Grade 11 Art

Total Page:16

File Type:pdf, Size:1020Kb

Grade 11 Art Robert Land Academy 11 Art – December Stand-down Homework Capt. Aoki Mandatory Assignment: 1) Read the article “Perspective” Answer worksheet questions. 1 AVI3M Grade 11 Art Capt Aoki Worksheet for article “Perspective” 1) What is the definition of perspective in the graphic arts? 2) What are two characteristic features of perspective? 3) What is the basic concept of perspective? 4) Name 3 concepts that are commonly associated with perspective. 2 5) What is foreshortening? 6) What is a horizon line? 7) What is a vanishing point? 8) What assumption does a perspective drawing make of the viewing distance from the drawing? 9) Before perspective, how did paintings and drawings size objects? 10) Who defined the optical basis of perspective? 11) When was the optical basis of perspective defined? 3 12) Who demonstrated the geometrical method of perspective? 13) When was the geometrical method of perspective demonstrated? 14) According to Vasari, what was Brunelleschi’s demonstration of perspective? 15) What method was used extensively during the Quattrocento to show perspective in paintings and sculpture? 16) Who first published a treatise on the proper methods of perspective? 17) What was Alberti’s primary breakthrough concerning perspective? 4 18) Why did Leonardo da Vinci distrust Brunelleschi’s formulation of perspective? 19) What type of image has zero-point perspective? 5 Perspective A cube in two-point perspective. Rays of light travel from the object, through the picture plane, and to the viewer's eye. This is the basis for graphical perspective. Perspective (from Latin perspicere, to see clearly) in the graphic arts, such as drawing, is an approximate representation, on a flat surface (such as paper), of an image as it is perceived by the eye. The two most characteristic features of perspective are: . Objects are drawn smaller as their distance from the observer increases . The distortion of items when viewed at an angle (spatial foreshortening) In art, the term "foreshortening" is often used synonymously with perspective, even though foreshortening can occur in other types of non-perspective drawing representations (such as oblique parallel projection). 6 Basic concept Perspective works by representing the light that passes from a scene, through an imaginary rectangle (the painting), to the viewer's eye. It is similar to a viewer looking through a window and painting what is seen directly onto the windowpane. If viewed from the same spot as the windowpane was painted, the painted image would be identical to what was seen through the unpainted window. Each painted object in the scene is a flat, scaled down version of the object on the other side of the window. Because each portion of the painted object lies on the straight line from the viewer's eye to the equivalent portion of the real object it represents, the viewer cannot perceive (sans depth perception) any difference between the painted scene on the windowpane and the view of the real scene. Related concepts Some concepts that are commonly associated with perspectives include: . foreshortening . horizon line . vanishing points All perspective drawings assume a viewer is a certain distance away from the drawing. Objects are scaled relative to that viewer. Additionally, an object is often not scaled evenly: a circle often appears as an ellipse and a square can appear as a trapezoid. This distortion is referred to as foreshortening. Perspective drawings typically have an (often implied) horizon line. This line, directly opposite the viewer's eye, represents objects infinitely far away. They have shrunk, in the distance, to the infinitesimal thickness of a line. It is analogous to (and named after) the Earth's horizon. Any perspective representation of a scene that includes parallel lines has one or more vanishing points in a perspective drawing. A one-point perspective drawing means that the drawing has a single vanishing point, usually (though not necessarily) directly opposite the viewer's eye and usually (though not necessarily) on the horizon line. All lines parallel with the viewer's line of sight recede to the horizon towards this vanishing point. This is the standard "receding railroad tracks" phenomenon. A two-point drawing would have lines parallel to two different angles. Any number of vanishing points are possible in a drawing, one for each set of parallel lines that are at an angle relative to the plane of the drawing. Perspectives consisting of many parallel lines are observed most often when drawing architecture (architecture frequently uses lines parallel to the x, y, and z axes). Because it 7 is rare to have a scene consisting solely of lines parallel to the three Cartesian axes (x, y, and z), it is rare to see perspectives in practice with only one, two, or three vanishing points; Even a simple house frequently has a peaked roof which results in a minimum of five sets of parallel lines, in turn corresponding to up to five vanishing points. In contrast, natural scenes often do not have any sets of parallel lines. Such a perspective would thus have no vanishing points. History of perspective Early history Evolution of Perspective Before perspective, paintings and drawings typically sized objects and characters according to their spiritual or thematic importance, not with distance. Especially in Medieval art, art was meant to be read as a group of symbols, rather than seen as a coherent picture. The only method to show distance was by overlapping characters. Overlapping alone made poor drawings of architecture; medieval paintings of cities are a hodgepodge of lines in every direction. With the exception of dice, heraldry typically ignores perspective in the treatment of charges, though sometimes in later centuries charges are specified as in perspective. Illustration from the Old French translation of Guillaume de Tyr's Histoire d'Outremer, approx 1200-1300 AD. The lines on either side of the temple should, when continued, meet at the same point. They do not. 8 The optical basis of perspective was defined in the year 1000, when the Persian mathematician and philosopher Alhazen, in his Perspectiva, first explained that light projects conically into the eye. This was, theoretically, enough to translate objects convincingly onto a painting, but Alhalzen was concerned only with optics, not with painting. Conical translations are mathematically difficult, so a drawing constructed using them would be incredibly time consuming. The artist Giotto di Bondone first attempted drawings in perspective using an algebraic method to determine the placement of distant lines. The problem with using a linear ratio in this manner is that the apparent distance between a series of evenly spaced lines actually falls off with a sine dependence. To determine the ratio for each succeeding line, a recursive ratio must be used. This was not discovered until the 20th Century, in part by Erwin Panofsky. One of Giotto's first uses of his algebraic method of perspective was Jesus Before the Caïf. Although the picture does not conform to the modern, geometrical method of perspective, it does give a decent illusion of depth, and was a large step forward in Western art. Mathematical basis for perspective One hundred years later, in the early 1400s, Filippo Brunelleschi demonstrated the geometrical method of perspective, used today by artists, by painting the outlines of various Florentine buildings onto a mirror. When the building's outline was continued, he noticed that all of the lines converged on the horizon line. According to Vasari, he then set up a demonstration of his painting of the Baptistry in the incomplete doorway of the Duomo. He had the viewer look through a small hole on the back of the painting, facing the Baptistry. He would then set up a mirror, facing the viewer, which reflected his painting. To the viewer, the painting of the Baptistry and the Baptistry itself were nearly indistinguishable. Soon after, nearly every artist in Florence used geometrical perspective in their paintings, notably Donatello, who started sculpting elaborate checkerboard floors into the simple manger portrayed in the birth of Christ. Although hardly historically accurate, these checkerboard floors obeyed the primary laws of geometrical perspective: all lines converged to a vanishing point, and the rate at which the horizontal lines receded into the distance was graphically determined. This became an integral part of Quattrocento art. Not only was perspective a way of showing depth, it was also a new method of composing a painting. Paintings began to show a single, unified scene, rather than a combination of several. As shown by the quick proliferation of accurate perspective paintings in Florence, Brunelleschi likely understood (with help from his friend the mathematician Toscanelli), but did not publish, the mathematics behind perspective. Decades later, his friend Leon Battista Alberti wrote Della Pittura, a treatise on proper methods of showing distance in painting. Alberti's primary breakthrough was not to show the mathematics in terms of conical projections, as it actually appears to the eye. Instead, he formulated the theory 9 based on planar projections, or how the rays of light, passing from the viewer's eye to the landscape, would strike the picture plane (the painting). He was then able to calculate the apparent height of a distant object using two similar triangles. The mathematics behind congruent triangles is relatively simple, having been long ago formulated by Euclid. In viewing a wall, for instance, the first triangle has a vertex at the user's eye, and vertices at the top and bottom of the wall. The bottom of this triangle is the distance from the viewer to the wall. The second, similar triangle, has a point at the viewer's eye, and has a length equal to the viewer's eye from the painting. The height of the second triangle can then be determined through a simple ratio, as proven by Euclid.
Recommended publications
  • CHAPTER 6 PICTORIAL SKETCHING 6-1Four Types of Projections
    CHAPTER 6 PICTORIAL SKETCHING 6-1Four Types of Projections Types of Projections 6-2 Axonometric Projection As shown in figure below, axonometric projections are classified as isometric projection (all axes equally foreshortened), dimetric projection (two axes equally shortened), and trimetric projection (all three axes foreshortened differently, requiring different scales for each axis). (cont) Figures below show the contrast between an isometric sketch (i.e., drawing) and an isometric projection. The isometric projection is about 25% larger than the isometric projection, but the pictorial value is obviously the same. When you create isometric sketches, you do not always have to make accurate measurements locating each point in the sketch exactly. Instead, keep your sketch in proportion. Isometric pictorials are great for showing piping layouts and structural designs. Step by Step 6.1. Isometric Sketching 6-4 Normal and Inclined Surfaces in Isometric View Making an isometric sketch of an object having normal surfaces is shown in figure below. Notice that all measurements are made parallel to the main edges of the enclosing box – that is, parallel to the isometric axes. (cont) Making an isometric sketch of an object that has inclined surfaces (and oblique edges) is shown below. Notice that inclined surfaces are located by offset, or coordinate measurements along the isometric lines. For example, distances E and F are used to locate the inclined surface M, and distances A and B are used to locate surface N. 6-5 Oblique Surfaces in Isometric View Oblique surfaces in isometric view may be drawn by finding the intersections of the oblique surfaces with isometric planes.
    [Show full text]
  • Technical Drawing School of Art, Design and Architecture Sarah Adeel | Nust – Spring 2011 the Ability to ’Document Imagination’
    technical drawing school of art, design and architecture sarah adeel | nust – spring 2011 the ability to ’document imagination’. a mean to design reasoning spring 2011 perspective drawings technical drawing - perspective What is perspective drawing? Perspective originally comes from Latin word per meaning “through” and specere which means “to look.” These are combined to mean “to look through” or “to look at.” Intro to technical drawing perspective technical drawing - perspective What is perspective drawing? The “art definition” of perspective specifically describes creating the appearance of distance into our art. With time, the most typical “art definition” of perspective has evolved into “the technique of representing a three-dimensional image on a two-dimensional Intro to technical drawing surface.” perspective technical drawing - perspective What is perspective drawing? Perspective is about establishing “an eye” in art through which the audience sees. By introducing a sense of depth, space and an extension of reality into art is created, enhancing audience’s participation with it. When things appear more real, they become real to the senses. Intro to technical drawing perspective technical drawing - perspective What are the ingredients of perspective drawing? Any form consists of only three basic things: • it has size or amount • it covers distance • it extends in different directions Intro to technical drawing perspective technical drawing - perspective Everyday examples of perspective drawing Photography is an example of perspectives. In photos scenes are captured having depth, height and distance. Intro to technical drawing perspective technical drawing - perspective What is linear perspective drawing? Linear Perspective: Based on the way the human eye sees the world.
    [Show full text]
  • Orthographic and Perspective Projection—Part 1 Drawing As
    I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S From 3D to 2D: Orthographic and Perspective Projection—Part 1 •History • Geometrical Constructions 3D Viewing I • Types of Projection • Projection in Computer Graphics Andries van Dam September 15, 2005 3D Viewing I Andries van Dam September 15, 2005 3D Viewing I 1/38 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Drawing as Projection Early Examples of Projection • Plan view (orthographic projection) from Mesopotamia, 2150 BC: earliest known technical • Painting based on mythical tale as told by Pliny the drawing in existence Elder: Corinthian man traces shadow of departing lover Carlbom Fig. 1-1 • Greek vases from late 6th century BC show perspective(!) detail from The Invention of Drawing, 1830: Karl Friedrich • Roman architect Vitruvius published specifications of plan / elevation drawings, perspective. Illustrations Schinkle (Mitchell p.1) for these writings have been lost Andries van Dam September 15, 2005 3D Viewing I 2/38 Andries van Dam September 15, 2005 3D Viewing I 3/38 1 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Most Striking Features of Linear Early Perspective Perspective • Ways of invoking three dimensional space: shading • || lines converge (in 1, 2, or 3 axes) to vanishing point suggests rounded, volumetric forms; converging lines suggest spatial depth
    [Show full text]
  • Cylindrical Anamorphic Images –A Digital Method of Generation
    ANDRZEJ ZDZIARSKI, MARCIN JONAK* CYLINDRICAL ANAMORPHIC IMAGES –A DIGITAL METHOD OF GENERATION CYFROWA METODA GENEROWANIA ANAMORFICZNYCH OBRAZÓW WALCOWYCH Abstract The aim of this paper is to present a practical construction for some cylindrical anamorphic images. The method is based on the analytic properties of reflective anamorphic image construction – topics which have been discussed in previous papers. This time, the authors deal with the analytical analysis of a transformation that is applied in order to obtain an anamorphic image, and provide an innovative digital notation of the reflective transformation discussed. The analytical model described here allows us to generate a cylindrical anamorphic image of any object that is represented in the form of a set of parametric equations. Some example anamorphic images together with their counter-images reflected in the surface of a cylindrical mirror will be presented here. The method of construction described enables the development of any design project of an anamorphic image in the urban planning environment and within the interiors of public spaces. Keywords: transformation, anamorphic image, visualization of an anamorphic image, reflective cylinder Streszczenie Niniejszy artykuł przedstawia praktyczną metodę konstruowania obrazów anamorficznych w oparciu o własności analityczne dla anamorf refleksyjnych. Praca jest kontynuacją zagadnień związanych z okre- śleniem geometrycznych zasad powstawania obrazów anamorficznych na bazie obrazu rzeczywistego, na- tomiast prezentuje ona analityczne przekształcenie oraz innowacyjny cyfrowy zapis takich obrazów. Tak więc opracowany model analityczny pozwala generować obrazy anamorficzne dowolnych projektowanych obiektów zapisanych w formie równań parametrycznych. Przykładowe anamorfy zaprezentowano wraz z ich obrazami restytuowanymi za pomocą prototypowego zwierciadła walcowego. Powyższe rozwiązania dają możliwość precyzyjnego projektowania obrazów anamorficznych w zurbanizowanej przestrzeni miej- skiej oraz architektonicznych wnętrzach przestrzeni publicznej.
    [Show full text]
  • CS 4204 Computer Graphics 3D Views and Projection
    CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: * Topic we’ve already discussed • *Define object in local coordinates • *Place object in world coordinates (modeling transformation) Viewing: • Define camera parameters • Find object location in camera coordinates (viewing transformation) Projection: project object to the viewplane Clipping: clip object to the view volume *Viewport transformation *Rasterization: rasterize object Simple teapot demo 3D rendering pipeline Vertices as input Series of operations/transformations to obtain 2D vertices in screen coordinates These can then be rasterized 3D rendering pipeline We’ve already discussed: • Viewport transformation • 3D modeling transformations We’ll talk about remaining topics in reverse order: • 3D clipping (simple extension of 2D clipping) • 3D projection • 3D viewing Clipping: 3D Cohen-Sutherland Use 6-bit outcodes When needed, clip line segment against planes Viewing and Projection Camera Analogy: 1. Set up your tripod and point the camera at the scene (viewing transformation). 2. Arrange the scene to be photographed into the desired composition (modeling transformation). 3. Choose a camera lens or adjust the zoom (projection transformation). 4. Determine how large you want the final photograph to be - for example, you might want it enlarged (viewport transformation). Projection transformations Introduction to Projection Transformations Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane.
    [Show full text]
  • From 3D to 2D: Orthographic and Perspective Projection—Part 1
    INTRODUCTION TO COMPUTER GRAPHICS INTRODUCTION TO COMPUTER GRAPHICS From 3D to 2D: Orthographic and Perspective Projection—Part 1 Drawing as Projection • A painting based on a mythical tale as told by Pliny the Elder: a Corinthian maiden traces the shadow of her departing lover. • History • Geometrical Constructions • Types of Projection • Projection in Computer Graphics detail from The Invention of Drawing, 1830: Karl Friedrich Schinkle (Mitchell p.1) Andries van Dam September 17, 1998 3D Viewing I 1/31 Andries van Dam September 17, 1998 3D Viewing I 2/31 INTRODUCTION TO COMPUTER GRAPHICS INTRODUCTION TO COMPUTER GRAPHICS Early Examples of Projection Early Perspective • Plan from Mesopotamia, 2150BC is earliest • Ways of invoking three dimensional space: known technical drawing in existence. rounded, volumetric forms suggested by shading, spatial depth of room suggested by • Greek vases from late 6th century BC show converging lines. perspective(!) • Not systematic—lines do not converge to a • Vitruvius, a Roman architect published single “vanishing” point. specifications of plan and elevation drawings, and perspective. Illustrations for these writings have been lost. Giotto, Confirmation of the rule of Saint Francis, c.1325 (Kemp p.8) Carlbom Fig. 1-1 Andries van Dam September 17, 1998 3D Viewing I 3/31 Andries van Dam September 17, 1998 3D Viewing I 4/31 INTRODUCTION TO COMPUTER GRAPHICS INTRODUCTION TO COMPUTER GRAPHICS Setting for “Invention” of Brunelleschi Perspective Projection • Invented systematic method of determining perspective projections in early 1400’s. • The Renaissance: new emphasis on Evidence that he created demonstration importance of individual point of view and panels, with specific viewing constraints for interpretation of world, power of complete accuracy of reproduction.
    [Show full text]
  • Bridges Conference Paper
    Bridges 2020 Conference Proceedings Dürer Machines Running Back and Forth António Bandeira Araújo Universidade Aberta, Lisbon, Portugal; [email protected] Abstract In this workshop we will use Dürer machines, both physical (made of thread) and virtual (made of lines) to create anamorphic illusions of objects made up of simple boxes, these being the building blocks for more complex illusions. We will consider monocular oblique anamorphosis and then anaglyphic anamorphoses, to be seen with red-blue 3D glasses. Introduction In this workshop we will draw optical illusions – anamorphoses – using simple techniques of orthographic projection derived from descriptive geometry. The main part of this workshop will be adequate for anyone over 15 years of age with an interest in visual illusions, but it is especially useful for teachers of perspective and descriptive geometry. In past editions of Bridges and elsewhere at length [1, 6] I have argued that anamorphosis is a more fundamental concept than perspective, and is in fact the basic concept from which all conical perspectives – both linear and curvilinear – are derived, yet in those past Bridges workshops I have used anamorphosis only implicitly, in the creation of fisheye [4] and equirectangular [3] perspectives . This time we will instead focus on a sequence of constructions of the more traditional anamorphoses: the so-called oblique anamorphoses, that is, plane anamorphoses where the object of interest is drawn at a grazing angle to the projection plane. This sequence of constructions has been taught at Univ. Aberta in Portugal since 2013 in several courses to diverse publics; it is currently part of a course for Ph.D.
    [Show full text]
  • The Baroque in Games: a Case Study of Remediation
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Spring 2020 The Baroque in Games: A Case Study of Remediation Stephanie Elaine Thornton San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Thornton, Stephanie Elaine, "The Baroque in Games: A Case Study of Remediation" (2020). Master's Theses. 5113. DOI: https://doi.org/10.31979/etd.n9dx-r265 https://scholarworks.sjsu.edu/etd_theses/5113 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. THE BAROQUE IN GAMES: A CASE STUDY OF REMEDIATION A Thesis Presented to The Faculty of the Department of Art History and Visual Culture San José State University In Partial Fulfillment of the Requirements for the Degree Masters of Arts By Stephanie E. Thornton May 2020 © 2020 Stephanie E. Thornton ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled THE BAROQUE IN GAMES: A CASE STUDY OF REMEDIATION by Stephanie E. Thornton APPROVED FOR THE DEPARTMENT OF ART HISTORY AND VISUAL CULTURE SAN JOSÉ STATE UNIVERSITY May 2020 Dore Bowen, Ph.D. Department of Art History and Visual Culture Anthony Raynsford, Ph.D. Department of Art History and Visual Culture Anne Simonson, Ph.D. Emerita Professor, Department of Art History and Visual Culture Christy Junkerman, Ph. D. Emerita Professor, Department of Art History and Visual Culture ABSTRACT THE BAROQUE IN GAMES: A CASE STUDY OF REMEDIATION by Stephanie E.
    [Show full text]
  • Anamorphosis: Optical Games with Perspective’S Playful Parent
    Anamorphosis: Optical games with Perspective's Playful Parent Ant´onioAra´ujo∗ Abstract We explore conical anamorphosis in several variations and discuss its various constructions, both physical and diagrammatic. While exploring its playful aspect as a form of optical illusion, we argue against the prevalent perception of anamorphosis as a mere amusing derivative of perspective and defend the exact opposite view|that perspective is the derived concept, consisting of plane anamorphosis under arbitrary limitations and ad-hoc alterations. We show how to define vanishing points in the context of anamorphosis in a way that is valid for all anamorphs of the same set. We make brief observations regarding curvilinear perspectives, binocular anamorphoses, and color anamorphoses. Keywords: conical anamorphosis, optical illusion, perspective, curvilinear perspective, cyclorama, panorama, D¨urermachine, color anamorphosis. Introduction It is a common fallacy to assume that something playful is surely shallow. Conversely, a lack of playfulness is often taken for depth. Consider the split between the common views on anamorphosis and perspective: perspective gets all the serious gigs; it's taught at school, works at the architect's firm. What does anamorphosis do? It plays parlour tricks! What a joker! It even has a rather awkward dictionary definition: Anamorphosis: A distorted projection or drawing which appears normal when viewed from a particular point or with a suitable mirror or lens. (Oxford English Dictionary) ∗This work was supported by FCT - Funda¸c~aopara a Ci^enciae a Tecnologia, projects UID/MAT/04561/2013, UID/Multi/04019/2013. Proceedings of Recreational Mathematics Colloquium v - G4G (Europe), pp. 71{86 72 Anamorphosis: Optical games.
    [Show full text]
  • Perspective As Ideology
    perspective as ideology Perspective, far from being the ‘way that we naturally see’, is a highly constructed set of visual conventions that charges the visual fi eld — in and out of graphic representation occasions — with ideological mandates and presup- positions. Through the ‘instructive’ function of perspectival scenery in popular culture (print, fi lm, photography, etc.), everyday visual perception carries over the habits introduced by graphic convention. Trained to ‘see’ through ideology, perception creates the categories and identities that are readily fi lled in sense encounters, ‘proving’ the ideological basis to be ‘empirically valid’ although the ‘data’ has been ‘fi xed from the start’. It is possible to use Lacan’s L-scheme to recover the forensic pattern of ideological structuring that creates the ‘uncanny’ reversal of cause and effect so that perception appears to ‘endorse’ ideological signifi cations. 1. the cone of vision In the consolidation of ‘rules of perspective’ for application in draughting and painting, the model of the cone of vision was used to demonstrate how visual rays eminating f from the single, fi xed, open eye (binocularity would not work in perspective) could ‘cut’ imagined through an imaginary or actual picture plane to mark the relative position of objects alternative lying beyond. In this way, objects actually did represent accurately the spherical quality observer of the visual fi eld, where ‘straight’ edges appeared to be curved, as they actually were vanishing point on the surface of the retina. Geometric perspective was used to ‘correct’ this curvature and, by projecting parallel straight lines, locate vanishing points that could subsequently $ be used to regulate other lines parallel to the fi rst.
    [Show full text]
  • Perpective Presentation2.Pdf
    Projections transform points in n-space to m-space, where m<n. Projection is 'formed' on the view plane (planar geometric projection) rays (projectors) projected from the center of projection pass through each point of the models and intersect projection plane. In 3-D, we map points from 3-space to the projection plane (PP) (image plane) along projectors (viewing rays) emanating from the center of projection (COP): TYPES OF PROJECTION There are two basic types of projections: Perspective – center of projection is located at a finite point in three space Parallel – center of projection is located at infinity, all the projectors are parallel Plane geometric projection Parallel Perspective Orthographic Axonometric Oblique Cavalier Cabinet Trimetric Dimetric Single-point Two-point Three-point Isometric PARALLEL PROJECTION • center of projection infinitely far from view plane • projectors will be parallel to each other • need to define the direction of projection (vector) • 3 sub-types Orthographic - direction of projection is normal to view plane Axonometric – constructed by manipulating object using rotations and translations Oblique - direction of projection not normal to view plane • better for drafting / CAD applications ORTHOGRAPHIC PROJECTIONS Orthographic projections are drawings where the projectors, the observer or station point remain parallel to each other and perpendicular to the plane of projection. Orthographic projections are further subdivided into axonom etric projections and multi-view projections. Effective in technical representation of objects AXONOMETRIC The observer is at infinity & the projectors are parallel to each other and perpendicular to the plane of projection. A key feature of axonometric projections is that the object is inclined toward the plane of projection showing all three surfaces in one view.
    [Show full text]
  • Have You Ever Used Two Picture Planes to Draw a Single Perspective View?
    G e n e r a l a r t i c l e have you ever used Two Picture Planes to Draw a Single Perspective View? T o m á S G arc í A S A l gad o Apparently, the use of two picture planes to draw a single view has be a more versatile plane that in addition to representing not been attempted before. Most perspective methods, after Alberti, the appearance of 3D objects would also serve to measure take for granted the use of a single picture plane, disregarding its likely real dimensions? Such a plane, in Modular Perspective [3], use in dual positions. What if two picture planes are necessary to ABSTRACT draw a single view—for example, given a lack of spatial references at can be called the perspective plane (PPL). On the PPL one can ground level to estimate the distance between two objects? This article measure and draw directly the three modular coordinates of demonstrates that to draw the interior of a building from which another all points of interest of any given object in space. In other building can be seen about 190 m away, where the projection of such words, the PPL is a true three-dimensional plane, despite building on the first picture plane would be imprecise, it may be wise to actually being two-dimensional. use a second picture plane. This leads to consideration of how objects In addition, the PPL can be of any size, since all points are change shape as they move away from the viewer.
    [Show full text]