Rotating Universe and Simultaneous Existence of Red and Blue Shifted Galaxies in Dynamic Universe Model

Total Page:16

File Type:pdf, Size:1020Kb

Rotating Universe and Simultaneous Existence of Red and Blue Shifted Galaxies in Dynamic Universe Model OSP Journal of Nuclear Science Research Article Rotating Universe and Simultaneous Existence of Red and Blue Shifted Galaxies in Dynamic Universe Model S.N.P Gupta 1Retd Assistant General Manager, Bhilai Steel Plant, India Corresponding Author: S. N.P Gupta, Retd Assistant General Manager, Bhilai Steel Plant, India. E-mail: [email protected] Received: November 08, 2019; Accepted: November 22, 2019; Published: December 30, 2019 Abstract According to Dynamic Universe Model, our Universe is a Rotating Universe. In this model, electrons rotate about nucleus; Moons rotate about planets; Planets, asteroid and comets etc., rotate about stars; stars rotate about Galaxy center; Galaxies rotate about common center of local systems; and similarly Systems rotate in Ensembles, Aggregate, Conglomerations and Galaxy Clusters and so on and so forth. Galaxies coming near are Blue shifted and going away are red shifted. There are many blue shifted Galaxies in our universe. Here in this paper we will see different simulations to make such predictions from the output pictures formed from the Dynamic Universe model. There are some old and a few new simulations where different point masses are placed in different distances in a 3D Cartesian coordinate grid; and are allowed to move on universal gravitation force (UGF) acting on each mass at that instant of time at its position. The output pictures depict the three dimensional orbit formations of point masses after some iterations. In an orbit so formed, some Galaxies are coming near (Blue shifted) and some are going away (Red shifted). In this paper the simulations predicted the existence of a large number of Blue shifted Galaxies, in an expanding universe, in 2004 itself. Over 8,300 blue shifted galaxies have been discovered extending beyond the Local Group, was confirmed by Hubble Space Telescope (HST) observations in the year 2009. Thus Dynamic Universe model predictions came true. Keywords Rotating Universe; Dynamic Universe Model; Blue Shifted Galaxies; Hubble Space Telescope (HST); SITA Simulations Introduction Dynamic Universe model is a singularity free tensor According to Dynamic Universe Model, our Universe based math model. The tensors used are linear with- is a Rotating Universe. In this model, electrons rotate out using any differential or integral equations. Only about nucleus; Moons rotate about planets; Planets, one calculated output set of values exists. Data means asteroid and comets etc., rotate about stars; stars ro- properties of each point mass like its three dimension- tate about Galaxy center; Galaxies rotate about com- al coordinates, velocities, accelerations and it’s mass. mon center of local systems; and similarly Systems Newtonian two-body problem used differential equa- rotate in Ensembles, Aggregate, Conglomerations tions. Einstein’s general relativity used tensors, which and Galaxy Clusters and so on and so forth. Galax- in turn unwrap into differential equations. Dynamic ies coming near are Blue shifted and going away are Universe Model uses tensors that give simple equa- red shifted. There are many blue shifted Galaxies in tions with interdependencies. Differential equations our universe. Both exist simultaneously unlike any will not give unique solutions. Whereas Dynamic expending universe model. Universe Model gives a unique solution of positions, Volume - 1 Issue - 1 Copyright © 2019 S.N.P Gupta. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. • Page 1 of 2 • OSP J Nuc Sci Copyright © S.N.P Gupta velocities and accelerations; for each point mass in Every point mass attracts every other point mass the system for every instant of time. This new meth- by a force pointing along the line intersecting both od of Mathematics in Dynamic Universe Model is points. The force is proportional to the product of different from all earlier methods of solving general the two masses and inversely proportional to the N-body problem. square of the distance between the point masses: This universe exists now in the present state, it ex- mm FG= 12, isted earlier, and it will continue to exist in future also r2 in a similar way. All physical laws will work at any Where: time and at any place. Evidences for the three dimen- F is the magnitude of the gravitational force between sional rotations or the dynamism of the universe can the two point masses, be seen in the streaming motions of local group and local cluster. Here in this dynamic universe, both the G is the gravitational constant, red shifted and blue shifted Galaxies co-exist simul- m is the mass of the first point mass, taneously. 1 m is the mass of the second point mass, How it all Started 2 r is the distance between the two point masses. Around 1543, Copernicus first proposed the planetary paths. He pointed out that all Planets including the Newton: Two-body Problem Earth moved around the SUN in De revolutionibus In mechanics, the two body problem is a special case orbium coelestium. This was a major step forward of the n-body problem with a closed form solution. during that period. Eventually, the circular planetary This problem was first solved in 1687 by Sir Isaac paths proposed by Copernicus were soon disproved Newton [2] who showed that the orbit of one body by accurate astronomical observations [1]. about another body was either an ellipse, a parabola, The famous astronomer Tycho Brahe made accu- or a hyperbola, and that the center of the mass of the rate astronomical observations and after his death in system moved with constant velocity. If the common 1601, Kepler worked on those observations. Kepler center of mass of the two bodies is considered to be published two laws in 1609 in Astronomia Nova – at rest, each body travels along a conic section which the first law talks about the elliptical path of planets has a focus at the common center of the mass of the around the Sun, where SUN is one of the two foci of system. If the two bodies are bound together, both of the planetary path. The second law states that the line them will move in elliptical paths. If the two bodies joining the SUN and planets sweeps equal areas in are moving apart, they will move in either parabolic equal intervals of time. Kepler published a third law or hyperbolic paths. The two-body problem is the in Harmonice mundi in 1619 which states that the case that there are only two point masses (or homo- geneous spheres); If the two point masses (r , m ) squares of the periods of planets are proportional to 1 1 and (r , m ) having masses m and m and the posi- the cubes of the mean radii of their paths. The third 2 2 1 2 tion vectors r and r relative to a point with respect law was surprisingly accepted from the very first day 1 2 it appeared in the journal. to their common centre of mass, the equations of mo- tion for the two mass points are : Kepler Orbit Johannes Kepler’s laws of planetary motion around ∂U mm ∂U mm 1605, from astronomical tables detailing the move- mr =−=− G12 rˆ & mr = = G12 rˆ 11 ∂ 2 22 ∂ 2 ments of the visible planets. Kepler's First Law is: r1 r r2 r Where r = rr − is the distance between the "The orbit of every planet is an ellipse with the sun 12 bodies; U (|r − r |) is the potential energy and at a focus." 1 2 The mathematics of ellipses is thus the mathematics rr12− of Kepler orbits, later expanded to include parabolas rˆ = r and hyperbolas. is the unit vector pointing from body 2 to body 1. The Sir Isaac Newton’s Law of Universal Gravitation acceleration experienced by each of the particles can (1687) be written in terms of the differential equation Volume - 1 Issue - 1 Citation: S.N.P Gupta (2019) Rotating Universe and Simultaneous Existence of Red and Blue shifted Galaxies in Dynamic Universe Model. • Page 2 of 23 • OSP J Nuc Sci 1. JNS-1-105 OSP J Nuc Sci Copyright © S.N.P Gupta In this Dynamic Universe Model – Galaxies in a clus- rˆ ter are rotating and revolving. Depending on the posi- r = µ. (1) tion of observer’s position relative to the set of galax- r2 Where µ = G·M; M being the mass of the body caus- ies, some may appear to move away, and others may appear to come near. The observer may also be re- ing the acceleration (i.e m1 or the acceleration on body 2). The mathematical solution of the differen- siding in another solar system, revolving around the tial equation (1) above will be: Like for the movement center of Milky Way in a local group. He is observ- under any central force, i.e. a force aligned with rˆ ing the galaxies outside. Many times he can observe the specific relative angular momentum only the coming near or going away component of the light ray called Hubble components. The other di- Hr= ×r stays constant: rection cosines of the movement may not be possible . to measure exactly in many cases. It is an immensely Hr =×=×+× rrrr r complicated problem to untangle the two and pin = 0 + 0 = 0 point the cause of non–Hubble velocities. This ques- tion was discussed by JV. Narlikar in (1983) see the Sir Isaac Newton published the Principia in 1687. ref [3]. ’Nearby Galaxies Atlas’ published by Tully Halley played an important role in getting Principia and Fischer contains detailed maps and distribution published. Sir Isaac discussed the inverse square law of speeds of Galaxies in the relatively local region.
Recommended publications
  • Unveiling the Nature of the “Green Pea” Galaxies: Oxygen and Nitrogen Chemical Abundances
    UNVEILING THE NATURE OF THE “GREEN PEA” GALAXIES: OXYGEN AND NITROGEN CHEMICAL ABUNDANCES Ricardo O. Amorín , Enrique Pérez -Montero & J. M. Vílchez Instituto de Astrofísica de Andalucía (IAA -CSIC, Granada -Spain) Estallidos Group amorin @iaa .es Estallidos Group epm @iaa .es ABSTRACT : We have investigated the oxygen and nitrogen chemical abundances in extremely compact star -forming galaxies ( SFGs ) with redshifts between ~ 0.11 and 0.35, popularly referred to as “green peas” (GPs). Direct and st rong -line methods sensitive to the N/O ratio applied to their Sloan D igital Sky Survey (SDSS) spectra reveal that these systems are genuine metal -poor galaxies, with mean oxygen abundances ~20% solar. At a give n metallicity these galaxies display systematically large N/O ratios compared to normal galaxies, which can explain the strong differ ence between our metallicities measurements and the previous ones. While their N/O ratios follo w the relation with stellar mass of local SFGs in the SDSS, we find that the mass -metallicity relation of the GPs is offset more than 0.3 dex to lower metallicities . We argue that recent interaction -induced inflow of gas, possibly coupled with a selective metal -rich gas loss, driven by supernova winds, may explain our findin gs and the known galaxy properties, namely high specific star formation rates, extreme compactness, and disturbed optical morphologies. The “green pea” galaxy prope rties seem to be uncommon in the nearby universe, suggesting a short and extreme stage of their evolutio n. Therefore, these galaxies may allow us to study in great deta il many processes, such as starburst activity and chemical enrichment, under physical conditions approaching those in galaxies at higher redshifts .
    [Show full text]
  • Zerohack Zer0pwn Youranonnews Yevgeniy Anikin Yes Men
    Zerohack Zer0Pwn YourAnonNews Yevgeniy Anikin Yes Men YamaTough Xtreme x-Leader xenu xen0nymous www.oem.com.mx www.nytimes.com/pages/world/asia/index.html www.informador.com.mx www.futuregov.asia www.cronica.com.mx www.asiapacificsecuritymagazine.com Worm Wolfy Withdrawal* WillyFoReal Wikileaks IRC 88.80.16.13/9999 IRC Channel WikiLeaks WiiSpellWhy whitekidney Wells Fargo weed WallRoad w0rmware Vulnerability Vladislav Khorokhorin Visa Inc. Virus Virgin Islands "Viewpointe Archive Services, LLC" Versability Verizon Venezuela Vegas Vatican City USB US Trust US Bankcorp Uruguay Uran0n unusedcrayon United Kingdom UnicormCr3w unfittoprint unelected.org UndisclosedAnon Ukraine UGNazi ua_musti_1905 U.S. Bankcorp TYLER Turkey trosec113 Trojan Horse Trojan Trivette TriCk Tribalzer0 Transnistria transaction Traitor traffic court Tradecraft Trade Secrets "Total System Services, Inc." Topiary Top Secret Tom Stracener TibitXimer Thumb Drive Thomson Reuters TheWikiBoat thepeoplescause the_infecti0n The Unknowns The UnderTaker The Syrian electronic army The Jokerhack Thailand ThaCosmo th3j35t3r testeux1 TEST Telecomix TehWongZ Teddy Bigglesworth TeaMp0isoN TeamHav0k Team Ghost Shell Team Digi7al tdl4 taxes TARP tango down Tampa Tammy Shapiro Taiwan Tabu T0x1c t0wN T.A.R.P. Syrian Electronic Army syndiv Symantec Corporation Switzerland Swingers Club SWIFT Sweden Swan SwaggSec Swagg Security "SunGard Data Systems, Inc." Stuxnet Stringer Streamroller Stole* Sterlok SteelAnne st0rm SQLi Spyware Spying Spydevilz Spy Camera Sposed Spook Spoofing Splendide
    [Show full text]
  • The Atomic Gas Mass of Green Pea Galaxies
    DRAFT VERSION MAY 28, 2021 Typeset using LATEX default style in AASTeX62 The Atomic Gas Mass of Green Pea Galaxies N. KANEKAR,1 T. GHOSH,2 J. RHOADS,3, 4 S. MALHOTRA,3, 4 S. HARISH,4 J. N. CHENGALUR,1 AND K. M. JONES5 1National Centre for Radio Astrophysics, Tata Institute of Fundamental Research, Pune University, Pune 411007, India 2Green Bank Observatory, P.O. Box 2, Green Bank, WV 24944, USA 3Astrophysics Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 4School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA 5Department of Physics and Astronomy, University of Kansas, 1082 Malott, 1251 Wescoe Hall Dr. Lawrence, KS 66045 ABSTRACT We have used the Arecibo Telescope and the Green Bank Telescope to carry out a deep search for HI 21 cm emission from a large sample of Green Pea galaxies, yielding 19 detections, and 21 upper limits on the HI 8 mass. We obtain HI masses of MHI ≈ (4 − 300) × 10 M for the detections, with a median HI mass of 9 8 ≈ 2:6 × 10 M ; for the non-detections, the median 3σ upper limit on the HI mass is ≈ 5:5 × 10 M . These are the first estimates of the atomic gas content of Green Pea galaxies. We find that the HI-to-stellar mass ratio in Green Peas is consistent with trends identified in star-forming galaxies in the local Universe. However, the median HI depletion timescale in Green Peas is ≈ 0:6 Gyr, an order of magnitude lower than that obtained in local star-forming galaxies.
    [Show full text]
  • Instituto De Astrofísica De Andalucía IAA-CSIC
    Cover Picture. First image of the Shadow of the Supermassive Black Hole in M87 obtained with the Event Horizon Telescope (EHT) Credit: The Astrophysical Journal Letters, 875:L1 (17pp), 2019 April 10 index 1 Foreword 3 Research Activity 24 Gender Actions 26 SCI Publications 27 Awards 31 Education 34 Internationalization 41 Workshops and Meetings 43 Staff 47 Public Outreach 53 Funding 59 Annex – List of Publications Foreword coordinated at the IAA. This project, designed to study the central region of the Milky Way with an This Report comes later than usual because of the unprecedented resolution, unravels the history of Covid-Sars2 pandemia. Let us use these first lines star formation in the galactic center, showing that to remember those who died on the occasion of it has not been continuous. In fact, an intense Covid19 and to all those affected personally. We episode of star formation that occurred about a thank all the people, especially in the health sector, billion years ago was detected, where stars with a who worked hard for the good of our society. combined mass of several tens of millions of suns were formed in less than 100 million years. After having received the Severo Ochoa Excellence award in June 2018, 2019 was the first year to be Many other interesting results were published by fully dedicated to our highly competitive strategic IAA researchers in more that 250 publications in research programme. Already the first week of refereed journals, a number of those reflecting our April 2019 was a very special one for the IAA life.
    [Show full text]
  • Astronomy and Other Predictions and Hypothesis Below
    ASTRONOMY AND OTHER PREDICTIONS AND HYPOTHESIS BELOW: Myspace deleted my scientific blogs that has my predictions on it. This is not my fault but Myspaces's fault. Thousands of people are upset with them now. I am sure people have read my blogs in the past and can testify that I did make those predictions that was later proven true in astronomy. I have proof in the form of screenshots for the predictions and hypothiesis I made below. Just ask and I will send you them and they are time stamped by AOL and Myspace. http://www.telegraph.co.uk/technology/10173232/MySpace-users-threaten-to-sue-after-years-of-blogs -deleted.html Thomas Zolotor wrote on his blog: An energy source will be detected in or around a galaxy that never been detected before https://www.facebook.com/photo.php?fbid=10151916256614144&set=a.11263069143.17546.6281391 43&type=3&theater Radio Bursts Discovered From Beyond our Galaxy Astronomers, including a team member from NASA's Jet Propulsion Laboratory in Pasadena, Calif., have detected the first population of radio bursts known to originate from galaxies beyond our own Milky Way. The sources of the light bursts are unknown, but cataclysmic events, such as merging or exploding stars, are likely the triggers. Further scans for radio bursts using the Parkes Observatory are ongoing. Researchers are also using other telescopes to search for and characterize these events. For instance, the V-Fastr project, developed in part at JPL, is currently running on the National Radio Astronomy Observatory's Very Long Baseline Array, an international network of telescopes.
    [Show full text]
  • Leveraging the Rest-Ultraviolet and Rest-Optical Spectra of Star
    Leveraging the Rest-Ultraviolet and Rest-Optical Spectra of Star-Forming Galaxies at Redshifts 2 < z < 3 Thesis by Rachel Lauren Theios In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2020 Defended June 1, 2020 ii © 2020 Rachel Lauren Theios ORCID: 0000-0002-4236-1037 All rights reserved iii A long time ago in galaxies far, far away.... iv ACKNOWLEDGEMENTS First and foremost, thank you to my advisor, Chuck Steidel—I could not have asked for a better mentor. You taught me that in astronomy (as in life), half the fun is just looking to see what’s out there without knowing what you’re going to find. I certainly didn’t anticipate the direction this thesis would take, but I am glad I had an advisor who supported me through every roadblock (and there were many of them). Thank you to my research group: to Allison, Ryan, and Gwen, for welcoming me into the world of observational astronomy, and every bit of advice and encouragement you’ve given me along the way. And thank you to Yuguang for helping me make sense of things when I got stuck, and humoring me on long observing nights when I started to get chatty. To the rest of my thesis committee: Evan Kirby, Lynne Hillenbrand, Chris Martin, and Phil Hopkins, thank you for all your valuable insight. Thank you to my friends and colleagues at Caltech, who made my days here so much brighter. I’ve met so many amazing grad students over the years, both inside and outside of astronomy, who have provided me with the warmest and most supportive environment I could have asked for.
    [Show full text]
  • The Lyman Alpha Reference Sample VII
    A&A 587, A78 (2016) Astronomy DOI: 10.1051/0004-6361/201527373 & c ESO 2016 Astrophysics The Lyman alpha reference sample VII. Spatially resolved Hα kinematics?;?? Edmund Christian Herenz1, Pieter Gruyters2, Ivana Orlitova3, Matthew Hayes4, Göran Östlin4, John M. Cannon5, Martin M. Roth1, Arjan Bik4, Stephen Pardy6, Héctor Otí-Floranes7, J. Miguel Mas-Hesse8, Angela Adamo4, Hakim Atek9, Florent Duval4;10, Lucia Guaita4;11, Daniel Kunth12, Peter Laursen13, Jens Melinder4, Johannes Puschnig4, Thøger E. Rivera-Thorsen4, Daniel Schaerer14;15, and Anne Verhamme14 1 Leibniz-Institut far Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany e-mail: [email protected] 2 Lund Observatory, Box 43, 221 00 Lund, Sweden 3 Astronomical Institute, Academy of Sciences of the Czech Republic, Bocníˇ II 1401, 141 00 Prague, Czech Republic 4 Department of Astronomy, Oskar Klein Centre for Cosmoparticle Physics, Stockholm University, AlbaNova University Centre, 106 91 Stockholm, Sweden 5 Department of Physics & Astronomy, Macalester College, 1600 Grand Avenue, Saint Paul, MN 55105, USA 6 Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706, USA 7 CONACyT research fellow – Instituto de Radioastronomía y Astrofísica, UNAM, Campus Morelia, Michoacán, CP 58089, Mexico 8 Centro de Astrobiología (CSIC–INTA), Departamento de Astrofísica, PO Box 78, 28691 Villanueva de la Cañada, Spain 9 Laboratoire d’Astrophysique, École Polytechnique Fédérale de Lausanne (EPFL), Observatoire, 1290 Sauverny, Switzerland 10 Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8582 Chiba, Japan 11 INAF–Osservatorio Astronomico di Roma, via Frascati 33, 00040 Monteporzio, Italy 12 Institut d’Astrophysique de Paris, UMR 7095 CNRS & UPMC, 98bis Bd Arago, 75014 Paris, France 13 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen, Denmark 14 Observatoire de Genève, Université de Genève, 51 Ch.
    [Show full text]
  • Reinventing Discovery: the New Era of Networked Science
    Reinventing Discovery: The New Era of Networked Science http://www.carnegiecouncil.org/studio/multimedia/20111201/in... Reinventing Discovery: The New Era of Networked Science Public Affairs Michael Nielsen, Joanne J. Myers Transcript Introduction Remarks Questions and Answers Introduction JOANNE MYERS: Good afternoon. I'm Joanne Myers, director of Public Affairs Programs, and on behalf of the Carnegie Council I'd like to thank you all for joining us. Our speaker is Michael Nielsen. He is not the usual foreign policy expert that you are used to hearing at the Carnegie Council, as he was originally trained as a theoretical physicist and worked on quantum computing and related topics before leaving academia to work full time as an advocate for open science. Still, what he is working on has the potential to impact all of us. Today he will be discussing his recently published book, Reinventing Discovery: The New Era of Networked Science, in which he examines how the online world is revolutionizing scientific discovery and why the revolution is just beginning. While most clichés lose their force through overuse and time, the idea that the Internet is changing the world, especially the world of discovery, cannot be repeated often enough. With each new passing day, powerful new cognitive tools enabled by the Internet are greatly accelerating scientific discovery regardless of national borders. Reinventing Discovery is about the potential to transform the way scientific discoveries are made. As Michael will soon tell us, it is now possible to connect vast numbers of researchers, and even ordinary citizens, who might have useful expertise to bring to bear on a scientific problem.
    [Show full text]
  • Bachelor Thesis Project, VT-2019
    Bachelor thesis project, VT-2019 Stellar populations in the Green Pea galaxy J1457+2232 Jan Malmgren University of Stockholm, Astronomy department, Sweden March 3, 2019 1 The galaxy swings around like a wheel of lighted smoke, and the smoke is made of stars. It is sunsmoke. For lack of other words we call it sunsmoke, do you see. I don’t feel languages are equal to what that vision comprehends. The riches of the languages we know, Xinombric, has three million words, but then the galaxy you’re gazing into now has more than ninety billion suns. Has there ever been a brain that mastered all the words in the Xinombric language? Not a one. Now you see. And do not see. ANIARA (poem 85), Harry Martinsson 2 Abstract In this report I present a study of possible age gradients in the Green Pea galaxy J145735.13+223201.8 to be able to conclude if there is an extended star forming history in such a galaxy. Data are coming from two different sources, highly resolved images in four different wavelengths of stars in the galaxy, and of nebular gas in a narrow band H Balmer line filter, from the Hubble Space Telescope1 (HST), as well as spectral line information from the Sloan Digital Sky Survey2 (SDSS). I compare the observations with stellar population models from two different libraries, Yggdrasil and Starburst99. Due to the highly resolved images from HST this is one of the first studies of spatially resolved stellar populations in a Green Pea galaxy. With the help from these spatially resolved images it was possible to study star clumps independently from each other.
    [Show full text]
  • Green Pea Galaxies
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ASU Digital Repository Green Pea Galaxies: Physical Properties of Low-redshift Analogs of High-redshift Lyman-alpha Emitters by Tianxing Jiang A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved July 2018 by the Graduate Supervisory Committee: Sangeeta Malhotra, Chair James E. Rhoads Evan Scannapieco Sanchayeeta Borthakur Rolf A. Jansen ARIZONA STATE UNIVERSITY August 2018 ©2018 Tianxing Jiang All Rights Reserved ABSTRACT Green pea galaxies are a class of rare, compact starburst galaxies that have powerful optical emission line [OIII]λ5007. They are the best low-redshift analogs of high-redshift (z>2) Lyman-alpha emitting galaxies (LAEs). They provide unique opportunities to study physical conditions in high-redshift LAEs in great detail. In this dissertation, a few physical properties of green peas are investigated. The first study in the dissertation presents star formation rate (SFR) surface density, thermal pressure in HII regions, and a correlation between them for 17 green peas and 19 Lyman break analogs, which are nearby analogs of high-redshift Lyman break galaxies. This correlation is consistent with that found from the star-forming galaxies at z ∼ 2.5. In the second study, a new large sample of 835 green peas in the redshift range z = 0.011 – 0.411 are assembled from Data Release 13 of the Sloan Digital Sky Survey (SDSS) with the equivalent width of the line [OIII]λ5007 > 300Å or the equivalent width of the line Hβ > 100Å.
    [Show full text]
  • The Full Appendices with All References
    Breakthrough Listen Exotica Catalog References 1 APPENDIX A. THE PROTOTYPE SAMPLE A.1. Minor bodies We classify Solar System minor bodies according to both orbital family and composition, with a small number of additional subtypes. Minor bodies of specific compositions might be selected by ETIs for mining (c.f., Papagiannis 1978). From a SETI perspective, orbital families might be targeted by ETI probes to provide a unique vantage point over bodies like the Earth, or because they are dynamically stable for long periods of time and could accumulate a large number of artifacts (e.g., Benford 2019). There is a large overlap in some cases between spectral and orbital groups (as in DeMeo & Carry 2014), as with the E-belt and E-type asteroids, for which we use the same Prototype. For asteroids, our spectral-type system is largely taken from Tholen(1984) (see also Tedesco et al. 1989). We selected those types considered the most significant by Tholen(1984), adding those unique to one or a few members. Some intermediate classes that blend into larger \complexes" in the more recent Bus & Binzel(2002) taxonomy were omitted. In choosing the Prototypes, we were guided by the classifications of Tholen(1984), Tedesco et al.(1989), and Bus & Binzel(2002). The comet orbital classifications were informed by Levison(1996). \Distant minor bodies", adapting the \distant objects" term used by the Minor Planet Center,1 refer to outer Solar System bodies beyond the Jupiter Trojans that are not comets. The spectral type system is that of Barucci et al. (2005) and Fulchignoni et al.(2008), with the latter guiding our Prototype selection.
    [Show full text]
  • Speaker Abstracts
    SPEAKER ABSTRACTS Table of Contents 1 Introduction .............................................................................................................................3 1.1 State of the Observatory ............................................................................................................... 3 1.2 Introduction to Modes and Metrics .............................................................................................. 3 1.3 Evolution of Gemin Observatory: Perspective from the Board ................................................... 3 1.4 STAC Perspective ........................................................................................................................... 3 1.5 Community-Centered User Support ............................................................................................. 3 2 Solar System .............................................................................................................................3 2.1 Follow-up of the First Known Interstellar Object ......................................................................... 3 2.2 Gemini Observations of Active Asteroid 354P/LINEAR (2010 A2) ................................................ 4 2.3 High-Resolution Imaging with 'Alopeke's Wide Field Mode ......................................................... 4 2.4 z-Band Photometry Reveals Three Distinct TNO Surface Types ................................................... 4 3 Review of GPI Science and Possible Upgrades ............................................................................5
    [Show full text]