VIEWPOINTS Mathematical Perspective and Fractal Geometry in Art

Total Page:16

File Type:pdf, Size:1020Kb

VIEWPOINTS Mathematical Perspective and Fractal Geometry in Art VIEWPOINTS Mathematical Perspective and Fractal Geometry in Art Marc Frantz Indiana University Annalisa Crannell Franklin & Marshall College Draft, May 19, 2007 Contents Preface v 1 Introduction to Perspective and Space Coordinates 1 Artist Vignette: Sherry Stone Clifton 9 2 Perspective by the Numbers 15 Artist Vignette: Peter Galante 26 3 Vanishing Points and Viewpoints 33 Artist Vignette: Jim Rose 43 4 Rectangles in One-Point Perspective 51 What’s My Line: A Perspective Game 62 5 Two-Point Perspective 67 Artist Vignette: Robert Bosch 85 6 Three-Point Perspective and Beyond 93 Artist Vignette: Dick Termes 116 7 Anamorphic Art 123 Artist Vignette: Teri Wagner 128 8 Fractal Geometry 135 Artist Vignette: Kerry Mitchell 150 iii Preface Origin of the Text Viewpoints is an undergraduate text in mathematics and art suit- able for math-for-liberal-arts courses, mathematics courses for fine art majors, and introductory art classes. Instructors in such courses at more than 25 institutions have already used an earlier online ver- sion of the text, called Lessons in Mathematics and Art. The material in these texts evolved from courses in mathematics and art which we developed in collaboration and taught at our respective institutions. In addition, this material has been tested at, and influenced by, a series of week-long Viewpoints faculty development workshops (see php.indiana.edu/˜mathart/viewpoints). The initial course development and the first Viewpoints workshops were supported by the Indiana University Mathematics Through- out the Curriculum project, the Indiana University Strategic Direc- tions Initiative, Franklin & Marshall College, and the National Sci- ence Foundation (NSF-DUE 9555408). The 2001 workshop was also supported by the Professional Enhancement Program of the Math- ematical Association of America. We are continuing to expand and revise the text as part of a new collaboration between our two in- stitutions, supported by an NSF Educational Materials Development grant (NSF-DUE 0439891). This new project will continue the View- points workshops and result in an expanded text and an instructor’s manual to be published by Princeton University Press. Pedagogical Approach The approach of Viewpoints is highly activity-based, much like the approach of teaching in art school. As many of our workshop graduates will attest, the true value of the material can only be fully appreciated by engaging in these activities, and not by merely read- ing the book. We have endeavored to include problems and activities of genuine interest and value to art students—problems that go sig- v vi Preface nificantly beyond what students normally learn in art school. In our experience the authenticity of the problems makes them genuinely in- teresting, not only to art majors but to students from a broad range of disciplines. We have also endeavored to make sure that the problems are real math problems. Happily, there is a wealth of problems at the bound- ary of mathematics and art having a number excellent pedagogi- cal properties: (1) the problems are natural and easily understood; (2) the problems have multiple solutions of varying difficulty and ap- plicability; (3) the problems admit multiple proofs, both geometric and algebraic; (4) once arrived at, the solutions are easy to remem- ber and rewarding to use; (5) the search for solutions captures the essence of mathematical research and discovery. We have sought to make the problems in this book embody each of these characteristics, at a level that is accessible to every undergraduate student. Special Features As mentioned above, we are developing this text and a separate instructor’s manual for eventual publication by Princeton University Press. Although the manuscript is not near final form for publication, we are already formatting the current version to approximate the look of the finished book. The outline around each page is to help us visualize the planned trim size of 8 × 10 inches. More importantly, we have already started to include a unique fea- ture of the text which we call Artist Vignettes. During the course of our project we have been fortunate to meet a number of professional artists willing to contribute to the book. Each Vignette contains a short biography, an artist’s statement, and some images of the artist’s work. Color images of the artists’ work will also appear in the color plate section. We feel that the input of practicing artists informed about mathematics will be an exciting and attractive addition to the text. Marc Frantz Indiana University Annalisa Crannell Franklin & Marshall College CHAPTER 1 Introduction to Perspective and Space Coordinates ur first perspective activity involves using masking tape O to make a perspective picture of a building on a window (Fig- ure 1.1). It’s tricky! One person (the Art Director) must stand rooted to the spot, with one eye closed. Using the one open eye, the Art Director directs one or more people (the Artists), telling them where to place masking tape in order to outline architectural features as seen from the Director’s unique viewpoint. In Figure 1.1, this process resulted in a simple but fairly respectable perspective drawing of the University Library at Indiana University Purdue Uni- versity Indianapolis. Figure 1.1. Making a masking tape drawing on a window. If no windows with views of architecture are available, then a portable “window” made of plexiglass will do just as well. In Fig- ure 1.2, workshop participants at the Indianapolis Museum of Art are making masking tape pictures of interior architectural details in a hallway. 1 2 Chapter 1 Figure 1.2. Plexiglas will do the job indoors. Finally, if a sheet of plexiglass is not available, the window of a Figure 1.3. Using a display case. display case will also work. In this case, the Art Director directs the Artists in making a picture of the interior of the case (Figure 1.3). If the masking tape picture from Figure 1.1 is put in digital form (either by photographing and scanning, or by photographing with a digital camera) it can be drawn on in a computer program, and some interesting patterns emerge. (Figure 1.4). V2 V1 Figure 1.4. Analyzing the library drawing. Architectural lines that are parallel to one another, but not par- allel to the plane* of the window, have images that converge to a *A line (extended infinitely in both di- common point called a vanishing point. Two such vanishing points, rections) is parallel to a plane if the V1 and V2, are indicated in Figure 1.4. The correct use of vanishing line does not intersect the plane. points and other geometric devices can greatly enhance not only one’s ability to draw realistically, but also one’s ability to appreciate and enjoy art. To properly understand such things, we need a geometric interpretation of our perspective experiment (Figure 1.5). As you can see from Figure 1.5, we’re going to be using some mathematical objects called points, planes, and lines. To begin describing these objects, let’s start with points. Introduction to Perspective and Space Coordinates 3 path of light ray (a line) eye of viewer Figure 1.5. Mathematical description (a point) image of the window-taping experiment. object window (picture plane) It’s assumed that you’re familiar with the idea of locating points in a plane using the standard xy-coordinate system. To locate points in 3-dimensional space (3-space), we need to introduce a third co- ordinate called a z-coordinate. The standard arrangement of the xyz-coordinate axes looks like Figure 1.6; the positive x-axis points towards you. For a point P (x,y,z) in 3-space, we can think of the x, y, and z- coordinates as “out,” “over,” and “up,” respectively. For instance, in Figure 1.6, the point P (4, 5, 6) can be located by starting at the origin (0, 0, 0) and going out towards you 4 units along the x-axis (you’d go back if the x-coordinate were negative), then over 5 units to the right (you’d go to the left if the y-coordinate were negative), and finally 6 units up (you’d go down if the z-coordinate were negative). z x y z 6 P(4,5,6) the origin 6 units up (0,0,0) Figure 1.6. The standard y xyz-coordinate system. 4 units out 5 4 5 units over x We took a look at the standard xyz-system in Figure 1.6 simply because it is the standard system, and you may see it again in another course. However, it will be convenient for our purposes to use the 4 Chapter 1 y slightly different xyz-coordinate system in Figure 1.7—it’s the one we’ll be using from now on. In Figure 1.7 we have included sketches (1,3,7) of three special planes called the coordinate planes. In this case, we have to think of the x, y, and z-coordinates as “out,” “up,” and (4,2,3) z “over,” respectively, as indicated in the figure. y x The xz-plane 5 x y z (contains the x- and z-axes). P(4,5,6) Also called "the plane y=0" 6 units over What are the missing vertex coordi- because all y-coordinates nates of this block whose faces are par- on this plane are 0. 5 units up z 6 allel to the coordinate planes? 4 units out 4 x The yz-plane (contains the y- and z-axes). Also called "the plane x=0" The xy-plane because all x-coordinates (contains the x- and y-axes).
Recommended publications
  • An Artistic and Mathematical Look at the Work of Maurits Cornelis Escher
    University of Northern Iowa UNI ScholarWorks Honors Program Theses Honors Program 2016 Tessellations: An artistic and mathematical look at the work of Maurits Cornelis Escher Emily E. Bachmeier University of Northern Iowa Let us know how access to this document benefits ouy Copyright ©2016 Emily E. Bachmeier Follow this and additional works at: https://scholarworks.uni.edu/hpt Part of the Harmonic Analysis and Representation Commons Recommended Citation Bachmeier, Emily E., "Tessellations: An artistic and mathematical look at the work of Maurits Cornelis Escher" (2016). Honors Program Theses. 204. https://scholarworks.uni.edu/hpt/204 This Open Access Honors Program Thesis is brought to you for free and open access by the Honors Program at UNI ScholarWorks. It has been accepted for inclusion in Honors Program Theses by an authorized administrator of UNI ScholarWorks. For more information, please contact [email protected]. Running head: TESSELLATIONS: THE WORK OF MAURITS CORNELIS ESCHER TESSELLATIONS: AN ARTISTIC AND MATHEMATICAL LOOK AT THE WORK OF MAURITS CORNELIS ESCHER A Thesis Submitted in Partial Fulfillment of the Requirements for the Designation University Honors Emily E. Bachmeier University of Northern Iowa May 2016 TESSELLATIONS : THE WORK OF MAURITS CORNELIS ESCHER This Study by: Emily Bachmeier Entitled: Tessellations: An Artistic and Mathematical Look at the Work of Maurits Cornelis Escher has been approved as meeting the thesis or project requirements for the Designation University Honors. ___________ ______________________________________________________________ Date Dr. Catherine Miller, Honors Thesis Advisor, Math Department ___________ ______________________________________________________________ Date Dr. Jessica Moon, Director, University Honors Program TESSELLATIONS : THE WORK OF MAURITS CORNELIS ESCHER 1 Introduction I first became interested in tessellations when my fifth grade mathematics teacher placed multiple shapes that would tessellate at the front of the room and we were allowed to pick one to use to create a tessellation.
    [Show full text]
  • The Creative Act in the Dialogue Between Art and Mathematics
    mathematics Article The Creative Act in the Dialogue between Art and Mathematics Andrés F. Arias-Alfonso 1,* and Camilo A. Franco 2,* 1 Facultad de Ciencias Sociales y Humanas, Universidad de Manizales, Manizales 170003, Colombia 2 Grupo de Investigación en Fenómenos de Superficie—Michael Polanyi, Departamento de Procesos y Energía, Facultad de Minas, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia * Correspondence: [email protected] (A.F.A.-A.); [email protected] (C.A.F.) Abstract: This study was developed during 2018 and 2019, with 10th- and 11th-grade students from the Jose Maria Obando High School (Fredonia, Antioquia, Colombia) as the target population. Here, the “art as a method” was proposed, in which, after a diagnostic, three moments were developed to establish a dialogue between art and mathematics. The moments include Moment 1: introduction to art and mathematics as ways of doing art, Moment 2: collective experimentation, and Moment 3: re-signification of education as a model of experience. The methodology was derived from different mathematical-based theories, such as pendulum motion, centrifugal force, solar energy, and Chladni plates, allowing for the exploration of possibilities to new paths of knowledge from proposing the creative act. Likewise, the possibility of generating a broad vision of reality arose from the creative act, where understanding was reached from logical-emotional perspectives beyond the rational vision of science and its descriptions. Keywords: art; art as method; creative act; mathematics 1. Introduction Citation: Arias-Alfonso, A.F.; Franco, C.A. The Creative Act in the Dialogue There has always been a conception in the collective imagination concerning the between Art and Mathematics.
    [Show full text]
  • Transformations in Sirigu Wall Painting and Fractal Art
    TRANSFORMATIONS IN SIRIGU WALL PAINTING AND FRACTAL ART SIMULATIONS By Michael Nyarkoh, BFA, MFA (Painting) A Thesis Submitted to the School of Graduate Studies, Kwame Nkrumah University of Science and Technology in partial fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY Faculty of Fine Art, College of Art and Social Sciences © September 2009, Department of Painting and Sculpture DECLARATION I hereby declare that this submission is my own work towards the PhD and that, to the best of my knowledge, it contains no material previously published by another person nor material which has been accepted for the award of any other degree of the University, except where due acknowledgement has been made in the text. Michael Nyarkoh (PG9130006) .................................... .......................... (Student’s Name and ID Number) Signature Date Certified by: Dr. Prof. Richmond Teye Ackam ................................. .......................... (Supervisor’s Name) Signature Date Certified by: K. B. Kissiedu .............................. ........................ (Head of Department) Signature Date CHAPTER ONE INTRODUCTION Background to the study Traditional wall painting is an old art practiced in many different parts of the world. This art form has existed since pre-historic times according to (Skira, 1950) and (Kissick, 1993). In Africa, cave paintings exist in many countries such as “Egypt, Algeria, Libya, Zimbabwe and South Africa”, (Wilcox, 1984). Traditional wall painting mostly by women can be found in many parts of Africa including Ghana, Southern Africa and Nigeria. These paintings are done mostly to enhance the appearance of the buildings and also serve other purposes as well. “Wall painting has been practiced in Northern Ghana for centuries after the collapse of the Songhai Empire,” (Ross and Cole, 1977).
    [Show full text]
  • Orthographic and Perspective Projection—Part 1 Drawing As
    I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S From 3D to 2D: Orthographic and Perspective Projection—Part 1 •History • Geometrical Constructions 3D Viewing I • Types of Projection • Projection in Computer Graphics Andries van Dam September 15, 2005 3D Viewing I Andries van Dam September 15, 2005 3D Viewing I 1/38 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Drawing as Projection Early Examples of Projection • Plan view (orthographic projection) from Mesopotamia, 2150 BC: earliest known technical • Painting based on mythical tale as told by Pliny the drawing in existence Elder: Corinthian man traces shadow of departing lover Carlbom Fig. 1-1 • Greek vases from late 6th century BC show perspective(!) detail from The Invention of Drawing, 1830: Karl Friedrich • Roman architect Vitruvius published specifications of plan / elevation drawings, perspective. Illustrations Schinkle (Mitchell p.1) for these writings have been lost Andries van Dam September 15, 2005 3D Viewing I 2/38 Andries van Dam September 15, 2005 3D Viewing I 3/38 1 I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S I N T R O D U C T I O N T O C O M P U T E R G R A P H I C S Most Striking Features of Linear Early Perspective Perspective • Ways of invoking three dimensional space: shading • || lines converge (in 1, 2, or 3 axes) to vanishing point suggests rounded, volumetric forms; converging lines suggest spatial depth
    [Show full text]
  • Mathematics K Through 6
    Building fun and creativity into standards-based learning Mathematics K through 6 Ron De Long, M.Ed. Janet B. McCracken, M.Ed. Elizabeth Willett, M.Ed. © 2007 Crayola, LLC Easton, PA 18044-0431 Acknowledgements Table of Contents This guide and the entire Crayola® Dream-Makers® series would not be possible without the expertise and tireless efforts Crayola Dream-Makers: Catalyst for Creativity! ....... 4 of Ron De Long, Jan McCracken, and Elizabeth Willett. Your passion for children, the arts, and creativity are inspiring. Thank you. Special thanks also to Alison Panik for her content-area expertise, writing, research, and curriculum develop- Lessons ment of this guide. Garden of Colorful Counting ....................................... 6 Set representation Crayola also gratefully acknowledges the teachers and students who tested the lessons in this guide: In the Face of Symmetry .............................................. 10 Analysis of symmetry Barbi Bailey-Smith, Little River Elementary School, Durham, NC Gee’s-o-metric Wisdom ................................................ 14 Geometric modeling Rob Bartoch, Sandy Plains Elementary School, Baltimore, MD Patterns of Love Beads ................................................. 18 Algebraic patterns Susan Bivona, Mount Prospect Elementary School, Basking Ridge, NJ A Bountiful Table—Fair-Share Fractions ...................... 22 Fractions Jennifer Braun, Oak Street Elementary School, Basking Ridge, NJ Barbara Calvo, Ocean Township Elementary School, Oakhurst, NJ Whimsical Charting and
    [Show full text]
  • Golden Ratio: a Subtle Regulator in Our Body and Cardiovascular System?
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/306051060 Golden Ratio: A subtle regulator in our body and cardiovascular system? Article in International journal of cardiology · August 2016 DOI: 10.1016/j.ijcard.2016.08.147 CITATIONS READS 8 266 3 authors, including: Selcuk Ozturk Ertan Yetkin Ankara University Istinye University, LIV Hospital 56 PUBLICATIONS 121 CITATIONS 227 PUBLICATIONS 3,259 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: microbiology View project golden ratio View project All content following this page was uploaded by Ertan Yetkin on 23 August 2019. The user has requested enhancement of the downloaded file. International Journal of Cardiology 223 (2016) 143–145 Contents lists available at ScienceDirect International Journal of Cardiology journal homepage: www.elsevier.com/locate/ijcard Review Golden ratio: A subtle regulator in our body and cardiovascular system? Selcuk Ozturk a, Kenan Yalta b, Ertan Yetkin c,⁎ a Abant Izzet Baysal University, Faculty of Medicine, Department of Cardiology, Bolu, Turkey b Trakya University, Faculty of Medicine, Department of Cardiology, Edirne, Turkey c Yenisehir Hospital, Division of Cardiology, Mersin, Turkey article info abstract Article history: Golden ratio, which is an irrational number and also named as the Greek letter Phi (φ), is defined as the ratio be- Received 13 July 2016 tween two lines of unequal length, where the ratio of the lengths of the shorter to the longer is the same as the Accepted 7 August 2016 ratio between the lengths of the longer and the sum of the lengths.
    [Show full text]
  • Mathematical Concepts Within the Artwork of Lewitt and Escher
    A Thesis Presented to The Faculty of Alfred University More than Visual: Mathematical Concepts Within the Artwork of LeWitt and Escher by Kelsey Bennett In Partial Fulfillment of the requirements for the Alfred University Honors Program May 9, 2019 Under the Supervision of: Chair: Dr. Amanda Taylor Committee Members: Barbara Lattanzi John Hosford 1 Abstract The goal of this thesis is to demonstrate the relationship between mathematics and art. To do so, I have explored the work of two artists, M.C. Escher and Sol LeWitt. Though these artists approached the role of mathematics in their art in different ways, I have observed that each has employed mathematical concepts in order to create their rule-based artworks. The mathematical ideas which serve as the backbone of this thesis are illustrated by the artists' works and strengthen the bond be- tween the two subjects of art and math. My intention is to make these concepts accessible to all readers, regardless of their mathematical or artis- tic background, so that they may in turn gain a deeper understanding of the relationship between mathematics and art. To do so, we begin with a philosophical discussion of art and mathematics. Next, we will dissect and analyze various pieces of work by Sol LeWitt and M.C. Escher. As part of that process, we will also redesign or re-imagine some artistic pieces to further highlight mathematical concepts at play within the work of these artists. 1 Introduction What is art? The Merriam-Webster dictionary provides one definition of art as being \the conscious use of skill and creative imagination especially in the production of aesthetic object" ([1]).
    [Show full text]
  • Muse® Teacher Guide: January 2020
    Muse® Teacher Guide: September 2020 What Is Perfection? It may be a relief to discover that being “imperfect” has some advantages. This issue of MUSE explores how variation and diversity contribute to excellence. In a world where we are compelled to strive for excellence, the articles in this guide examine why the journey, rather than the destination, should be our primary focus. CONVERSATION QUESTION When can imperfection be extraordinary? TEACHING OBJECTIVES • Students will learn about the use of the golden In addition to supplemental materials ratio in art. • Students will learn why game developers avoid focused on core STEM skills, this perfection. flexible teaching tool offers • Students will learn how variations in biology can be the key to excellence. vocabulary-building activities, • Students will investigate number patterns utilizing questions for discussion, and cross- the Fibonacci sequence. • Students will compare and contrast the elements curricular activities. of a wide game with the elements of a deep game. • Students will examine the structure and function SELECTIONS of variations in the human body that contribute to • The Art of the Golden Ratio the extraordinary functioning. Expository Nonfiction, ~900L • Students will research examples of the golden • Good Gaming ratio in art history. Expository Nonfiction, ~1100L • Students will use mathematical concepts to express game preferences. • Perfectly Imperfect • Students will study additional examples of Expository Nonfiction, ~700L adaptation in the animal kingdom. U33T http://www.cricketmedia.com/classroom/Muse-magazine Muse® Teacher Guide: September 2020 The Art of the Golden Ratio ENGAGE pp. 20–22, Expository Nonfiction Conversation Question: When can imperfection be extraordinary? This article explores the use of mathematical concepts in art.
    [Show full text]
  • Glossaire Infographique
    Glossaire Infographique André PASCUAL [email protected] Glossaire Infographique Table des Matières GLOSSAIRE ILLUSTRÉ...............................................................................................................................................................1 des Termes techniques & autres,.....................................................................................................................................1 Prologue.......................................................................................................................................................................................2 Notice Légale...............................................................................................................................................................................3 Définitions des termes & Illustrations.......................................................................................................................................4 −AaA−...........................................................................................................................................................................................5 Aberration chromatique :..................................................................................................................................................5 Accrochage − Snap :........................................................................................................................................................5 Aérosol,
    [Show full text]
  • CS 4204 Computer Graphics 3D Views and Projection
    CS 4204 Computer Graphics 3D views and projection Adapted from notes by Yong Cao 1 Overview of 3D rendering Modeling: * Topic we’ve already discussed • *Define object in local coordinates • *Place object in world coordinates (modeling transformation) Viewing: • Define camera parameters • Find object location in camera coordinates (viewing transformation) Projection: project object to the viewplane Clipping: clip object to the view volume *Viewport transformation *Rasterization: rasterize object Simple teapot demo 3D rendering pipeline Vertices as input Series of operations/transformations to obtain 2D vertices in screen coordinates These can then be rasterized 3D rendering pipeline We’ve already discussed: • Viewport transformation • 3D modeling transformations We’ll talk about remaining topics in reverse order: • 3D clipping (simple extension of 2D clipping) • 3D projection • 3D viewing Clipping: 3D Cohen-Sutherland Use 6-bit outcodes When needed, clip line segment against planes Viewing and Projection Camera Analogy: 1. Set up your tripod and point the camera at the scene (viewing transformation). 2. Arrange the scene to be photographed into the desired composition (modeling transformation). 3. Choose a camera lens or adjust the zoom (projection transformation). 4. Determine how large you want the final photograph to be - for example, you might want it enlarged (viewport transformation). Projection transformations Introduction to Projection Transformations Mapping: f : Rn Rm Projection: n > m Planar Projection: Projection on a plane.
    [Show full text]
  • Biological Agency in Art
    1 Vol 16 Issue 2 – 3 Biological Agency in Art Allison N. Kudla Artist, PhD Student Center for Digital Arts and Experimental Media: DXARTS, University of Washington 207 Raitt Hall Seattle, WA 98195 USA allisonx[at]u[dot]washington[dot]edu Keywords Agency, Semiotics, Biology, Technology, Emulation, Behavioral, Emergent, Earth Art, Systems Art, Bio-Tech Art Abstract This paper will discuss how the pictorial dilemma guided traditional art towards formalism and again guides new media art away from the screen and towards the generation of physical, phenomenologically based and often bio-technological artistic systems. This takes art into experiential territories, as it is no longer an illusory representation of an idea but an actual instantiation of its beauty and significance. Thus the process of making art is reinstated as a marker to physically manifest and accentuate an experience that takes the perceivers to their own edges so as to see themselves as open systems within a vast and interweaving non-linear network. Introduction “The artist is a positive force in perceiving how technology can be translated to new environments to serve needs and provide variety and enrichment of life.” Billy Klüver, Pavilion ([13] p x). “Art is not a mirror held up to reality, but a hammer with which to shape it.” Bertolt Brecht [2] When looking at the history of art through the lens of a new media artist engaged in several disciplines that interlace fields as varying as biology, algorithmic programming and signal processing, a fairly recent paradigm for art emerges that takes artistic practice away from depiction and towards a more systems based and biologically driven approach.
    [Show full text]
  • The Mathematics of Art: an Untold Story Project Script Maria Deamude Math 2590 Nov 9, 2010
    The Mathematics of Art: An Untold Story Project Script Maria Deamude Math 2590 Nov 9, 2010 Art is a creative venue that can, and has, been used for many purposes throughout time. Religion, politics, propaganda and self-expression have all used art as a vehicle for conveying various messages, without many references to the technical aspects. Art and mathematics are two terms that are not always thought of as being interconnected. Yet they most definitely are; for art is a highly technical process. Following the histories of maths and sciences – if not instigating them – art practices and techniques have developed and evolved since man has been on earth. Many mathematical developments occurred during the Italian and Northern Renaissances. I will describe some of the math involved in art-making, most specifically in architectural and painting practices. Through the medieval era and into the Renaissance, 1100AD through to 1600AD, certain significant mathematical theories used to enhance aesthetics developed. Understandings of line, and placement and scale of shapes upon a flat surface developed to the point of creating illusions of reality and real, three dimensional space. One can look at medieval frescos and altarpieces and witness a very specific flatness which does not create an illusion of real space. Frescos are like murals where paint and plaster have been mixed upon a wall to create the image – Michelangelo’s work in the Sistine Chapel and Leonardo’s The Last Supper are both famous examples of frescos. The beginning of the creation of the appearance of real space can be seen in Giotto’s frescos in the late 1200s and early 1300s.
    [Show full text]