The Space Challenge and Soviet Science Fiction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Race to Space Educator Edition
National Aeronautics and Space Administration Grade Level RACE TO SPACE 10-11 Key Topic Instructional Objectives U.S. space efforts from Students will 1957 - 1969 • analyze primary and secondary source documents to be used as Degree of Difficulty supporting evidence; Moderate • incorporate outside information (information learned in the study of the course) as additional support; and Teacher Prep Time • write a well-developed argument that answers the document-based 2 hours essay question regarding the analogy between the Race to Space and the Cold War. Problem Duration 60 minutes: Degree of Difficulty -15 minute document analysis For the average AP US History student the problem may be at a moderate - 45 minute essay writing difficulty level. -------------------------------- Background AP Course Topics This problem is part of a series of Social Studies problems celebrating the - The United States and contributions of NASA’s Apollo Program. the Early Cold War - The 1950’s On May 25, 1961, President John F. Kennedy spoke before a special joint - The Turbulent 1960’s session of Congress and challenged the country to safely send and return an American to the Moon before the end of the decade. President NCSS Social Studies Kennedy’s vision for the three-year old National Aeronautics and Space Standards Administration (NASA) motivated the United States to develop enormous - Time, Continuity technological capabilities and inspired the nation to reach new heights. and Change Eight years after Kennedy’s speech, NASA’s Apollo program successfully - People, Places and met the president’s challenge. On July 20, 1969, the world witnessed one of Environments the most astounding technological achievements in the 20th century. -
Soviet Steps Toward Permanent Human Presence in Space
SALYUT: Soviet Steps Toward Permanent Human Presence in Space December 1983 NTIS order #PB84-181437 Recommended Citation: SALYUT: Soviet Steps Toward Permanent Human Presence in Space–A Technical Mere- orandum (Washington, D. C.: U.S. Congress, Office of Technology Assessment, OTA- TM-STI-14, December 1983). Library of Congress Catalog Card Number 83-600624 For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402 Foreword As the other major spacefaring nation, the Soviet Union is a subject of interest to the American people and Congress in their deliberations concerning the future of U.S. space activities. In the course of an assessment of Civilian Space Stations, the Office of Technology Assessment (OTA) has undertaken a study of the presence of Soviets in space and their Salyut space stations, in order to provide Congress with an informed view of Soviet capabilities and intentions. The major element in this technical memorandum was a workshop held at OTA in December 1982: it was the first occasion when a significant number of experts in this area of Soviet space activities had met for extended unclassified discussion. As a result of the workshop, OTA prepared this technical memorandum, “Salyut: Soviet Steps Toward Permanent Human Presence in Space. ” It has been reviewed extensively by workshop participants and others familiar with Soviet space activities. Also in December 1982, OTA wrote to the U. S. S. R.’s Ambassador to the United States Anatoliy Dobrynin, requesting any information concerning present and future Soviet space activities that the Soviet Union judged could be of value to the OTA assess- ment of civilian space stations. -
WORLD SPACECRAFT DIGEST by Jos Heyman PROPOSED SPACECRAFT Version: 15 January 2016 © Copyright Jos Heyman
WORLD SPACECRAFT DIGEST by Jos Heyman PROPOSED SPACECRAFT Version: 15 January 2016 © Copyright Jos Heyman This file includes details of selected proposed spacecraft and programmes where such spacecraft are related to actual spacecraft listed in the main body of the database. Name: CST-100 Starliner Country: USA Launch date: 2017 Re-entry: Launch site: Cape Canaveral Launch vehicle: to be determined Orbit: The Crew Space Transportation (CST)-100 spacecraft, was developed by Boeing in cooperation with Bigelow Aerospace as part of NASA’s Commercial Orbital Transportation Services (COTS), later Commercial Crew Transportation Capability (CCtCap) programme. The CST-100 (with ‘100’ referring to 100 km from ground to low Earth orbit) will be able to carry a crew of seven and is designed to support the International Space Station as well as Bigelow’s proposed Orbital Space Complex, a privately owned space station based on Bigelow's proposed BA 330 inflatable space station module. CTS-100 is bigger than Apollo but smaller than Orion and can be flown with Atlas, Delta or Falcon rockets. Each CTS- 100 should be able to fly up to 10 missions. CST-100 pad and ascent abort tests are scheduled for 2013 and 2014, followed by an automated unmanned orbital demo mission. Whilst working on the CST-100 contract for NASA’s crewed spacecraft, Boeing is proposing to also develop a cargo transport version. This version will have the typical crewed mission requirements, such as the launch abort system, deleted providing more cargo space. The cargo transport version will also have the capability to return cargo to Earth, landing in the western United States like the crewed version. -
ASTRONAUTICS and AERONAUTICS, 1977 a Chronology
NASA SP--4022 ASTRONAUTICS AND AERONAUTICS, 1977 A Chronology Eleanor H. Ritchie ' The NASA History Series Scientific and Technical Information Branch 1986 National Aeronautics and Space Administration Washington, DC Four spacecraft launched by NASA in 1977: left to right, top, ESA’s Geos 1 and NASA’s Heao 1; bottom, ESA’s Isee 2 on NASA’s Isee 1, and Italy’s Wo. (NASA 77-H-157,77-H-56, 77-H-642, 77-H-484) Contents Preface ...................................................... v January ..................................................... 1 February .................................................... 21 March ...................................................... 47 April ....................................................... 61 May ........................................................ 77 June ...................................................... 101 July ....................................................... 127 August .................................................... 143 September ................................................. 165 October ................................................... 185 November ................................................. 201 December .................................................. 217 Appendixes A . Satellites, Space Probes, and Manned Space Flights, 1977 .......237 B .Major NASA Launches, 1977 ............................... 261 C. Manned Space Flights, 1977 ................................ 265 D . NASA Sounding Rocket Launches, 1977 ..................... 267 E . Abbreviations of References -
Ford Foundation Annual Report 2000 Ford Foundation Annual Report 2000 October 1, 1999 to September 30, 2000
Ford Foundation Annual Report 2000 Ford Foundation Annual Report 2000 October 1, 1999 to September 30, 2000 Ford Foundation Offices Inside front cover 1 Mission Statement 3 President’s Message 14 Board of Trustees 14 Officers 15 Committees of the Board 16 Staff 20 Program Approvals 21 Asset Building and Community Development 43 Peace and Social Justice 59 Education, Media, Arts and Culture 77 Grants and Projects, Fiscal Year 2000 Asset Building and Community Development Economic Development 78 Community and Resource Development 85 Human Development and Reproductive Health 97 Program-Related Investments 107 Peace and Social Justice Human Rights and International Cooperation 108 Governance and Civil Society 124 Education, Media, Arts and Culture Education, Knowledge and Religion 138 Media, Arts and Culture 147 Foundationwide Actions 155 Good Neighbor Grants 156 157 Financial Review 173 Index Communications Back cover flap Guidelines for Grant Seekers Inside back cover flap Library of Congress Card Number 52-43167 ISSN: 0071-7274 April 2001 Ford Foundation Offices • MOSCOW { NEW YORK BEIJING • NEW DELHI • • MEXICO CITY • CAIRO • HANOI • MANILA • LAGOS • NAIROBI • JAKARTA RIODEJANEIRO • • WINDHOEK • JOHANNESBURG SANTIAGO • United States Africa and Middle East West Africa The Philippines Andean Region Makati Central Post Office and Southern Cone Headquarters Eastern Africa Nigeria P.O. Box 1936 320 East 43rd Street P.O. Box 2368 Chile Kenya 1259 Makati City New York, New York Lagos, Nigeria Avenida Ricardo Lyon 806 P.O. Box 41081 The Philippines 10017 Providencia Nairobi, Republic of Kenya Asia Vietnam Santiago 6650429, Chile 340 Ba Trieu Street Middle East and North Africa China Hanoi, Socialist Republic International Club Office Building Russia Egypt of Vietnam Suite 501 Tverskaya Ulitsa 16/2 P.O. -
The Women's International Democratic Federation World
The Women's International Democratic Federation World Congress of Women, Moscow, 1963: Women’s Rights and World Politics during the Cold War By Anna Kadnikova Submitted to Central European University Department of Gender Studies In partial fulfillment of the requirements for the degree of Master of Arts Supervisor: Professor Francisca de Haan CEU eTD Collection Budapest, Hungary Abstract My thesis focuses on the June 1963 WIDF World Congress of Women that took place in Moscow, in combination with the successful space flight made by Valentina Tereshkova, the world’s first woman astronaut, just a few days before the WIDF Congress. I explore the meaning of these combined events in the context of Soviet leader Khrushchev’s policies of peaceful coexistence and peaceful competition. Based on my research of the archives of the Soviet Women’s Committee (the Soviet member of the WIDF which organized the 1963 Congress) and Soviet and American media, I argue that the Soviet Union successfully used the June 1963 events as an opportunity for public diplomacy, and showcased the USSR to the world as the champion of women’s rights. While most of the literature on the history of the Cold War is still gender blind, I attempt to show not only that the competition (peaceful and not) between the United States and the Soviet Union went beyond missiles, satellites, technology, or even agriculture, but also that their competition regarding the treatment of women by the 1960s was a key part of their rivalry. The thesis also hopes to make a meaningful contribution to the historiography of international women’s organizations in the postwar era, and in particular to the still largely unwritten history of the biggest global women’s organization, the Women’s International Democratic Federation. -
NASA-STD-3001 Technical Brief Mishaps During Entry, Descent and Landing Overview Overview
NASA-STD-3001 Technical Brief Mishaps During Entry, Descent and Landing Overview Overview Executive Summary Re-entry into the Earth’s atmosphere, descent and subsequent landing are a few of the stages in spaceflight that are life-threatening due to the myriad of processes and vehicle reliabilities that must occur in order for the crew to land not only safely, but unharmed. The crew and vehicle are subjected to the vacuum of space, extreme heat, high speeds, g-forces and vibrations. Historically, astronauts have sustained minor injuries, but the loss of life has occurred, let alone came close to occurring in other cases, and it is imperative that these should be lessons in the understanding of vehicle design and protecting the crew within. STS-107: Rear (L-R) David Brown, Laurel Clark, Michael Anderson, Ilan Ramon; Front (L-R) Rick Husband, Kalpana Chawla, William McCool Soyuz 11: (L-R) Georgi Dobrovolski, Viktor Patsayev and Soyuz 1: Vladimir Komarov Vladislav Volkov NASA Office of the Chief Health & Medical Officer (OCHMO) 1 This Technical Brief is derived from NASA-STD-3001 and is for reference only. It does not supersede or waive existing Agency, Program, or Contract requirements. 06/12/2020 NASA-STD-3001 Technical Brief Mishaps During Entry, Descent and Landing Background Entry Events Soyuz 11 – June 30, 19711 During separation of the orbital and service modules from the descent module, the pyrotechnic system did not operate as intended. All of the pyrotechnics fired simultaneously rather than the designed sequential firing mode, which was believed to be due to the excessive vibration loads on the vehicle. -
Classic Prisoner's Dilemma
Classic Prisoner’s Dilemma: A Quasi-Experimental Test during the Great Terror1 Ivan Katchanovski, Ph.D. Kluge Post-Doctoral Fellow John W. Kluge Center Library of Congress 101 Independence Ave, SE Washington, DC 20540 Tel. (202) 707-0247 [email protected] Presented at the 2003 Annual Meeting of the American Political Science Association in Philadelphia, August 28 - August 31, 2003. Copyright by the American Political Science Association Abstract This study provides an empirical assessment of the prisoner’s dilemma model. It examines political prosecution and behavior of intellectuals during the Great Terror in the Soviet Union in the 1930s. This paper analyzes whether political prisoners confessed voluntarily as the prisoner’s dilemma model predicts. It focuses on the prosecution of Mykhailo Krawtchouk, an internationally renowned Ukrainian mathematician, and more than 100 other political prisoners, who were connected to his case. Krawtchouk’s case is selected because of its unintended effects on the invention of the electronic computer in the United States and the development of rocket technology in the Soviet Union. This study shows that only a small fraction of political prisoners confessed voluntarily. However, rational choice theory, on which the prisoner’s dilemma model is based, is helpful in solving a puzzle pertaining to the electronic computer invention and patent. 2 Classic prisoner’s dilemma model This paper investigates behavior of prisoners who were arrested on political charges in the Soviet Union during the Great Terror in the 1930s. It analyzes the role of prisoner’s dilemma incentives to confess in the mass terror. By examining the Great Terror, which affected millions of people, this study provides a unique empirical test of the prisoner’s dilemma model that now gains wide currency in the social sciences. -
VII Congress
Association of Space Explorers 7th Planetary Congress Berlin, Germany 1991 Commemorative Poster Signature Key Viktor Afanasyev Vladimir Aksyonov Alexander Alexandrov (Bul.) Soyuz TM-11 Soyuz 22, Soyuz T-2 Soyuz TM-5 Joe Allen Alexander Balandin John-David Bartoe STS 5, STS 51A Soyuz TM-9 STS 51F Patrick Baudry Gerald Carr Robert Cenker STS 51G Skylab IV 7 STS 61C Jean-Loup Chretien Charles Conrad, Jr. Samuel Durrance Soyuz T-6, Soyuz TM-7 Gemini 5, Gemini 11 STS 35 Apollo 12, Skylab II Lev Dyomin John Fabian Bertalan Farkas Soyuz 15 STS 7, STS 51G Soyuz 36 Reinhard Furrer Drew Gaffney Viktor Gorbatko STS 61A STS 40 Soyuz 7, Soyuz 24, Soyuz 37 Georgi Grechko Miroslaw Hermaszewski Alexander Ivanchenkov Soyuz 17, Soyuz 26 Soyuz 30 Soyuz 29, Soyuz T-6 Soyuz T-14 Georgi Ivanov Yevgeni Khrunov Vladimir Kovolyonok Soyuz 33 Soyuz 5 Soyuz 25, Soyuz 29, Soyuz T-4 Alexei Leonov Don Lind James Lovell, Jr. Voskhod 2, Apollo-Soyuz STS 51B Gemini 7, Gemini 12 Apollo 8, Apollo 13 Vladimir Lyakhov Oleg Makarov Gennadi Manakov Soyuz 32, Soyuz T-9 Soyuz 12, Soyuz 27, Soyuz T-3 Soyuz TM-10 Soyuz TM-6 Musa Manarov Jon McBride Bruce McCandless II Soyuz TM-4, Soyuz TM-11 STS 41G STS 41B, STS 31 Ernst Messerschmid William Nelson Wubbo Ockels STS 61A STS 61C STS 61A Donald Peterson Leonid Popov Dumitru Prunariu STS 6 Soyuz 35, Soyuz 40, Soyuz T-7 Soyuz 40 Vladimir Remek Stuart Roosa Rusty Schweickart Soyuz 28 Apollo 14 Apollo 9 Vitali Sevastyonov Thomas Stafford Gennadi Strekalov Soyuz 9, Soyuz 18 Gemini 6, Gemini 9, Apollo 10 Soyuz T-3, Soyuz T-8 Apollo-Soyuz Soyuz TM-11 Valentina Tereshkova Lodewijk van den Berg Igor Volk Vostok 6 STS 51B Soyuz T-12 Charles Walker Donald Williams Boris Yegorov STS 41D, STS 51D, STS 61B STS 51D, STS 34 Voskhod 1 Vyacheslav Zhudov Soyuz 23 This poster commemorates the 7th Planetary Congress of the Association of Space Explorers (ASE). -
Gill Arbuthnott • Christopher Nielsen All Rights Reserved
To David, whose bookshelves introduced me to the rest of the universe through Asimov, Bradbury and Clarke, and who bought me that Bowie record. – GA For Rusty (the first dingo in space). – CN BIG PICTURE PRESS First published in the UK in 2019 by Big Picture Press, an imprint of Bonnier Books UK, The Plaza, 535 King’s Road, London, SW10 0SZ www.templarco.co.uk/big-picture-press www.bonnierbooks.co.uk Text copyright © 2019 by Gill Arbuthnott Illustration copyright © 2019 by Christopher Nielsen Design copyright © 2019 by Big Picture Press 1 3 5 7 9 10 8 6 4 2 Gill Arbuthnott • Christopher Nielsen All rights reserved ISBN 978-1-78741-354-2 This book was typeset in Burford Base and Rustic, Futura and Duality The illustrations were created using a combination of traditional and digital techniques. Edited by Katie Haworth Designed by Nathalie Eyraud Production Controller: Nick Read Printed in China ;II 2019: Chinese robotic space probe r e Chang’e-4 makes first ever landing on the 2 a 0 c 1 h 8 e far side of the Moon : s T i h n e t e nturies: e V th c r 16 s – o th t vers e 15 i disco y ile l al l a G a eo g lil the paths r a dict e G pre s r to s p 2 w tile ) a ho ojec s p 6 ) f pr e ce ro o h b 6 6 e s i 6 l 8 : 1 b 6 ( y u 1 r ( y 2012: p TiMeLiNe u The Voyager I probe t i t n n v o n o reaches interstellar space i a t t e r c o w G e h f M t N 7 o f c o 1 a s a w s Is a w r L a i is L S h d n a 15th–16th centuries: Leonardo da Vinci draws designs for flying machines 1986: Russian 2000: International Last Space space station Mir Space Station -
Case Study of the Internal Growth Dynamics of NASA
University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1971 Case study of the internal growth dynamics of NASA Bruce M. Whitehead The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Whitehead, Bruce M., "Case study of the internal growth dynamics of NASA" (1971). Graduate Student Theses, Dissertations, & Professional Papers. 1747. https://scholarworks.umt.edu/etd/1747 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. CASE STUDY OF THE INTERNAL GROWTH DYNAMICS OF NASA By Bruce M. Whitehead B.A. University of Montana, 1970 Presented in partial fulfillment of the requirements for the degree of Master of Arts UNIVERSITY OF MONTANA 1971 Approved by: Chairman, Board of Examiners Dea^ Grad^txe 7/ UMI Number: EP35189 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI OlM«rt*tk>n Publishing UMI EP35189 Published by ProQuest LLC (2012). Copyright in the Dissertation held by the Author. -
Unit 5 Space Exploration
TOPIC 8 People in Space There are many reasons why all types of technology are developed. In Unit 5, you’ve seen that some technology is developed out of curiosity. Galileo built his telescope because he was curious about the stars and planets. You’ve also learned that some technologies are built to help countries fight an enemy in war. The German V-2 rocket is one example of this. You may have learned in social stud- ies class about the cold war between the United States and the for- mer Soviet Union. There was no fighting with guns or bombs. However, these countries deeply mistrusted each other and became very competitive. They tried to outdo and intimidate each other. This competition thrust these countries into a space race, which was a race to be the first to put satellites and humans into space. Figure 5.57 Space shuttle Atlantis Topic 8 looks at how the desire to go into space drove people to blasts off in 1997 on its way to dock produce technologies that could make space travel a reality. with the Soviet space station Mir. Breaking Free of Earth’s Gravity Although space is only a hundred or so kilometres “up there,” it takes a huge amount of energy to go up and stay up there. The problem is gravity. Imagine throwing a ball as high as you can. Now imagine how hard it would be to throw the ball twice as high or to throw a ball twice as heavy. Gravity always pulls the ball back to Earth.