WO 2016/069591 A2 6 May 2016 (06.05.2016) W P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2016/069591 A2 6 May 2016 (06.05.2016) W P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/069591 A2 6 May 2016 (06.05.2016) W P O P C T (51) International Patent Classification: (74) Agents: KOWALSKI, Thomas, J. et al; Vedder Price C12N 15/10 (2006.01) C12N 15/90 (2006.01) P.C., 1633 Broadway, New York, NY 1001 9 (US). C12N 15/63 (2006.01) C12Q 1/68 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: kind of national protection available): AE, AG, AL, AM, PCT/US2015/057567 AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (22) International Filing Date: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 27 October 2015 (27.10.201 5) HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (25) Filing Language: English KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (26) Publication Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/122,686 27 October 2014 (27. 10.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: THE BROAD INSTITUTE INC. [US/US]; (84) Designated States (unless otherwise indicated, for every 415 Main Street, Cambridge, MA 02142 (US). MAS¬ kind of regional protection available): ARIPO (BW, GH, SACHUSETTS INSTITUTE OF TECHNOLOGY GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, [US/US]; 77 Massachusetts Ave., Cambridge, MA 02142 TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventor: HEIMAN, Myriam; 33 Eliot Memorial Road, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Newton, MA 02458 (US). SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). [Continued on nextpage] (54) Title: COMPOSITIONS, METHODS AND USE OF SYNTHETIC LETHAL SCREENING (57) Abstract: The present invention generally relates to methods of identify ing modulators of central nervous sys tem diseases and the use of the modul ators in treatment and diagnosis. The Lentiviral libra methods utilize a novel high through put screen that includes injection of a library of barcoded viral vectors ex pressing shRNA's, CRISPR/Cas sy s tems or cDNA's into animal models of disease and detecting synthetic lethal ity. w o 2016/069591 A : llll II II 11III III II II I II 11II IIII II I II Published: — without international search report and to be republished upon receipt of that report (Rule 48.2(g)) COMPOSITIONS, METHODS AND USE OF SYNTHETIC LETHAL- SCREENING RELATED APPLICATIONS AND INCORPORATION BY REFERENCE [00 This application claims benefit of and priority to US provisional patent application Serial No. 62/122,686, filed October 27, 2014. [0002] The foregoing applications, and all documents cited therein or during their prosecution ("appln cited documents") and all documents cited or referenced in the app n cited documents, and all documents cited or referenced herein ("herein cited documents"), and all documents cited or referenced in herein cited documents, together with any manufacturer's instructions, descriptions, product specifications, and product sheets for any products mentioned herein or in any document incorporated by reference herein, are hereby incorporated herein by reference, and may be employed in the practice of the invention. More specifically, all referenced documents are incorporated by reference to the same extent as if each individual document was specifically and individually indicated to be incorporated by reference. FEDER AL FUNDING LEGEND [0003] This invention was made with government support under grant number N808588Q awarded by the National Institutes of Health. The government has certain rights in the invention. FIELD OF THE INVENTION [0004] The present invention generally relates to methods of identifying modulators of central nervous system diseases using a novel high throughput methodology that includes expressing CRISPR/Cas systems, shRNA's or cDNA's in animalmodels of disease. BACKGROUND OF THE INVENTION [0005] Currently there are no cures or effective treatments for many neurodegenerative diseases. All of the major neurodegenerative diseases display characteristic nerve-cell (neuronal ) vulnerability patterns, as well as an increased prevalence with advanced age. Many genes are involved in the pathogenesis of such diseases. As such, it is a challenge to find genes that are modulators of disease pathogenesis that can be used for diagnostic screening or effective treatments. [0 06] One such disease is Huntington's Disease. Huntington's disease, the most common inherited neurodegenerative disease, is characterized by a dramatic loss of deep-layer cortical I and striatal neurons, as well as morbidity in mid-life. Huntington's disease is the most common genetic cause of abnormal involuntary writhing movements called chorea. [ ΘΘ7] Symptoms of the disease can vary between individuals and even among affected members of the same family, but usually progress predictably. The earliest symptoms are often subtle problems with mood or cognition. A general lack of coordination and an unsteady gait often follows. As the disease advances, uncoordinated, jerky body movements become more apparent, along with a decline in mental abilities and behavioral symptoms. Physical abilities are gradually impeded until coordinated movement becomes very difficult. Mental abilities generally decline into dementia. Complications such as pneumonia, heart disease, and physical injury from fa ls reduce life expectancy to around twenty years from the point at which symptoms begin. There is no cure for Huntington's disease, and full-time care is required in the later stages of the disease. [0008] Treatments for Huntington's disease are available to reduce the severity of some of its symptoms (Frank et al., (2010) Drugs 70 (5): 561-71). Tetrabenazine was approved in 2008 for treatment of chorea in Huntington's disease in the United States. Other drugs that help to reduce chorea include neuroleptics and benzodiazepines. Compounds such as amantadine are still under investigation but have shown preliminary positive results (Walker, (2007) Lancet 369 (9557): 218-28). Hypokinesia and rigidity, especially in juvenile cases, can be treated with anti- Parkinson drugs, and myoclonic hyperkinesia can be treated with valproic acid. [0009] Huntington's disease is caused by a mutation in the Huntingtin gene. Expansion of a CAG (eytosme-adeiime-guamne) triplet repeat stretch within the Huntingtin gene results in a mutant form of the protein, whi c gradually damages cells in the brain, through mechanisms that are not fully understood. The length of the trinucleotide repeat accounts for 60% of the variation in the age symptoms appear and the rate they progress. The remaining variation is due to environmental factors and other genes that influence the mechanism of the disease (Walker, (2007) Lancet 369 (9557): 218-28). [0010] The diagnosis of Huntington's disease is suspected clinically in the presence of symptoms. The diagnosis can be confirmed through molecular genetic testing which identifies the expansion in the Huntingtin gene. Testing of adults at risk for Huntington disease who have no symptoms (asymptomatic) of the disease has been available for over ten years. However, this testing cannot accurately predict the age a person found to carry a Huntington disease causing mutation will begin experiencing symptoms, the severity or type of symptoms they will experience, or rate of disease progression. Other markers for disease progression are available, for example, loss of DARPP-32 striatal expression has been shown to be a molecular marker of Huntington's disease progression (Bibb et a!., (2000) Proc Natl Acad Sci 6;97(12):6809-14). [ ΘΙ 1] Human genetic studies led to the identification of huntingtin as the causative gene. Recent genomic advances have also led to the identification of hundreds of potential interacting partners for huntingtin protein, and many hypotheses as to the molecular mechanisms whereby mutant huntingtin leads to cellular dysfunction and death (Goehler et al., (2004) Mo . Cell 15 (6): 853-65). Huntingtin protein is expressed in all mammalian cells and interacts with proteins which are involved in transcription, cell signaling and intracellular transporting (Harjes et al., (2003) Trends Biochem. Sci. 28 (8): 425-33). However, the multitude of possible interacting partners and cellular pathways affected by mutant huntingtin has obfuscated research seeking to understand the etiology of this disease, and to date no curative therapeutic exists for the disease. [ Θ12] A high throughput screening method to discover modulators of diseases such as Huntington's disease, is a powerful tool to identify new drug targets, new prognostic methods, and new treatments. [0013] Citation or identification of any document i this application is not an admission that such document is available as prior art to the present invention. SUMMARY OF THE INVENTION [0Θ14] It is an object of the invention to provide a genetic screening platform that could be used in mammals to identify modulators of diseases of the central nervous system. It is another object of the invention that the modulators are used in treatments,
Recommended publications
  • Increased Nuchal Translucency Precision Panel
    Increased Nuchal Translucency Precision Panel Overview Increased Nuchal Translucency (NT) is defined as an abnormal accumulation of fluid in the nuchal area, which is visualized as a thickened sonolucent area. It is a standardized measure obtained between 11 and 14 weeks of gestation to calculate the risk of a fetus being affected by a chromosomal aneuploidy. NT>3.5mm has been found to be associated with fetal chromosomal abnormalities and single-gene disorders as well as cardiac defects and other structural abnormalities in euploid and aneuploid fetuses. Proportionally as NT increases, even with a normal karyotype, there is a higher risk of adverse pregnancy outcomes such as miscarriage, intrauterine death, congenital heart defects and numerous other structural and genetic syndromes. There is not one single cause of increased NT, it is based on a complex and multifactorial process, linked to one or more embryonic processes. It has been shown that a persistently increased NT with a normal karyotype and aCGH has a 4-10% probability of being associated to Noonan Syndrome and/or other RASopathies using Whole Exome Sequencing (WES). However, the general tendency following detection of isolated enlarged NT in an euploid fetus is that most babies with normal detailed ultrasound examination and echocardiography will have uneventful outcomes. The Igenomix Increased Nuchal Translucency Precision Panel can be used to make a directed and accurate prenatal differential diagnosis of increased nuchal translucency in patients with or without a normal karyotype ultimately leading to a better management and prognosis of the associated comorbidities. It provides a comprehensive analysis of the genes involved in this disease using next-generation sequencing (NGS) to fully understand the spectrum of relevant genes involved.
    [Show full text]
  • POEMS Syndrome: an Atypical Presentation with Chronic Diarrhoea and Asthenia
    European Journal of Case Reports in Internal Medicine POEMS Syndrome: an Atypical Presentation with Chronic Diarrhoea and Asthenia Joana Alves Vaz1, Lilia Frada2, Maria Manuela Soares1, Alberto Mello e Silva1 1 Department of Internal Medicine, Egas Moniz Hospital, Lisbon, Portugal 2 Department of Gynecology and Obstetrics, Espirito Santo Hospital, Evora, Portugal Doi: 10.12890/2019_001241 - European Journal of Case Reports in Internal Medicine - © EFIM 2019 Received: 28/07/2019 Accepted: 13/11/2019 Published: 16/12/2019 How to cite this article: Alves Vaz J, Frada L, Soares MM, Mello e Silva A. POEMS syndrome: an atypical presentation with chronic diarrhoea and astenia. EJCRIM 2019;7: doi:10.12890/2019_001241. Conflicts of Interests: The Authors declare that there are no competing interest This article is licensed under a Commons Attribution Non-Commercial 4.0 License ABSTRACT POEMS syndrome is a rare paraneoplastic condition associated with polyneuropathy, organomegaly, monoclonal gammopathy, endocrine and skin changes. We report a case of a man with Castleman disease and monoclonal gammopathy, with a history of chronic diarrhoea and asthenia. Gastrointestinal involvement in POEMS syndrome is not frequently referred to in the literature and its physiopathology is not fully understood. Diagnostic criteria were met during hospitalization but considering the patient’s overall health condition, therapeutic options were limited. Current treatment for POEMS syndrome depends on the management of the underlying plasma cell disorder. This report outlines the importance of a thorough review of systems and a physical examination to allow an attempted diagnosis and appropriate treatment. LEARNING POINTS • POEMS syndrome should be suspected in the presence of peripheral polyneuropathy associated with monoclonal gammopathy; diagnostic workup is challenging and delay in treatment is very common.
    [Show full text]
  • Overexpressed WDR3 Induces the Activation of Hippo Pathway by Interacting with GATA4 in Pancreatic Cancer
    Overexpressed WDR3 Induces the Activation of Hippo Pathway by Interacting with GATA4 in Pancreatic Cancer Wenjie Su Sichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's Hospital Shikai Zhu Sichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's Hospital Kai Chen Sichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's Hospital Hongji Yang Sichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's Hospital Mingwu Tian Sichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's Hospital Qiang Fu Massachusetts General Hospital Ganggang Shi University of British Columbia School of Human Kinetics: The University of British Columbia School of Kinesiology Shijian Feng University of British Columbia School of Human Kinetics: The University of British Columbia School of Kinesiology Dianyun Ren Wuhan Union Hospital Xin Jin Wuhan Union Hospital Chong Yang ( [email protected] ) Sichuan Provincial People's Hospital: Sichuan Academy of Medical Sciences and Sichuan People's Hospital Page 1/34 Research Keywords: Pancreatic Cancer, WDR3, GATA4, YAP1, Hippo Signaling Pathway Posted Date: November 13th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-104564/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on March 1st, 2021. See the published version at https://doi.org/10.1186/s13046-021-01879-w. Page 2/34 Abstract Background: WD repeat domain 3 (WDR3) is involved in a variety of cellular processes including gene regulation, cell cycle progression, signal transduction and apoptosis.
    [Show full text]
  • Variation in Protein Coding Genes Identifies Information
    bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 1 1 2 3 4 5 Variation in protein coding genes identifies information flow as a contributor to 6 animal complexity 7 8 Jack Dean, Daniela Lopes Cardoso and Colin Sharpe* 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Institute of Biological and Biomedical Sciences 25 School of Biological Science 26 University of Portsmouth, 27 Portsmouth, UK 28 PO16 7YH 29 30 * Author for correspondence 31 [email protected] 32 33 Orcid numbers: 34 DLC: 0000-0003-2683-1745 35 CS: 0000-0002-5022-0840 36 37 38 39 40 41 42 43 44 45 46 47 48 49 Abstract bioRxiv preprint doi: https://doi.org/10.1101/679456; this version posted June 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Animal complexity and information flow 2 1 Across the metazoans there is a trend towards greater organismal complexity. How 2 complexity is generated, however, is uncertain. Since C.elegans and humans have 3 approximately the same number of genes, the explanation will depend on how genes are 4 used, rather than their absolute number.
    [Show full text]
  • Download Report 2010-12
    RESEARCH REPORt 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Cover: Aurora borealis paintings by William Crowder, National Geographic (1947). The International Geophysical Year (1957–8) transformed research on the aurora, one of nature’s most elusive and intensely beautiful phenomena. Aurorae became the center of interest for the big science of powerful rockets, complex satellites and large group efforts to understand the magnetic and charged particle environment of the earth. The auroral visoplot displayed here provided guidance for recording observations in a standardized form, translating the sublime aesthetics of pictorial depictions of aurorae into the mechanical aesthetics of numbers and symbols. Most of the portait photographs were taken by Skúli Sigurdsson RESEARCH REPORT 2010—2012 MAX-PLANCK-INSTITUT FÜR WISSENSCHAFTSGESCHICHTE Max Planck Institute for the History of Science Introduction The Max Planck Institute for the History of Science (MPIWG) is made up of three Departments, each administered by a Director, and several Independent Research Groups, each led for five years by an outstanding junior scholar. Since its foundation in 1994 the MPIWG has investigated fundamental questions of the history of knowl- edge from the Neolithic to the present. The focus has been on the history of the natu- ral sciences, but recent projects have also integrated the history of technology and the history of the human sciences into a more panoramic view of the history of knowl- edge. Of central interest is the emergence of basic categories of scientific thinking and practice as well as their transformation over time: examples include experiment, ob- servation, normalcy, space, evidence, biodiversity or force.
    [Show full text]
  • Prevalence and Incidence of Rare Diseases: Bibliographic Data
    Number 1 | January 2019 Prevalence and incidence of rare diseases: Bibliographic data Prevalence, incidence or number of published cases listed by diseases (in alphabetical order) www.orpha.net www.orphadata.org If a range of national data is available, the average is Methodology calculated to estimate the worldwide or European prevalence or incidence. When a range of data sources is available, the most Orphanet carries out a systematic survey of literature in recent data source that meets a certain number of quality order to estimate the prevalence and incidence of rare criteria is favoured (registries, meta-analyses, diseases. This study aims to collect new data regarding population-based studies, large cohorts studies). point prevalence, birth prevalence and incidence, and to update already published data according to new For congenital diseases, the prevalence is estimated, so scientific studies or other available data. that: Prevalence = birth prevalence x (patient life This data is presented in the following reports published expectancy/general population life expectancy). biannually: When only incidence data is documented, the prevalence is estimated when possible, so that : • Prevalence, incidence or number of published cases listed by diseases (in alphabetical order); Prevalence = incidence x disease mean duration. • Diseases listed by decreasing prevalence, incidence When neither prevalence nor incidence data is available, or number of published cases; which is the case for very rare diseases, the number of cases or families documented in the medical literature is Data collection provided. A number of different sources are used : Limitations of the study • Registries (RARECARE, EUROCAT, etc) ; The prevalence and incidence data presented in this report are only estimations and cannot be considered to • National/international health institutes and agencies be absolutely correct.
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Marche des Maladies Rares – Alliance Maladies Rares Orphanet Report Series Rare Diseases collection DecemberOctober 2013 2009 List of rare diseases and synonyms Listed in alphabetical order www.orpha.net 20102206 Rare diseases listed in alphabetical order ORPHA ORPHA ORPHA Disease name Disease name Disease name Number Number Number 289157 1-alpha-hydroxylase deficiency 309127 3-hydroxyacyl-CoA dehydrogenase 228384 5q14.3 microdeletion syndrome deficiency 293948 1p21.3 microdeletion syndrome 314655 5q31.3 microdeletion syndrome 939 3-hydroxyisobutyric aciduria 1606 1p36 deletion syndrome 228415 5q35 microduplication syndrome 2616 3M syndrome 250989 1q21.1 microdeletion syndrome 96125 6p subtelomeric deletion syndrome 2616 3-M syndrome 250994 1q21.1 microduplication syndrome 251046 6p22 microdeletion syndrome 293843 3MC syndrome 250999 1q41q42 microdeletion syndrome 96125 6p25 microdeletion syndrome 6 3-methylcrotonylglycinuria 250999 1q41-q42 microdeletion syndrome 99135 6-phosphogluconate dehydrogenase 67046 3-methylglutaconic aciduria type 1 deficiency 238769 1q44 microdeletion syndrome 111 3-methylglutaconic aciduria type 2 13 6-pyruvoyl-tetrahydropterin synthase 976 2,8 dihydroxyadenine urolithiasis deficiency 67047 3-methylglutaconic aciduria type 3 869 2A syndrome 75857 6q terminal deletion 67048 3-methylglutaconic aciduria type 4 79154 2-aminoadipic 2-oxoadipic aciduria 171829 6q16 deletion syndrome 66634 3-methylglutaconic aciduria type 5 19 2-hydroxyglutaric acidemia 251056 6q25 microdeletion syndrome 352328 3-methylglutaconic
    [Show full text]
  • Mackenzie's Mission Gene & Condition List
    Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child.
    [Show full text]
  • Mackenzie's Mission Gene & Condition List
    Mackenzie’s Mission Gene & Condition List What conditions are being screened for in Mackenzie’s Mission? Genetic carrier screening offered through this research study has been carefully developed. It is focused on providing people with information about their chance of having children with a severe genetic condition occurring in childhood. The screening is designed to provide genetic information that is relevant and useful, and to minimise uncertain and unclear information. How the conditions and genes are selected The Mackenzie’s Mission reproductive genetic carrier screen currently includes approximately 1300 genes which are associated with about 750 conditions. The reason there are fewer conditions than genes is that some genetic conditions can be caused by changes in more than one gene. The gene list is reviewed regularly. To select the conditions and genes to be screened, a committee comprised of experts in genetics and screening was established including: clinical geneticists, genetic scientists, a genetic pathologist, genetic counsellors, an ethicist and a parent of a child with a genetic condition. The following criteria were developed and are used to select the genes to be included: • Screening the gene is technically possible using currently available technology • The gene is known to cause a genetic condition • The condition affects people in childhood • The condition has a serious impact on a person’s quality of life and/or is life-limiting o For many of the conditions there is no treatment or the treatment is very burdensome for the child and their family. For some conditions very early diagnosis and treatment can make a difference for the child.
    [Show full text]
  • Whole Exome Sequencing Gene Package Intellectual Disability, Version 9.1, 31-1-2020
    Whole Exome Sequencing Gene package Intellectual disability, version 9.1, 31-1-2020 Technical information DNA was enriched using Agilent SureSelect DNA + SureSelect OneSeq 300kb CNV Backbone + Human All Exon V7 capture and paired-end sequenced on the Illumina platform (outsourced). The aim is to obtain 10 Giga base pairs per exome with a mapped fraction of 0.99. The average coverage of the exome is ~50x. Duplicate and non-unique reads are excluded. Data are demultiplexed with bcl2fastq Conversion Software from Illumina. Reads are mapped to the genome using the BWA-MEM algorithm (reference: http://bio-bwa.sourceforge.net/). Variant detection is performed by the Genome Analysis Toolkit HaplotypeCaller (reference: http://www.broadinstitute.org/gatk/). The detected variants are filtered and annotated with Cartagenia software and classified with Alamut Visual. It is not excluded that pathogenic mutations are being missed using this technology. At this moment, there is not enough information about the sensitivity of this technique with respect to the detection of deletions and duplications of more than 5 nucleotides and of somatic mosaic mutations (all types of sequence changes). HGNC approved Phenotype description including OMIM phenotype ID(s) OMIM median depth % covered % covered % covered gene symbol gene ID >10x >20x >30x A2ML1 {Otitis media, susceptibility to}, 166760 610627 66 100 100 96 AARS1 Charcot-Marie-Tooth disease, axonal, type 2N, 613287 601065 63 100 97 90 Epileptic encephalopathy, early infantile, 29, 616339 AASS Hyperlysinemia,
    [Show full text]
  • Tracheobronchial Stenosis in Keutel Syndrome
    C O R R E S P O N D E N C E Tracheobronchial Stenosis in Keutel Syndrome Keutel syndrome is characterized by brachytelephalangism, abnormal cartilage calcification, peripheral pulmonary stenoses, and midfacial hypoplasia. We report the first case from East Asia in an 8-month-old boy who had the typical craniofacial appearance characterized by midfacial hypoplasia with a broad depressed nasal bridge (Fig. 1). The distal phalanges of fingers were thickened. Auscultation FIG.1 Midface hypoplasia is present with a depressed nasal revealed a grade 2-3/6 systolic murmur over heart, bridge and small nose. pronounced in the second and third intercostal space, and an inspiratory and expiratory stridor and wheezing over both lungs. Chest radiograph and computed tomography alternative to surgical resection. Endoscopy has been showed tracheobronchial cartilage calcification and suggested as the first choice for simple stenosis, and tracheobronchial stenosis, confirmed on bronchoscopy. success rate of 96% has been reported. So far, this Echocardiography revealed peripheral pulmonary approach has rarely been used in children. Our patient stenosis. accepted bronchoscopic cryotherapy and balloon dilatation four times, and the diameter of the subglottic Keutel syndrome is a rare autosomal recessive laryngeal stenosis was expanded from 3 mm to 4.5 mm. disease, with 27 reported cases from 19 families in The clinical symptoms improved after endoscopy, but he several countries; mostly from the Middle East. All of died of lung reinfection three weeks after discharge from them showed tracheobronchial calcification, and five of our hospital. them had stenosis of the tracheobronchial tree [1,2]. Our LI-FENG SUN AND XING CHEN, patient is the fifth patient with tracheobronchial stenosis, Department of Pediatrics, Provincial Hospital Affiliated to which should be emphasized as another remarkable Shandong University, Jinan, 250021, China.
    [Show full text]
  • Orphanet Report Series Rare Diseases Collection
    Orphanet Report Series Rare Diseases collection January 2013 Disease Registries in Europe www.orpha.net 20102206 Table of contents Methodology 3 List of rare diseases that are covered by the listed registries 4 Summary 13 1- Distribution of registries by country 13 2- Distribution of registries by coverage 14 3- Distribution of registries by affiliation 14 Distribution of registries by country 15 European registries 38 International registries 41 Orphanet Report Series - Disease Registries in Europe - January 2013 2 http://www.orpha.net/orphacom/cahiers/docs/GB/Registries.pdf Methodology Patient registries and databases constitute key instruments to develop clinical research in the field of rare diseases (RD), to improve patient care and healthcare planning. They are the only way to pool data in order to achieve a sufficient sample size for epidemiological and/or clinical research. They are vital to assess the feasibility of clinical trials, to facilitate the planning of appropriate clinical trials and to support the enrolment of patients. Registries of patients treated with orphan drugs are particularly relevant as they allow the gathering of evidence on the effectiveness of the treatment and on its possible side effects, keeping in mind that marketing authorisation is usually granted at a time when evidence is still limited although already somewhat convincing. This report gather the information collected by Orphanet so far, regarding systematic collections of data for a specific disease or a group of diseases. Cancer registries are listed only if they belong to the network RARECARE or focus on a rare form of cancer. The report includes data about EU countries and surrounding countries participating to the Orphanet consortium.
    [Show full text]