introduce analysis tools and apply them to evaluate and compare the major approaches to noise generation.
    [Show full text]
  • Tile-Based Method for Procedural Content Generation
    Tile-based Method for Procedural Content Generation Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By David Maung Graduate Program in Computer Science and Engineering The Ohio State University 2016 Dissertation Committee: Roger Crawfis, Advisor; Srinivasan Parthasarathy; Kannan Srinivasan; Ken Supowit Copyright by David Maung 2016 Abstract Procedural content generation for video games (PCGG) is a growing field due to its benefits of reducing development costs and adding replayability. While there are many different approaches to PCGG, I developed a body of research around tile-based approaches. Tiles are versatile and can be used for materials, 2D game content, or 3D game content. They may be seamless such that a game player cannot perceive that game content was created with tiles. Tile-based approaches allow localized content and semantics while being able to generate infinite worlds. Using techniques such as aperiodic tiling and spatially varying tiling, we can guarantee these infinite worlds are rich playable experiences. My research into tile-based PCGG has led to results in four areas: 1) development of a tile-based framework for PCGG, 2) development of tile-based bandwidth limited noise, 3) development of a complete tile-based game, and 4) application of formal languages to generation and evaluation models in PCGG. ii Vita 2009................................................................B.S. Computer Science, San Diego State
    [Show full text]
  • Parameterized Melody Generation with Autoencoders and Temporally-Consistent Noise
    Parameterized Melody Generation with Autoencoders and Temporally-Consistent Noise Aline Weber, Lucas N. Alegre Jim Torresen Bruno C. da Silva Institute of Informatics Department of Informatics; RITMO Institute of Informatics Federal Univ. of Rio Grande do Sul University of Oslo Federal Univ. of Rio Grande do Sul Porto Alegre, Brazil Oslo, Norway Porto Alegre, Brazil {aweber, lnalegre}@inf.ufrgs.br jimtoer@ifi.uio.no [email protected] ABSTRACT of possibilities when composing|for instance, by suggesting We introduce a machine learning technique to autonomously a few possible novel variations of a base melody informed generate novel melodies that are variations of an arbitrary by the musician. In this paper, we propose and evaluate a base melody. These are produced by a neural network that machine learning technique to generate new melodies based ensures that (with high probability) the melodic and rhyth- on a given arbitrary base melody, while ensuring that it mic structure of the new melody is consistent with a given preserves both properties of the original melody and gen- set of sample songs. We train a Variational Autoencoder eral melodic and rhythmic characteristics of a given set of network to identify a low-dimensional set of variables that sample songs. allows for the compression and representation of sample Previous works have attempted to achieve this goal by songs. By perturbing these variables with Perlin Noise| deploying different types of machine learning techniques. a temporally-consistent parameterized noise function|it is Methods exist, e.g., that interpolate pairs of melodies pro- possible to generate smoothly-changing novel melodies.
    [Show full text]
  • Communicating Simulated Emotional States of Robots by Expressive Movements
    Middlesex University Research Repository An open access repository of Middlesex University research http://eprints.mdx.ac.uk Sial, Sara Baber (2013) Communicating simulated emotional states of robots by expressive movements. Masters thesis, Middlesex University. [Thesis] Final accepted version (with author’s formatting) This version is available at: https://eprints.mdx.ac.uk/12312/ Copyright: Middlesex University Research Repository makes the University’s research available electronically. Copyright and moral rights to this work are retained by the author and/or other copyright owners unless otherwise stated. The work is supplied on the understanding that any use for commercial gain is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study without prior permission and without charge. Works, including theses and research projects, may not be reproduced in any format or medium, or extensive quotations taken from them, or their content changed in any way, without first obtaining permission in writing from the copyright holder(s). They may not be sold or exploited commercially in any format or medium without the prior written permission of the copyright holder(s). Full bibliographic details must be given when referring to, or quoting from full items including the author’s name, the title of the work, publication details where relevant (place, publisher, date), pag- ination, and for theses or dissertations the awarding institution, the degree type awarded, and the date of the award. If you believe that any material held in the repository infringes copyright law, please contact the Repository Team at Middlesex University via the following email address: [email protected] The item will be removed from the repository while any claim is being investigated.
    [Show full text]
  • CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Procedural
    CALIFORNIA STATE UNIVERSITY, NORTHRIDGE Procedural Generation of Planetary-Scale Terrains in Virtual Reality A thesis submitted in partial fulfillment of the requirements For the degree of Master of Science in Software Engineering By Ryan J. Vitacion December 2018 The thesis of Ryan J. Vitacion is approved: __________________________________________ _______________ Professor Kyle Dewey Date __________________________________________ _______________ Professor Taehyung Wang Date __________________________________________ _______________ Professor Li Liu, Chair Date California State University, Northridge ii Acknowledgment I would like to express my sincere gratitude to my committee chair, Professor Li Liu, whose guidance and enthusiasm were invaluable in the development of this thesis. I would also like to thank Professor George Wang and Professor Kyle Dewey for agreeing to be a part of my committee and for their support throughout this research endeavor. iii Dedication This work is dedicated to my parents, Alex and Eppie, whose endless love and support made this thesis possible. I would also like to dedicate this work to my sister Jessica, for her constant encouragement and advice along the way. I love all of you very dearly, and I simply wouldn’t be where I am today without you by my side. iv Table of Contents Signature Page.....................................................................................................................ii Acknowledgment................................................................................................................iii
    [Show full text]
  • A Crash Course on Texturing
    A Crash Course on Texturing Li-Yi Wei Microsoft Research problems. The first problem is that it can be tedious and labor in- tensive to acquire the detailed geometric and BRDF data, either by manual drawing or by measuring real materials. The second prob- lem is that, such a detailed model, even if it can be acquired, may take significant time, memory, and computation resources to render. Fortunately, for Computer Graphics applications, we seldom need to do this. If we are simulating a physical for a more seri- ous purpose of say, designing an aircraft, an artificial heart, or a nuke head, then it is crucial that we get everything right without omitting any detail. However, for graphics, all we need is some- thing that looks right, for both appearance and motion. As research in psychology and psychophysics shows, the human visual system likes to take shortcuts in processing information (and it is proba- bly why it appears to be so fast, even for slow-witted people), and not textured this allows us to take shortcuts in image rendering as well. To avoid annoying some conservative computer scientists (which can jeopar- dize my academic career), I will use the term approximation instead of shortcut hereafter. Texturing is an approximation for detailed surface geometry and material properties. For example, assume you want to model and render a brick wall. One method is to model the detailed geome- try and material properties of all the individual bricks and mortar layers, and send this information for rendering, either via ray tracer or graphics hardware.
    [Show full text]
  • Procedural Noise Adversarial Examples for Black-Box Attacks On
    Procedural Noise Adversarial Examples for Black-Box Aacks on Deep Convolutional Networks Kenneth T. Co Luis Munoz-Gonz˜ alez´ Imperial College London Imperial College London [email protected] [email protected] Sixte de Maupeou Emil C. Lupu Imperial College London Imperial College London [email protected] [email protected] ABSTRACT robust to malicious adversaries. Yet despite the prevalence of neural Deep Convolutional Networks (DCNs) have been shown to be vul- networks, their vulnerabilities are not yet fully understood. nerable to adversarial examples—perturbed inputs specically de- It has been shown that machine learning systems are vulnerable signed to produce intentional errors in the learning algorithms at to aacks performed at test time [2, 23, 41, 47, 53]. In particular, test time. Existing input-agnostic adversarial perturbations exhibit DCNs have been shown to be susceptible to adversarial examples: interesting visual paerns that are currently unexplained. In this inputs indistinguishable from genuine data points but designed to paper, we introduce a structured approach for generating Universal be misclassied by the learning algorithm [73]. As the perturbation Adversarial Perturbations (UAPs) with procedural noise functions. required to fool the learning algorithm is usually small, detecting Our approach unveils the systemic vulnerability of popular DCN adversarial examples is a challenging task. Fig. 1 shows an ad- models like Inception v3 and YOLO v3, with single noise paerns versarial example generated with the aack strategy we propose able to fool a model on up to 90% of the dataset. Procedural noise in this paper; the perturbed image of a tabby cat is misclassied allows us to generate a distribution of UAPs with high universal eva- as a shower curtain.
    [Show full text]