Common and Rare Forms of Diabetes Mellitus: Towards a Continuum of Diabetes Subtypes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRANSCRIPTIONAL REGULATION of Hur in RENAL STRESS
TRANSCRIPTIONAL REGULATION OF HuR IN RENAL STRESS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sudha Suman Govindaraju Graduate Program in Biochemistry The Ohio State University 2014 Dissertation Committee: Dr. Beth S. Lee, Ph.D., Advisor Dr. Kathleen Boris-Lawrie, Ph.D. Dr. Sissy M. Jhiang, Ph.D. Dr. Arthur R. Strauch, Ph.D Abstract HuR is a ubiquitously expressed RNA-binding protein that affects the post- transcriptional life of thousands of cellular mRNAs by regulating transcript stability and translation. HuR can post-transcriptionally regulate gene expression and modulate cellular responses to stress, differentiation, proliferation, apoptosis, senescence, inflammation, and the immune response. It is an important mediator of survival during cellular stress, but when inappropriately expressed, can promote oncogenic transformation. Not surprisingly, the expression of HuR itself is tightly regulated at multiple transcriptional and post-transcriptional levels. Previous studies demonstrated the existence of two alternate HuR transcripts that differ in their 5’ untranslated regions and have markedly different translatabilities. These forms were also found to be reciprocally expressed following cellular stress in kidney proximal tubule cell lines, and the shorter, more readily translatable variant was shown to be regulated by Smad 1/5/8 pathway and bone morphogenetic protein-7 (BMP-7) signaling. In this study, the factors that promote transcription of the longer alternate form were identified. NF-κB was shown to be important for expression of the long HuR mRNA, as was a newly identified region with potential for binding the Sp/KLF families of transcription factors. -
TBX15/Mir-152/KIF2C Pathway Regulates Breast Cancer Doxorubicin Resistance Via Preventing PKM2 Ubiquitination
TBX15/miR-152/KIF2C Pathway Regulates Breast Cancer Doxorubicin Resistance via Preventing PKM2 Ubiquitination Cheng-Fei Jiang Nanjing Medical University Yun-Xia Xie Zhengzhou University Ying-Chen Qian Nanjing Medical University Min Wang Nanjing Medical University Ling-Zhi Liu Thomas Jefferson University - Center City Campus: Thomas Jefferson University Yong-Qian Shu Nanjing Medical University Xiao-Ming Bai ( [email protected] ) Nanjing Medical University Bing-Hua Jiang Thomas Jefferson University Research Keywords: TBX15, miR-152, KIF2C, PKM2, Doxorubicin resistance, breast cancer Posted Date: December 28th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-130874/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/29 Abstract Background Chemoresistance is a critical risk problem for breast cancer treatment. However, mechanisms by which chemoresistance arises remains to be elucidated. The expression of T-box transcription factor 15 (TBX- 15) was found downregulated in some cancer tissues. However, role and mechanism of TBX15 in breast cancer chemoresistance is unknown. Here we aimed to identify the effects and mechanisms of TBX15 in doxorubicin resistance in breast cancer. Methods As measures of Drug sensitivity analysis, MTT and IC50 assays were used in DOX-resistant breast cancer cells. ECAR and OCR assays were used to analyze the glycolysis level, while Immunoblotting and Immunouorescence assays were used to analyze the autophagy levels in vitro. By using online prediction software, luciferase reporter assays, co-Immunoprecipitation, Western blotting analysis and experimental animals models, we further elucidated the mechanisms. Results We found TBX15 expression levels were decreased in Doxorubicin (DOX)-resistant breast cancer cells. -
The Krüppel-Like Factors in Female Reproductive System Pathologies
R C M SIMMEN and others KLFs in female reproductive 54:2 R89–R101 Review diseases The Kru¨ppel-like factors in female reproductive system pathologies Rosalia C M Simmen, Melissa E Heard, Angela M Simmen1, Maria Theresa M Montales, Meera Marji, Samantha Scanlon and John Mark P Pabona2 Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Correspondence Arkansas 72205, USA should be addressed 1Department of Obstetrics and Gynecology, University of Michigan Health System, Ann Arbor, Michigan 48109, USA to R C M Simmen 2Department of Internal Medicine, Harlem Hospital Center, Columbia University Medical Center, Email New York, New York 10037, USA [email protected] Abstract Female reproductive tract pathologies arise largely from dysregulation of estrogen and Key Words progesterone receptor signaling, leading to aberrant cell proliferation, survival, and " KLF differentiation. The signaling pathways orchestrated by these nuclear receptors are complex, " endometrial pathologies require the participation of many nuclear proteins serving as key binding partners or targets, " progesterone and involve a range of paracrine and autocrine regulatory circuits. The members of the " Notch Kru¨ ppel-like factor (KLF) family of transcription factors are ubiquitously expressed in " Wnt reproductive tissues and have been increasingly implicated as critical co-regulators and integrators of steroid hormone actions. Herein, we explore the involvement of KLF family members in uterine pathology, describe their currently known molecular mechanisms, Journal of Molecular and discuss their potential as targets for therapeutic intervention. Endocrinology (2015) 54, R89–R101 Journal of Molecular Endocrinology Introduction The human uterus has a unique role in the successful transcriptional pathways involve interactions with transmission of germ line DNA to guarantee the numerous nuclear co-regulators (Dasgupta & O’Malley propagation of the human species. -
Abstracts from the 9Th Biennial Scientific Meeting of The
International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level. -
Modeling Non-Linear Relationships Between
Georgia State University ScholarWorks @ Georgia State University Public Health Theses School of Public Health Spring 5-13-2016 Modeling Non-Linear Relationships Between DNA Methylation And Age: The Application of Regularization Methods To Predict Human Age And The Implication Of DNA Methylation In Immunosenescence Nicholas Johnson Follow this and additional works at: https://scholarworks.gsu.edu/iph_theses Recommended Citation Johnson, Nicholas, "Modeling Non-Linear Relationships Between DNA Methylation And Age: The Application of Regularization Methods To Predict Human Age And The Implication Of DNA Methylation In Immunosenescence." Thesis, Georgia State University, 2016. https://scholarworks.gsu.edu/iph_theses/473 This Thesis is brought to you for free and open access by the School of Public Health at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Public Health Theses by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact [email protected]. P a g e | 1 ABSTRACT Modeling Non-Linear Relationships Between DNA Methylation And Age: The Application of Regularization Methods To Predict Human Age And The Implication Of DNA Methylation In Immunosenescence By Nicholas David Johnson May 4, 2016 Background: Gene expression is regulated via highly coordinated epigenetic changes, the most studied of which is DNA methylation (DNAm). Many studies have shown that DNAm is linearly associated with age, and some have even used DNAm data to build predictive models of human age, which are immensely important considering that DNAm can predict health outcomes, such as all-cause mortality, better than chronological age. Nevertheless, few studies have investigated non-linear relationships between DNAm and age, which could potentially improve these predictive models. -
KLF14 Potentiates Oxidative Adaptation Via Modulating HO-1 Signaling in Castrate-Resistant Prostate Cancer
26 1 Endocrine-Related X Luo, J Liu, B Wang et al. Role of KLF14 in CRPC 26:1 181–195 Cancer RESEARCH KLF14 potentiates oxidative adaptation via modulating HO-1 signaling in castrate-resistant prostate cancer Xiao-hui Luo1,*, Jian-zhou Liu1,*, Bo Wang1,*, Qun-li Men1, Yu-quan Ju1, Feng-yan Yin1, Chao Zheng1 and Wei Li2 1Department of Urology, Baoji Center Hospital, Baoji, Shaanxi Province, People’s Republic of China 2Department of Human Anatomy, Histology and Embryology, Fourth Military Medical University, Xi’an, Shaanxi Province, People’s Republic of China Correspondence should be addressed to X Luo or W Li: [email protected] or [email protected] *(X Luo, J Liu and B Wang contributed equally to this work) Abstract Insights into the mechanisms by which key factors stimulate cell growth under androgen- Key Words depleted conditions is a premise to the development of effective treatments with clinically f Krüppel-like factor 14 significant activity in patients with castration-resistant prostate cancer (CRPC). Herein, (KLF14) we report that, the expression of Krüppel-like factor 14 (KLF14), a master transcription f CRPC factor in the regulation of lipid metabolism, was significantly induced in castration- f oxidative stress insensitive PCa cells and tumor tissues from a mouse xenograft model of CRPC. KLF14 f heme oxygenase-1 (HO-1) upregulation in PCa cells, which was stimulated upstream by oxidative stress, was f transcriptional regulation dependent on multiple pathways including PI3K/AKT, p42/p44 MAPK, AMPK and PKC pathways. By means of ectopic overexpression and genetic inactivation, we further show that KLF14 promoted cell growth via positive regulation of the antioxidant response under androgen-depleted conditions. -
Epigenetic Variability of CD4+CD25+ Tregs Contributes to the Pathogenesis of Autoimmune Diseases
Clinic Rev Allerg Immunol DOI 10.1007/s12016-016-8590-3 Epigenetic Variability of CD4+CD25+ Tregs Contributes to the Pathogenesis of Autoimmune Diseases Ye Shu1,2 & Qinghua Hu3 & Hai Long1 & Christopher Chang4 & Qianjin Lu1 & Rong Xiao1 # Springer Science+Business Media New York 2016 Abstract Autoimmune diseases are characterized by aberrant andtrimethylationlevelsofhistoneH3andH4whencompared immune responses against healthy cells and tissues. However, with effector T cells, leading to an open chromatin structure. the exact mechanisms underlying the development of these MicroRNAs such as miR-155, miR-126, and miR-10a also conditions remain unknown. CD4+CD25+ regulatory T cells exert an important influence on the differentiation, develop- (Tregs) are a subset of mature T cells which have an important ment, and immunological functions of Tregs. Aberrant epige- role in maintaining immune homeostasis and preventing au- netic modifications affecting Foxp3 and other key genes in toimmune diseases. Forkhead box p3 (Foxp3), a member of Tregs contribute to disease activity and tissue inflammation in the fork head transcription factor family, is recognized as a autoimmune diseases, which holds great potential for providing marker of CD4+CD25+ Tregs. The decreased number and/ novel targets for epigenetic therapies. Advances in research into or function of CD4+CD25+ Tregs in peripheral blood and the epigenetic regulation of CD4+CD25+ Tregs may also lead related tissues has been demonstrated in systemic lupus to the identification of new epigenetic biomarkers for diagnosis erythematosus, systemic sclerosis, and other autoimmune and prognosis. diseases, which are at least partially regulated by epigenetic mechanisms. Epigenetics refers to the study of potentially Keywords Tregs . -
Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y. -
Genome-Wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M
CANCER GENOMICS & PROTEOMICS 11 : 1-12 (2014) Genome-wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M. MEERZAMAN 1,2 , CHUNHUA YAN 1, QING-RONG CHEN 1, MICHAEL N. EDMONSON 1, CARL F. SCHAEFER 1, ROBERT J. CLIFFORD 2, BARBARA K. DUNN 3, LI DONG 2, RICHARD P. FINNEY 1, CONSTANCE M. CULTRARO 2, YING HU1, ZHIHUI YANG 2, CU V. NGUYEN 1, JENNY M. KELLEY 2, SHUANG CAI 2, HONGEN ZHANG 2, JINGHUI ZHANG 1,4 , REBECCA WILSON 2, LAUREN MESSMER 2, YOUNG-HWA CHUNG 5, JEONG A. KIM 5, NEUNG HWA PARK 6, MYUNG-SOO LYU 6, IL HAN SONG 7, GEORGE KOMATSOULIS 1 and KENNETH H. BUETOW 1,2 1Center for Bioinformatics and Information Technology, National Cancer Institute, Rockville, MD, U.S.A.; 2Laboratory of Population Genetics, National Cancer Institute, National Cancer Institute, Bethesda, MD, U.S.A.; 3Basic Prevention Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, U.S.A; 4Department of Biotechnology/Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, U.S.A.; 5Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; 6Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea; 7Department of Internal Medicine, College of Medicine, Dankook University, Cheon-An, Korea Abstract . We report on next-generation transcriptome Worldwide, liver cancer is the fifth most common cancer and sequencing results of three human hepatocellular carcinoma the third most common cause of cancer-related mortality (1). tumor/tumor-adjacent pairs. -
Perhexiline Activates KLF14 and Reduces Atherosclerosis by Modulating Apoa-I Production
Downloaded from http://www.jci.org on September 21, 2015. http://dx.doi.org/10.1172/JCI79048 The Journal of Clinical Investigation RESEARCH ARTICLE Perhexiline activates KLF14 and reduces atherosclerosis by modulating ApoA-I production Yanhong Guo,1 Yanbo Fan,1 Jifeng Zhang,1 Gwen A. Lomberk,2 Zhou Zhou,3 Lijie Sun,1,4 Angela J. Mathison,2 Minerva T. Garcia-Barrio,5 Ji Zhang,1 Lixia Zeng,6 Lei Li,4,6 Subramaniam Pennathur,6 Cristen J. Willer,1 Daniel J. Rader,7 Raul Urrutia,2 and Y. Eugene Chen1 1Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA. 2Laboratory of Epigenetics and Chromatin Dynamics, Epigenomics Translational Program, Gastroenterology Research Unit, Departments of Biochemistry and Molecular Biology, Biophysics, and Medicine, Mayo Clinic, Rochester, Minnesota, USA. 3Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, Maryland, USA. 4Department of Cardiology, Peking University Third Hospital and Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Beijing, China. 5Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, Georgia, USA. 6Division of Nephrology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA. 7Institute for Translational Medicine and Therapeutics, Cardiovascular Institute and Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA. Recent genome-wide association studies have revealed that variations near the gene locus encoding the transcription factor Krüppel-like factor 14 (KLF14) are strongly associated with HDL cholesterol (HDL-C) levels, metabolic syndrome, and coronary heart disease. However, the precise mechanisms by which KLF14 regulates lipid metabolism and affects atherosclerosis remain largely unexplored. -
Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways
biomolecules Article Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways Aayushi Srivastava 1,2,3,4 , Abhishek Kumar 1,5,6 , Sara Giangiobbe 1, Elena Bonora 7, Kari Hemminki 1, Asta Försti 1,2,3 and Obul Reddy Bandapalli 1,2,3,* 1 Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany; [email protected] (A.S.); [email protected] (A.K.); [email protected] (S.G.); [email protected] (K.H.); [email protected] (A.F.) 2 Hopp Children’s Cancer Center (KiTZ), D-69120 Heidelberg, Germany 3 Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), D-69120 Heidelberg, Germany 4 Medical Faculty, Heidelberg University, D-69120 Heidelberg, Germany 5 Institute of Bioinformatics, International Technology Park, Bangalore 560066, India 6 Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India 7 S.Orsola-Malphigi Hospital, Unit of Medical Genetics, 40138 Bologna, Italy; [email protected] * Correspondence: [email protected]; Tel.: +49-6221-42-1709 Received: 29 August 2019; Accepted: 10 October 2019; Published: 13 October 2019 Abstract: Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family. -
Identification of Candidate Biomarkers and Pathways Associated with Type 1 Diabetes Mellitus Using Bioinformatics Analysis
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447531; this version posted June 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Identification of candidate biomarkers and pathways associated with type 1 diabetes mellitus using bioinformatics analysis Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karnataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2021.06.08.447531; this version posted June 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Type 1 diabetes mellitus (T1DM) is a metabolic disorder for which the underlying molecular mechanisms remain largely unclear. This investigation aimed to elucidate essential candidate genes and pathways in T1DM by integrated bioinformatics analysis. In this study, differentially expressed genes (DEGs) were analyzed using DESeq2 of R package from GSE162689 of the Gene Expression Omnibus (GEO). Gene ontology (GO) enrichment analysis, REACTOME pathway enrichment analysis, and construction and analysis of protein-protein interaction (PPI) network, modules, miRNA-hub gene regulatory network and TF-hub gene regulatory network, and validation of hub genes were then performed. A total of 952 DEGs (477 up regulated and 475 down regulated genes) were identified in T1DM. GO and REACTOME enrichment result results showed that DEGs mainly enriched in multicellular organism development, detection of stimulus, diseases of signal transduction by growth factor receptors and second messengers, and olfactory signaling pathway.