GAS GIANT PLANETS AS DYNAMICAL BARRIERS to INWARD-MIGRATING SUPER-EARTHS André Izidoro1,2,3, Sean N

Total Page:16

File Type:pdf, Size:1020Kb

GAS GIANT PLANETS AS DYNAMICAL BARRIERS to INWARD-MIGRATING SUPER-EARTHS André Izidoro1,2,3, Sean N The Astrophysical Journal Letters, 800:L22 (5pp), 2015 February 20 doi:10.1088/2041-8205/800/2/L22 © 2015. The American Astronomical Society. All rights reserved. GAS GIANT PLANETS AS DYNAMICAL BARRIERS TO INWARD-MIGRATING SUPER-EARTHS André Izidoro1,2,3, Sean N. Raymond3,4, Alessandro Morbidelli1, Franck Hersant3,4, and Arnaud Pierens3,4 1 University of Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d’Azur, Laboratoire Lagrange, BP4229, F-06304 NICE Cedex 4, France; [email protected] 2 Capes Foundation, Ministry of Education of Brazil, Brasília/DF 70040-020, Brazil 3 Univ. Bordeaux, Laboratoire d’Astrophysique de Bordeaux, UMR 5804, F-33270 Floirac, France 4 CNRS, Laboratoire d’Astrophysique de Bordeaux, UMR 5804, F-33270 Floirac, France Received 2014 November 14; accepted 2015 January 24; published 2015 February 17 ABSTRACT Planets of 1–4 times Earth’s size on orbits shorter than 100 days exist around 30–50% of all Sun-like stars. In fact, the Solar System is particularly outstanding in its lack of “hot super-Earths” (or “mini-Neptunes”). These planets—or their building blocks—may have formed on wider orbits and migrated inward due to interactions with the gaseous protoplanetary disk. Here, we use a suite of dynamical simulations to show that gas giant planets act as barriers to the inward migration of super-Earths initially placed on more distant orbits. Jupiter’s early formation may have prevented Uranus and Neptune (and perhaps Saturn’s core) from becoming hot super-Earths. Our model predicts that the populations of hot super-Earth systems and Jupiter-like planets should be anti-correlated: gas giants (especially if they form early) should be rare in systems with many hot super-Earths. Testing this prediction will constitute a crucial assessment of the validity of the migration hypothesis for the origin of close-in super- Earths. Key words: planets and satellites: formation – planet–disk interactions 1. INTRODUCTION Papaloizou 2007; Ida & Lin 2010; McNeil & Nelson 2010; Cossou et al. 2014; Raymond & Cossou 2014). Unlike the According to the standard core accretion model (Pollack et al. 1996), gas giant planets form in a few million years in inward migration model, the in situ formation scenario requires either congenital high disk mass or the effective drift of solid gas-dominated disks. A solid core of a few to dozens of Earth ( ) masses grows then accretes a thick gaseous envelope. It is precursors approximately cenitmeter-to-meter size objects to the inner regions of the disk creating enhanced surface densities believed that giant planet cores form preferentially in a region ( of the protoplanetary disk where the radial drift speed of dust, of solids Boley & Ford 2013; Chatterjee & Tan 2014; ) pebbles, and small planetesimals is slowed, creating a localized Hansen 2014 . ( Super-Earths are so abundant that any model for their origin enhancement in the density of solid material Johansen fi et al. 2009). One favorable location for this to happen is at must be very ef cient. The key question then becomes the the snowline (Kokubo & Ida 1998; Morbidelli et al. 2008; following: Why are there no hot super-Earths in our Solar Pierens et al. 2013; Bitsch et al. 2014a, 2014b) where water System? condenses as ice (Lecar et al. 2006). Planet formation models Here we propose that an interplay between growing gas tend to produce not one but multiple planet cores beyond the giants and migrating super-Earths can solve this mystery. If ( ) snowline (Kokubo & Ida 1998; Lambrechts et al. 2014). super-Earths or their constituent embryos form in the outer However, observational evidence suggests that not all emer- disk and migrate toward the central star, then some of these ( ging planetary cores are able to accrete enough gas to become objects must on occasion become giant planetary cores see ) gas giant planets. Indeed, Uranus and Neptune may be thought Cossou et al. 2014 . If the innermost super-Earth in a young of as “failed” giant planet cores, and Neptune-sized exoplanets planetary system grows into a gas giant, then the later have been found to be far more abundant than Jupiter-sized dynamical evolution of the system is drastically changed. The ones (Howard et al. 2010; Mayor et al. 2011). giant planet blocks the super-Earths’ inward migration. In this Super-Earths are extremely abundant (Mayor et al. 2011; context, Jupiter may have prevented Uranus and Neptune—and Howard et al. 2012; here, “super-Earths” are defined as all perhaps Saturn’s core—from migrating inward and becoming planets between 1 and 20 Earth masses or 1 and 4 Earth radii). super-Earths. This model—which we test below with numerical An extraordinary number of planetary systems with multiple simulations—predicts an anti-correlation between the popula- super-Earths have been found (Howard et al. 2010, 2012; tions of giant exoplanets and super-Earths that will be tested in Mayor et al. 2011; Fressin et al. 2013; Marcy et al. 2014). future data sets. No such anti-correlation is expected from the These planets’ orbits are typically found in tightly packed in situ model of super-Earth formation (Schlaufman 2014). configurations and located much closer to their stars than This therefore represents a testable way to differentiate between expected, well inside the primordial snowline (Lissauer models. et al. 2011a). The origin of these systems is an open question We first test the concept of gas giants as barriers to inward- (Raymond et al. 2008, 2014). There are two competing migrating super-Earths or planetary embryos in Section 2.We models: super-Earths either formed in situ (Raymond then analyze the expected observational consequences and et al. 2008; Hansen & Murray 2012, 2013; Chiang & make specific testable predictions in Section 3. We also discuss Laughlin 2013) or migrated toward the central star from the the uncertainties and how much can be inferred from upcoming outer regions of their proto-planetary disks (Terquem & observations. 1 The Astrophysical Journal Letters, 800:L22 (5pp), 2015 February 20 Izidoro et al. 2. THE MODEL: GAS GIANTS AS defined as TYPE I MIGRATION BARRIERS 1 We ran a suite of N-body simulations to test whether giant æ M ö3 ç SE ÷ planets act as dynamical barriers for inward migrating super- Rhm, = ç ÷ ()aa12+ (,1) èç 12 M ø÷ Earths. Our simulations represented the middle stages of planet formation in gas-dominated circumstellar disks. The simula- where M and M are the individual masses of the super- tions included a population of super-Earths initially located SE Earths and the central star, respectively. a1 and a2 are the beyond the orbit of one or two fully formed gas giants. Our semimajor axes of any two adjacent super-Earths. Initially, the – code incorporated the relevant planet disk interactions, cali- eccentricities of the super-Earths and the giant planets brated to match complex hydrodynamical simulations. eccentricities and inclinations are set to zero. Orbital A Jupiter-mass planet opens a gap in the protoplanetary disk inclinations of the super-Earths were initially chosen and type II migrates inward (Lin & Papaloizou 1986; Crida & randomly from 0◦.001 to 0◦.01. The argument of pericenter Morbidelli 2007). Type-II migration of gas giants is signifi- and longitutude of ascending node of the super-Earths are cantly slower than the type-I migration of super-Earths (for randomly selected between 0° and 360°. super-Earths of ∼3 Earth masses or larger for traditional disk Collisions were treated as inelastic mergers that conserved parameters). Of course, if there is enough time, then a giant linear momentum. Objects were removed from the system if planet would migrate close to the star and any super-Earth they strayed beyond 100 AU from the central star. In beyond its orbit would as well. However, most giant planets do simulations with both Jupiter and Saturn, to ensure the not appear to have this fate. The vast majority of giant dynamical stability between the two giant planets, the exoplanets around FGK stars are found at a few AU from their eccentricities of the latter planets are artificially damped if host stars (Udry & Santos 2007; Mayor et al. 2011). Only they increase to beyond those values observed in hydrodyna- about 0.5–1% of Sun-like stars host hot-Jupiters (Cumming mical simulations (0.03–0.05). et al. 2008; Howard et al. 2010, 2012; Wright et al. 2012). However, radial velocity and microlensing surveys hint that the 2.1.1. Disk of Gas ( abundance of long-period gas giants is at least 15% Gould Both the speed and direction of type-I migration are sensitive ) et al. 2010; Mayor et al. 2011 . This dissemblance may be a to the properties of the gaseous disk. Numerical studies have consequence of the inside-out photo-evaporation of the disk, shown that planetary embryos can migrate outward in radiative which creates an inner very low-density cavity in the disks (e.g., Kley & Crida 2008; Paardekooper & Papaloizou protoplanetary disk that stops inward migration (Alexander & 2008; Paardekooper et al. 2010, 2011). However, outward Pascucci 2012). In the case of the solar system, the proximity migration is only possible for a limited range of planetary and mass ratio of Jupiter and Saturn may have prevented the masses (e.g., Bitsch et al. 2014a). Migration is directed inwards inward migration of the giant planets (Morbidelli & Crida in the regions of the disk where viscous heating is a sufficiently 2007) or even forced their outward migration (Walsh weak heat source. Because the surface density of a disk decays et al. 2011). In our simulations, we assume for simplicity that with time, the region of outward migration shifts inward and the giant planet does not migrate, as a proxy of all cases in eventually disappears.
Recommended publications
  • The Jovian Planets (Gas Giants) Discoveries
    The Jovian Planets (Gas Giants) Discoveries Saturn Jupiter Jupiter and Saturn known to ancient astronomers. Uranus discovered in 1781 by Sir William Herschel (England). Neptune discovered in 1845 by Johann Galle (Germany). Predicted to exist by John Adams and Urbain Leverrier because of irregularities in Uranus' orbit. Almost discovered by Galileo in 1613 Uranus Neptune (roughly to scale) Remember that compared to Terrestrial planets, Jovian planets: Orbital Properties: Distance from Sun Orbital Period are massive (AU) (years) are less dense (0.7 – 1.3 g/cm3) Jupiter 5.2 11.9 are mostly gas (and liquid) Saturn 9.5 29.4 rotate fast (9 - 17 hours rotation periods) Uranus 19.2 84 have rings and many moons Neptune 30.1 164 Known Moons Mass (MEarth) Radius (REarth) Major Missions: Launch Planets visited Jupiter 318 11 63 Voyager 1 1977 Jupiter, Saturn (0.001 MSun) Saturn 95 9.5 50 Voyager 2 1979 Jupiter, Saturn, Uranus, Neptune Uranus 15 4 27 Galileo 1989 Jupiter Neptune 17 3.9 13 Cassini 1997 Jupiter, Saturn Jupiter's Atmosphere Composition: mostly H, some He, traces of other elements (true for all Jovians). Gravity strong enough to retain even light elements. Mostly molecular. Altitude 0 km defined as top of troposphere (cloud layer) Ammonia (NH3) ice gives white colors. Ammonium hydrosulfide Optical – colors dictated Infrared - traces heat in (NH4SH) ice should form by how molecules atmosphere. here, somehow giving red, reflect sunlight yellow, brown colors. Water ice layer not seen due to higher layers. So white colors from cooler, higher clouds, brown and red from warmer, lower clouds.
    [Show full text]
  • Exomoon Habitability Constrained by Illumination and Tidal Heating
    submitted to Astrobiology: April 6, 2012 accepted by Astrobiology: September 8, 2012 published in Astrobiology: January 24, 2013 this updated draft: October 30, 2013 doi:10.1089/ast.2012.0859 Exomoon habitability constrained by illumination and tidal heating René HellerI , Rory BarnesII,III I Leibniz-Institute for Astrophysics Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany, [email protected] II Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195, [email protected] III NASA Astrobiology Institute – Virtual Planetary Laboratory Lead Team, USA Abstract The detection of moons orbiting extrasolar planets (“exomoons”) has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary “habitable edge”. We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons.
    [Show full text]
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • The Inner Solar System Is the Name of the Terrestrial Planets and Asteroid
    !"#$%&'''''''''''''''''''''''''''''''''' !"#$%&&#'$()*+'$(,-.#/ !"#$%&'(%#)*+,('% ()$&*++$,&-./",&-0-1$#&*-&1)$&+"#$&.2&1)$& 1$,,$-1,*"/&3/"+$1-&"+4&"-1$,.*4&5$/16&($,,$-1,*"/&*-& 78-1&"&2"+90&:"0&.2&-"0*+;&,.9<06&=*<$&1)$&>",1)?& 1$,,$-1,*"/&3/"+$1-&)"@$&"&9.,$&.2&*,.+&"+4&,.9<6 A1&1)$&9$+1$,&.2&1)$&-./",&-0-1$#&*-&1)$&B8+6& ()$&B8+&*-&"&5*;&5"//&.2&)04,.;$+&3.:$,$4&50& +89/$",&,$"91*.+-6&C"--*@$&$D3/.-*.+-&",$&;.*+;& .+&"//&.2&1)$&1*#$&*+-*4$&1)$&B8+6&E1F-&:)"1&#"<$-& 1)$&/*;)1&$@$,0&4"0&"+4&<$$3-&.8,&3/"+$1&:",#6& J.8&<+.:&:)"1&3/"+$1&*-&+$D16&J.8&/*@$&.+& =*;)1&G*3-&2,.#&1)$&B8+&1.&8-&*+&"5.81&$*;)1& *1H&J83?&1)$&>",1)&*-&+8#5$,&1),$$6&Q$&)"@$&"& #*+81$-6&()$&B8+&*-&1)$&#.-1&#"--*@$&1)*+;&*+&.8,& ,.9<0&*,.+&9.,$&"1&1)$&9$+1$,&.2&.8,&3/"+$16&Q$& -./",&-0-1$#6&E1&*-&-.&5*;&0.8&9.8/4&2*1&"5.81&"& )"@$&/*K8*4&:"1$,?&"+4&.8,&"*,&*-&#"4$&.2&#.-1/0& #*//*.+&>",1)-&*+-*4$&.2&*1H& +*1,.;$+&"+4&.D0;$+6&E1&1"<$-&1),$$&)8+4,$4&"+4& -*D10L2*@$&4"0-&2.,&8-&1.&9*,9/$&1)$&-8+6&Q$&.+/0& I/.-$-1&1.&1)$&B8+&*-&1)$&3/"+$1&C$,98,06& )"@$&.+$&#..+6 J.8&9.8/4&-K8$$G$&"5.81&$*;)1$$+&C$,98,0F-& *+-*4$&.2&>",1)6&E1&*-&#"4$&.2&#.-1/0&,.9<?&581&*1&)"-& !$D1&1.&8-&*+&*-&C",-6&C",-&"/-.&)"-&"&9.,$& "&)8;$&*,.+&9.,$&"+4&*1&;$+$,"1$-&"&5*;& .2&,.9<&"+4&*,.+6&E1&*-&"&/*11/$&#.,$&1)"+&)"/2&1)$& #";+$1*9&2*$/46&B3$$40&/*11/$&C$,98,0&-"*/-&",.8+4& -*G$&.2&>",1)6&()$&#.-1&4*-1*+91&2$"18,$&"5.81&C",-& 1)$&-8+&*+&.+/0&$*;)10L$*;)1&4"0-6&C$,98,0&:"-& *-&*1-&,$4&9./.,6&R8-1&,*9)&*+&*,.+&.D*4$&9.@$,-&1)$& 1)$&#$--$+;$,&.2&1)$&;.4-&*+&M.#"+&#01)./.;0?& 3/"+$16&E1F-&-.,1&.2&/*<$&1)$&3/"+$1&*-&,8-1*+;6&Q)*1$&
    [Show full text]
  • Giant Planet Effects on Terrestrial Planet Formation and System Architecture
    MNRAS 485, 541–549 (2019) doi:10.1093/mnras/stz385 Advance Access publication 2019 February 8 Giant planet effects on terrestrial planet formation and system architecture 1‹ 2 2,3 1 Anna C. Childs, Elisa Quintana, Thomas Barclay and Jason H. Steffen Downloaded from https://academic.oup.com/mnras/article-abstract/485/1/541/5309996 by NASA Goddard Space Flight Ctr user on 15 April 2020 1Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA 2NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771, USA 3University of Maryland, Baltimore County, 1000 Hilltop Cir, Baltimore, MD 21250, USA Accepted 2019 February 4. Received 2019 January 16; in original form 2018 July 6 ABSTRACT Using an updated collision model, we conduct a suite of high-resolution N-body integrations to probe the relationship between giant planet mass and terrestrial planet formation and system architecture. We vary the mass of the planets that reside at Jupiter’s and Saturn’s orbit and examine the effects on the interior terrestrial system. We find that massive giant planets are more likely to eject material from the outer edge of the terrestrial disc and produce terrestrial planets that are on smaller, more circular orbits. We do not find a strong correlation between exterior giant planet mass and the number of Earth analogues (analogous in mass and semimajor axis) produced in the system. These results allow us to make predictions on the nature of terrestrial planets orbiting distant Sun-like star systems that harbour giant planet companions on long orbits – systems that will be a priority for NASA’s upcoming Wide-Field Infrared Survey Telescope (WFIRST) mission.
    [Show full text]
  • Outer Planets: the Ice Giants
    Outer Planets: The Ice Giants A. P. Ingersoll, H. B. Hammel, T. R. Spilker, R. E. Young Exploring Uranus and Neptune satisfies NASA’s objectives, “investigation of the Earth, Moon, Mars and beyond with emphasis on understanding the history of the solar system” and “conduct robotic exploration across the solar system for scientific purposes.” The giant planet story is the story of the solar system (*). Earth and the other small objects are leftovers from the feast of giant planet formation. As they formed, the giant planets may have migrated inward or outward, ejecting some objects from the solar system and swallowing others. The giant planets most likely delivered water and other volatiles, in the form of icy planetesimals, to the inner solar system from the region around Neptune. The “gas giants” Jupiter and Saturn are mostly hydrogen and helium. These planets must have swallowed a portion of the solar nebula intact. The “ice giants” Uranus and Neptune are made primarily of heavier stuff, probably the next most abundant elements in the Sun – oxygen, carbon, nitrogen, and sulfur. For each giant planet the core is the “seed” around which it accreted nebular gas. The ice giants may be more seed than gas. Giant planets are laboratories in which to test our theories about geophysics, plasma physics, meteorology, and even oceanography in a larger context. Their bottomless atmospheres, with 1000 mph winds and 100 year-old storms, teach us about weather on Earth. The giant planets’ enormous magnetic fields and intense radiation belts test our theories of terrestrial and solar electromagnetic phenomena.
    [Show full text]
  • Activity 16: Planets and Their Features Mercury Mercury Is an Extreme Planet
    Activity 16: Planets And Their Features Mercury Mercury.is.an.extreme.planet..It.is.the.fastest.of.all.the.planets..It.is.one.of.the.hottest. planets,.and.it.is.also.one.of.the.coldest!.It.may.be.the.site.of.the.largest.crash.in.the. history.of.the.solar.system..Mercury.may.also.have.the.strangest.view.of.the.sun.in.the. whole.universe! Mercury.zooms.around.the.sun.at.a.speed.of.48.kilometres.per.second,.or.half.as.fast. again.as.the.Earth.travels. At.certain.times.and.places,.Mercury’s.surface.temperature.can.rise.to.twice.the. temperature.inside.an.oven.when.you.are.baking.a.cake..On.the.other.hand,.in.the. shadow.of.its.North.Pole.craters,.Mercury.has.ice.like.our.North.Pole.does. Since.Mercury.is.so.close.to.the.sun,.we.have.never.been.able.to.see.it.in.any.detail..Even. with.the.most.powerful.telescope,.Mercury.looks.like.a.blurry.white.ball..It.wasn’t.until.1974. that.we.really.began.to.learn.about.Mercury..In.1974.and.1975,.Mariner.10.flew.by.Mercury.three.times.and.sent.back. about.12,000.images. These.pictures.combined.to.give.a.map.of.about.45%.of.Mercury’s.surface,.and.what.they.show.us.is.a.planet.covered. with.craters,.much.like.our.moon..Mercury’s.largest.land.feature.is.the.Caloris.Basin,.a.crater.formed.by.a.collision.with.a. meteorite.long.ago..The.size.of.the.Caloris.Basin,.about.1350.kilometres.in.diameter,.suggests.that.this.may.have.been.
    [Show full text]
  • Heavy Element Enrichment of the Gas Giant Planets By
    Heavy Element Enrichment of the Gas Giant Planets by Jaime Lee Coffey Hon.B.Sc., The University of Toronto, 2006 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in The Faculty of Graduate Studies (Astronomy) The University Of British Columbia Vancouver, Canada August 2008 © Jaime Lee Coffey 2008 Abstract According to both spectroscopic measurements and interior models, Jupiter, Saturn, Uranus and Neptune possess gaseous envelopes that are enriched in heavy elements compared to the Sun. Straightforward application of the dominant theories of gas giant formation - core accretion and gravitational instability - fail to provide the observed enrichment, suggesting that the surplus heavy elements were somehow dumped onto the planets after the envelopes were already in existence. Previous work has shown that if giant planets rapidly reached their cur rent configuration and radii, they do not accrete the remaining planetesimals efficiently enough to explain their observed heavy-element surplus. We ex plore the likely scenario that the effective accretion cross-sections of the giants were enhanced by the presence of the massive circumplanetary disks out of which their regular satellite systems formed. Perhaps surprisingly, we find that a simple model with protosatellite disks around Jupiter and Saturn can meet known constraints without tuning any parameters. Fur thermore, we show that the heavy-element budgets in Jupiter and Saturn can be matched slightly better if Saturn’s envelope (and disk) are formed roughly 0.1 — 10 Myr after that of Jupiter. We also show that giant planets forming in an initially-compact con figuration can acquire the observed enrichments if they are surrounded by similar protosatellite disks.
    [Show full text]
  • DISCOVERY of XO-6B: a HOT JUPITER TRANSITING a FAST ROTATING F5 STAR on an OBLIQUE ORBIT N Crouzet 1, P
    Draft version November 18, 2016 Preprint typeset using LATEX style emulateapj v. 01/23/15 DISCOVERY OF XO-6b: A HOT JUPITER TRANSITING A FAST ROTATING F5 STAR ON AN OBLIQUE ORBIT N Crouzet 1, P. R. McCullough 2, D. Long 3, P. Montanes Rodriguez 4, A. Lecavelier des Etangs 5, I. Ribas 6, V. Bourrier 7, G. Hebrard´ 5, F. Vilardell 8, M. Deleuil 9, E. Herrero 6,8, E. Garcia-Melendo 10,11, L. Akhenak 5, J. Foote 12, B. Gary 13, P. Benni 14, T. Guillot 15, M. Conjat 15, D. Mekarnia´ 15, J. Garlitz 16, C. J. Burke 17, B. Courcol 9, and O. Demangeon 9 1 Dunlap Institute for Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario, Canada M5S 3H4 2 Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA 3 Space Telescope Science Institute, 3700 San Martin Dr, Baltimore, MD 21218, USA 4 Instituto de Astrof´ısicade Canarias, C/V´ıaL´acteas/n, E-38200 La Laguna, Spain 5 Institut d'Astrophysique de Paris, UMR7095 CNRS, Universit´ePierre & Marie Curie, 98bis boulevard Arago, 75014 Paris, France 6 Institut de Ci`enciesde l'Espai (CSIC-IEEC), Campus UAB, Carrer de Can Magrans s/n, 08193 Bellaterra, Spain 7 Observatoire de l'Universit´ede Gen`eve, 51 chemin des Maillettes, 1290 Sauverny, Switzerland 8 Observatori del Montsec (OAdM), Institut d'Estudis Espacials de Catalunya (IEEC), Gran Capit`a,2-4, Edif. Nexus, 08034 Barcelona, Spain 9 Aix Marseille Universit´e,CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, 13388 Marseille, France 10 Departamento de F´ısicaAplicada I, Escuela T´ecnica Superior de Ingenier´ıa,Universidad del Pa´ısVasco UPV/EHU, Alameda Urquijo s/n, 48013 Bilbao, Spain 11 Fundacio Observatori Esteve Duran, Avda.
    [Show full text]
  • Simon Porter , Will Grundy
    Post-Capture Evolution of Potentially Habitable Exomoons Simon Porter1,2, Will Grundy1 1Lowell Observatory, Flagstaff, Arizona 2School of Earth and Space Exploration, Arizona State University [email protected] and spin vector were initially pointed at random di- Table 1: Relative fraction of end states for fully Abstract !"# $%& " '(" !"# $%& # '(# rections on the sky. The exoplanets had a ran- evolved exomoon systems dom obliquity < 5 deg and was at a stellarcentric The satellites of extrasolar planets (exomoons) Star Planet Moon Survived Retrograde Separated Impacted distance such that the equilibrium temperature was have been recently proposed as astrobiological tar- Earth 43% 52% 21% 35% equal to Earth. The simulations were run until they Jupiter Mars 44% 45% 18% 37% gets. Triton has been proposed to have been cap- 5 either reached an eccentricity below 10 or the pe- Titan 42% 47% 21% 36% tured through a momentum-exchange reaction [1], − Sun Earth 52% 44% 17% 30% riapse went below the Roche limit (impact) or the and it is possible that a similar event could allow Neptune Mars 44% 45% 18% 36% apoapse exceeded the Hill radius. Stars used were Titan 45% 47% 19% 35% a giant planet to capture a formerly binary terres- Earth 65% 47% 3% 31% the Sun (G2), a main-sequence F0 (1.7 MSun), trial planet or planetesimal. We therefore attempt to Jupiter Mars 59% 46% 4% 35% and a main-sequence M0 (0.47 MSun). Exoplan- Titan 61% 48% 3% 34% model the dynamical evolution of a terrestrial planet !"# $%& " !"# $%& " ' F0 ets used had the mass of either Jupiter or Neptune, Earth 77% 44% 4% 18% captured into orbit around a giant planet in the hab- and exomoons with the mass of Earth, Mars, and Neptune Mars 67% 44% 4% 28% itable zone of a star.
    [Show full text]
  • Terrestrial Planets in High-Mass Disks Without Gas Giants
    A&A 557, A42 (2013) Astronomy DOI: 10.1051/0004-6361/201321304 & c ESO 2013 Astrophysics Terrestrial planets in high-mass disks without gas giants G. C. de Elía, O. M. Guilera, and A. Brunini Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata and Instituto de Astrofísica de La Plata, CCT La Plata-CONICET-UNLP, Paseo del Bosque S/N, 1900 La Plata, Argentina e-mail: [email protected] Received 15 February 2013 / Accepted 24 May 2013 ABSTRACT Context. Observational and theoretical studies suggest that planetary systems consisting only of rocky planets are probably the most common in the Universe. Aims. We study the potential habitability of planets formed in high-mass disks without gas giants around solar-type stars. These systems are interesting because they are likely to harbor super-Earths or Neptune-mass planets on wide orbits, which one should be able to detect with the microlensing technique. Methods. First, a semi-analytical model was used to define the mass of the protoplanetary disks that produce Earth-like planets, super- Earths, or mini-Neptunes, but not gas giants. Using mean values for the parameters that describe a disk and its evolution, we infer that disks with masses lower than 0.15 M are unable to form gas giants. Then, that semi-analytical model was used to describe the evolution of embryos and planetesimals during the gaseous phase for a given disk. Thus, initial conditions were obtained to perform N-body simulations of planetary accretion. We studied disks of 0.1, 0.125, and 0.15 M.
    [Show full text]
  • The Nature of the Giant Exomoon Candidate Kepler-1625 B-I René Heller
    A&A 610, A39 (2018) https://doi.org/10.1051/0004-6361/201731760 Astronomy & © ESO 2018 Astrophysics The nature of the giant exomoon candidate Kepler-1625 b-i René Heller Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany e-mail: [email protected] Received 11 August 2017 / Accepted 21 November 2017 ABSTRACT The recent announcement of a Neptune-sized exomoon candidate around the transiting Jupiter-sized object Kepler-1625 b could indi- cate the presence of a hitherto unknown kind of gas giant moon, if confirmed. Three transits of Kepler-1625 b have been observed, allowing estimates of the radii of both objects. Mass estimates, however, have not been backed up by radial velocity measurements of the host star. Here we investigate possible mass regimes of the transiting system that could produce the observed signatures and study them in the context of moon formation in the solar system, i.e., via impacts, capture, or in-situ accretion. The radius of Kepler-1625 b suggests it could be anything from a gas giant planet somewhat more massive than Saturn (0:4 MJup) to a brown dwarf (BD; up to 75 MJup) or even a very-low-mass star (VLMS; 112 MJup ≈ 0:11 M ). The proposed companion would certainly have a planetary mass. Possible extreme scenarios range from a highly inflated Earth-mass gas satellite to an atmosphere-free water–rock companion of about +19:2 180 M⊕. Furthermore, the planet–moon dynamics during the transits suggest a total system mass of 17:6−12:6 MJup.
    [Show full text]