Replacing Highly Enriched Uranium in Naval Reactors

Total Page:16

File Type:pdf, Size:1020Kb

Replacing Highly Enriched Uranium in Naval Reactors NTI Paper MARCH 2016 Replacing Highly Enriched Uranium in Naval Reactors SUMMARY Highly enriched uranium (HEU) is the simplest nuclear material to use for an improvised nuclear device, making it a target for terrorist groups seeking to inflict mass destruction. This paper examines the current status of HEU in naval propulsion programs worldwide, with a specific focus on the U.S. Navy’s program. It includes a technical assessment of less risky low-enriched uranium (LEU) alternatives and recommendations to enable conversion to such alternate technologies. George M. Moore, Cervando A. Banuelos, and Thomas T. Gray This paper was made possible by a grant from the Nuclear Threat Initiative. George M. Moore, PhD, JD is a Scientist-in-Residence at the James Martin Center for Nonproliferation Studies (CNS) of the Middlebury Institute of International Studies at Monterey (MIIS), a Graduate School of Middlebury College. Cervando A. Banuelos received his M.A. in Nonproliferation and Terrorism Studies from MIIS in 2015. Thomas T. Gray received his M.A. in Nonproliferation and Terrorism Studies from MIIS in 2015. About the Nuclear Threat Initiative The Nuclear Threat Initiative (NTI) is a non-profit, non-partisan organization working to protect our lives, livelihoods, environment, and quality of life now and for future generations from the growing risk of catastrophic attacks from weapons of mass destruction and disruption (WMDD)—nuclear, biological, radiological, chemical, and cyber. Founded in 2001 by Sam Nunn and philanthropist Ted Turner, NTI is guided by a prestigious, international board of directors. Joan Rohlfing serves as president. About the James Martin Center for Nonproliferation Studies The James Martin Center for Nonproliferation Studies (CNS) strives to combat the spread of weapons of mass destruction (WMD) by training the next generation of non-proliferation specialists and disseminating timely information and analysis. CNS at the Middlebury Institute of International Studies at Monterey is the largest non-governmental organization in the United States devoted exclusively to research and training on non-proliferation issues. Copyright © 2016 by the Nuclear Threat Initiative All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without written permission of the copyright holder. For permissions, send an e-mail request to [email protected]. The views expressed in this publication do not reflect those of the NTI Board of Directors or institutions with which they are associated. Contents Executive Summary ........................................................................................1 U.S. Navy Assessments ................................................................................2 HEU vs. LEU in Other Countries .......................................................................3 Introduction ..............................................................................................6 The Risks of HEU ..........................................................................................7 HEU and the NPT .........................................................................................9 Safeguarding HEU ........................................................................................12 HEU Use in Non-Weapons Military and Non-Military Applications .............................................13 Comparing Research Reactors, Power Reactors, and Naval Reactors .............................................16 The History of HEU in Submarines and Surface Warships ......................................................19 The United States ....................................................................................20 The Soviet Union/Russian Federation ...................................................................25 The United Kingdom .................................................................................29 France ..............................................................................................29 China ..............................................................................................32 India ...............................................................................................33 Argentina and Brazil .................................................................................35 Other States’ Naval Nuclear Propulsion Programs ........................................................36 Current Status of LEU Use in Naval Reactors .................................................................38 Nuclear Options for Future Naval Vessels ....................................................................39 The U.S. Navy’s Position on LEU Use in Naval Reactors ........................................................41 Analysis of the Navy’s Arguments on LEU Use ................................................................46 Technical Considerations .............................................................................46 Environmental Considerations .........................................................................49 Economic Considerations .............................................................................51 Proliferation Considerations ...........................................................................52 Arguments the U.S. Navy Could Stress .......................................................................55 Remaining Issues That Affect Naval HEU Use .................................................................56 Conclusions and Recommendations .........................................................................58 Appendix A: Naval Propulsion Reactors of the Various Nations .................................................61 Appendix B: Submarine Power Requirements .................................................................69 NTI Paper i www.nti.org Replacing Highly Enriched Uranium in Naval Reactors Executive Summary Minimization or elimination of globally held stockpiles of highly enriched uranium (HEU)1 has been a long-standing U.S. policy goal since the Carter administration in the late 1970s. Most states recognize that elimination or minimization of HEU would have significant benefits for global nonproliferation and counterterrorism efforts. These concerns have driven several efforts to eliminate or minimize HEU use in several applications. Significant progress has been made in reducing the use of HEU in civilian research reactors, in the preparation of isotopes used for medical purposes, and even in the elimination of weapons stockpile HEU by programs involving blending down the weapons grade HEU to low enriched uranium (LEU) fuel for civilian power reactors. The largest remaining non- weapons use of HEU is as fuel for naval propulsion reactors. In contrast to the attention given to other HEU minimization efforts, there has been relatively little international effort to eliminate or minimize the naval propulsion use. The topic has been addressed in some studies, particularly in the period shortly after the 9/11 attacks, and there has been some focus on the issue in the international arena, such as discussions at the two International Symposia on HEU Minimization.2 One of the major reasons for lack of progress in reducing HEU use in naval propulsion is that these are—except for the Russian ice breaker program—military programs, and the use of HEU, particularly for submarines, has historically been perceived to have a number of significant advantages. In addition, the non-weapons uses of HEU, such as for submarine propulsion, present a unique set of problems for the nonproliferation regime because, as is discussed in the body of this paper, there is a “loophole” in the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). The Russian Federation and the United States are the world’s largest holders of HEU, each of which has well over 500 metric tons (MT) of HEU.3,4 By comparison the next largest stock of HEU is the approximately 18 MT held by China. The sum total of HEU in all other states is on the order of 70 MT, a small fraction of the U.S./Russian total. The United States holds the largest declared reserve of HEU designated for naval reactors, approximately 140 MT. In addition, the U.S. Navy and United Kingdom’s Royal Navy almost exclusively use an HEU enrichment that is as high as or higher than that used in nuclear weapons. Other navies, such as the Russian Federation and the Indian Navy, typically use HEU that is enriched in the 40 percent to 50 percent range, approximately one half that of the typical enrichment for nuclear weapons.5 Finally, the remaining navies (France and China) that have nuclear-powered vessels use LEU fuel, most of which is enriched to a level of less than 10 percent. Currently, all marine propulsion reactors are military with the exception of the Soviet/Russian fleet of icebreakers/Arctic supply ships. Although the Soviet Union built its first icebreaker initially using an LEU core, it later retrofitted that vessel with HEU as well as all icebreakers that followed. These vessels are still operated by the Russian Federation. Except for the Soviet Union, early attempts at nuclear-powered commercial vessels elsewhere proved to be uneconomical; Japan, Germany, and the United States at one time built nuclear-powered commercial vessels fueled by LEU. These vessels are no longer in service. 1 HEU is by definition
Recommended publications
  • Table 2.Iii.1. Fissionable Isotopes1
    FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector.
    [Show full text]
  • FT/P3-20 Physics and Engineering Basis of Multi-Functional Compact Tokamak Reactor Concept R.M.O
    FT/P3-20 Physics and Engineering Basis of Multi-functional Compact Tokamak Reactor Concept R.M.O. Galvão1, G.O. Ludwig2, E. Del Bosco2, M.C.R. Andrade2, Jiangang Li3, Yuanxi Wan3 Yican Wu3, B. McNamara4, P. Edmonds, M. Gryaznevich5, R. Khairutdinov6, V. Lukash6, A. Danilov7, A. Dnestrovskij7 1CBPF/IFUSP, Rio de Janeiro, Brazil, 2Associated Plasma Laboratory, National Space Research Institute, São José dos Campos, SP, Brazil, 3Institute of Plasma Physics, CAS, Hefei, 230031, P.R. China, 4Leabrook Computing, Bournemouth, UK, 5EURATOM/UKAEA Fusion Association, Culham Science Centre, Abingdon, UK, 6TRINITI, Troitsk, RF, 7RRC “Kurchatov Institute”, Moscow, RF [email protected] Abstract An important milestone on the Fast Track path to Fusion Power is to demonstrate reliable commercial application of Fusion as soon as possible. Many applications of fusion, other than electricity production, have already been studied in some depth for ITER class facilities. We show that these applications might be usefully realized on a small scale, in a Multi-Functional Compact Tokamak Reactor based on a Spherical Tokamak with similar size, but higher fields and currents than the present experiments NSTX and MAST, where performance has already exceeded expectations. The small power outputs, 20-40MW, permit existing materials and technologies to be used. The analysis of the performance of the compact reactor is based on the solution of the global power balance using empirical scaling laws considering requirements for the minimum necessary fusion power (which is determined by the optimized efficiency of the blanket design), positive power gain and constraints on the wall load. In addition, ASTRA and DINA simulations have been performed for the range of the design parameters.
    [Show full text]
  • 2014 Ships and Submarines of the United States Navy
    AIRCRAFT CARRIER DDG 1000 AMPHIBIOUS Multi-Purpose Aircraft Carrier (Nuclear-Propulsion) THE U.S. NAvy’s next-GENERATION MULTI-MISSION DESTROYER Amphibious Assault Ship Gerald R. Ford Class CVN Tarawa Class LHA Gerald R. Ford CVN-78 USS Peleliu LHA-5 John F. Kennedy CVN-79 Enterprise CVN-80 Nimitz Class CVN Wasp Class LHD USS Wasp LHD-1 USS Bataan LHD-5 USS Nimitz CVN-68 USS Abraham Lincoln CVN-72 USS Harry S. Truman CVN-75 USS Essex LHD-2 USS Bonhomme Richard LHD-6 USS Dwight D. Eisenhower CVN-69 USS George Washington CVN-73 USS Ronald Reagan CVN-76 USS Kearsarge LHD-3 USS Iwo Jima LHD-7 USS Carl Vinson CVN-70 USS John C. Stennis CVN-74 USS George H.W. Bush CVN-77 USS Boxer LHD-4 USS Makin Island LHD-8 USS Theodore Roosevelt CVN-71 SUBMARINE Submarine (Nuclear-Powered) America Class LHA America LHA-6 SURFACE COMBATANT Los Angeles Class SSN Tripoli LHA-7 USS Bremerton SSN-698 USS Pittsburgh SSN-720 USS Albany SSN-753 USS Santa Fe SSN-763 Guided Missile Cruiser USS Jacksonville SSN-699 USS Chicago SSN-721 USS Topeka SSN-754 USS Boise SSN-764 USS Dallas SSN-700 USS Key West SSN-722 USS Scranton SSN-756 USS Montpelier SSN-765 USS La Jolla SSN-701 USS Oklahoma City SSN-723 USS Alexandria SSN-757 USS Charlotte SSN-766 Ticonderoga Class CG USS City of Corpus Christi SSN-705 USS Louisville SSN-724 USS Asheville SSN-758 USS Hampton SSN-767 USS Albuquerque SSN-706 USS Helena SSN-725 USS Jefferson City SSN-759 USS Hartford SSN-768 USS Bunker Hill CG-52 USS Princeton CG-59 USS Gettysburg CG-64 USS Lake Erie CG-70 USS San Francisco SSN-711 USS Newport News SSN-750 USS Annapolis SSN-760 USS Toledo SSN-769 USS Mobile Bay CG-53 USS Normandy CG-60 USS Chosin CG-65 USS Cape St.
    [Show full text]
  • NUREG-1350, Vol. 31, Information
    NRC Figure 31. Moisture Density Guage Bioshield Gauge Surface Detectors Depth Radiation Source GLOSSARY 159 GLOSSARY Glossary (Abbreviations, Definitions, and Illustrations) Advanced reactors Reactors that differ from today’s reactors primarily by their use of inert gases, molten salt mixtures, or liquid metals to cool the reactor core. Advanced reactors can also consider fuel materials and designs that differ radically from today’s enriched-uranium dioxide pellets within zirconium cladding. Agreement State A U.S. State that has signed an agreement with the U.S. Nuclear Regulatory Commission (NRC) authorizing the State to regulate certain uses of radioactive materials within the State. Atomic energy The energy that is released through a nuclear reaction or radioactive decay process. One kind of nuclear reaction is fission, which occurs in a nuclear reactor and releases energy, usually in the form of heat and radiation. In a nuclear power plant, this heat is used to boil water to produce steam that can be used to drive large turbines. The turbines drive generators to produce electrical power. NUCLEUS FRAGMENT Nuclear Reaction NUCLEUS NEW NEUTRON NEUTRON Background radiation The natural radiation that is always present in the environment. It includes cosmic radiation that comes from the sun and stars, terrestrial radiation that comes from the Earth, and internal radiation that exists in all living things and enters organisms by ingestion or inhalation. The typical average individual exposure in the United States from natural background sources is about 310 millirem (3.1 millisievert) per year. 160 8 GLOSSARY 8 Boiling-water reactor (BWR) A nuclear reactor in which water is boiled using heat released from fission.
    [Show full text]
  • ESTIMATION of FISSION-PRODUCT GAS PRESSURE in URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Wuzter A
    NASA TECHNICAL NOTE NASA TN D-4823 - - .- j (2. -1 "-0 -5 M 0-- N t+=$j oo w- P LOAN COPY: RET rm 3 d z c 4 c/) 4 z ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by WuZter A. PuuZson una Roy H. Springborn Lewis Reseurcb Center Clevelund, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D. C. NOVEMBER 1968 i 1 TECH LIBRARY KAFB, NM I 111111 lllll IllH llll lilll1111111111111 Ill1 01317Lb NASA TN D-4823 ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS By Walter A. Paulson and Roy H. Springborn Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 ABSTRACl Fission-product gas pressure in macroscopic voids was calculated over the tempera- ture range of 1000 to 2500 K for clad uranium dioxide fuel elements operating in a fast neutron spectrum. The calculated fission-product yields for uranium-233 and uranium- 235 used in the pressure calculations were based on experimental data compiled from various sources. The contributions of cesium, rubidium, and other condensible fission products are included with those of the gases xenon and krypton. At low temperatures, xenon and krypton are the major contributors to the total pressure. At high tempera- tures, however, cesium and rubidium can make a considerable contribution to the total pressure. ii ESTIMATION OF FISSION-PRODUCT GAS PRESSURE IN URANIUM DIOXIDE CERAMIC FUEL ELEMENTS by Walter A. Paulson and Roy H.
    [Show full text]
  • Consideration of Low Enriched Uranium Space Reactors
    AlM Propul~oo aoo Eo«gy Forum 10.25 1416 .20 18~3 Jllly9-11, 2018,0ncinoaoi,Obio 2018 Joi.ot PropuiS;ion Confereoce Chock fof updates Consideration of Low Enriched Uranium Space Reactors David Lee Black, Ph.D. 1 Retired, Formerly Westinghouse Electric Corporation, Washington, DC, 20006. USA The Federal Government (NASA, DOE) has recently shown interest in low enrichment uranium (LEU) reactors for space power and propulsion through its studies at national laboratories and a contract with private industry. Several non-governmental organizations have strongly encouraged this approach for nuclear non-proliferation and safety reasons. All previous efforts have been with highly enriched uranium (HEU) reactors. This study evaluates and compares the effects of changing from HEU reactors with greater than 90% U-235 to LEU with less than 20% U-235. A simple analytic approach was used, the validity of which has been established by comparison with existing test data for graphite fuel only. This study did not include cermet fuel. Four configurations were analyzed: NERVA NRX, LANL's SNRE, LEU, and generic critical HEU and LEU reactors without a reflector. The nuclear criticality multiplication factor, size, weight and system thermodynamic performance were compared, showing the strong dependence on moderator-to-fuel ratio in the reactor. The conclusions are that LEU reactors can be designed to meet mission requirements of lifetime and operability. It ,.;u be larger and heavier by about 4000 lbs than a highly enriched uranium reactor to meet the same requirements. Mission planners should determine the penalty of the added weight on payload. The amount ofU-235 in an HEU core is not significantly greater in an LEU design with equal nuclear requirements.
    [Show full text]
  • Mar-Apr 2020
    To perpetuate the memory of our shipmates who gave their lives in the pursuit of their duties while serving their country. That their dedi- cation, deeds, and supreme sacrifice be a constant source of motiva- tion toward greater accomplishments.SMOKY MOUNTAIN We pledge loyalty BASE, and patri- TN UNITED STATES SUBMARINE SERVICE VETERANS,INC. The USSVI Submariners Purpose and Creed: “To honor those who serve, past, present and future.” To perpetuate the memory of our shipmates who gave their lives in the pursuit of their duties while serving their country. That their dedication, deeds, and supreme sacrifice be a con- stant source of motivation toward greater accomplishments. We pledge loyalty and patriotism to the United States of America and its Constitution. OUR OUR OUR BROTHER- ORGANIZATION FOUNDERS HOOD Our Mission SNORKEL EXHAUST INDEX The organization will engage in vari- March & April 2020 ous projects that will bring about the perpetual remembrance of those ship- mates who have given the supreme INDEX OF WHO WE ARE AND WHAT’S IN THIS ISSUE 1 sacrifice. The organization will also SMB BASE OFFICER / Committee member listings 2 endeavor to educate all third parties it comes in contact with about the ser- SMB MEETINGS, NEW MEMBERS, CALANDARS AND LOCAL INFO 3 vices our submarine brothers per- formed and how their sacrifices made LOCAL HAPPENINGS, ADS, TERMINOLOGY AND LIBRARY 4 possible the freedom and lifestyles we enjoy today. BASE OFFICERS REPORTS 5 LATEST MEETING ADJENDA / SAMPLE ELECTION BALLOT 6 PRE WW-II AND WW-II LOST BOATS OF MARCH 7-8 LOST BOATS OF APRIL 9-11 SMB 2019 HOLLAND CLUB INDUCTIONS 12-13 Scheduled Meetings SPOTLIGHT ON USS TENNESSEE - (SSBN 734) 14 Monthly meetings are scheduled for the 3rd Thursday of each month BOONDOGGLE OF THE MONTH - USS CROAKER (SS-246) 15 at: LOOKING BACK (LEAP YEAR 2020) & SCOUTING CHAIR INTRO.
    [Show full text]
  • Federal Register/Vol. 86, No. 145/Monday, August 2, 2021/Notices
    41540 Federal Register / Vol. 86, No. 145 / Monday, August 2, 2021 / Notices DEPARTMENT OF COMMERCE III. Investigation Process Producers Will Face Increasing Import A. Initiation of Investigation Competition Bureau of Industry and Security B. Public Comments VIII. Conclusion C. Site Visits and Information Gathering A. Determination RIN 0694–XC078 Activities B. Economic Impacts of 25 Percent U.S.- D. Interagency Consultation Origin Requirement Publication of a Report on the Effect of E. Review of the Department of Commerce C. Public Policy Proposals Imports of Uranium on the National 1989 Section 232 Investigation on Security: An Investigation Conducted Uranium Imports Appendices Under Section 232 of the Trade IV. Product Scope of the Investigation Appendix A: Section 232 Investigation Expansion Act of 1962, as Amended V. Background on the U.S. Nuclear Industry Notification Letter to Secretary of Defense A. Summary of the U.S. Uranium Fuel James Mattis, July 18, 2018 AGENCY: Bureau of Industry and Cycle Appendix B: Federal Register Notices— Security, Commerce. B. Summary of U.S. Nuclear Power Notice of Requests for Public Comments on Generation Industry ACTION: Publication of a report. Section 232 National Security Investigation VI. Global Uranium Market Conditions of Imports of Uranium, July 25, 2018; SUMMARY: The Bureau of Industry and A. Summary of the Global Uranium Market Change in Comment Deadline for Section Security (BIS) in this notice is B. Uranium Transactions: Book Transfers 232 National Security Investigation of and Flag Swaps publishing a report that summarizes the Imports of Uranium, September 10, 2018 C. The Effect of the Fukushima Daiichi Appendix C: Summary of Public Comments findings of an investigation conducted Incident on U.S.
    [Show full text]
  • The Third Battle
    NAVAL WAR COLLEGE NEWPORT PAPERS 16 The Third Battle Innovation in the U.S. Navy's Silent Cold War Struggle with Soviet Submarines N ES AV T A A L T W S A D R E C T I O N L L U E E G H E T R I VI IBU OR A S CT MARI VI Owen R. Cote, Jr. Associate Director, MIT Security Studies Program The Third Battle Innovation in the U.S. Navy’s Silent Cold War Struggle with Soviet Submarines Owen R. Cote, Jr. Associate Director, MIT Security Studies Program NAVAL WAR COLLEGE Newport, Rhode Island Naval War College The Newport Papers are extended research projects that the Newport, Rhode Island Editor, the Dean of Naval Warfare Studies, and the Center for Naval Warfare Studies President of the Naval War College consider of particular Newport Paper Number Sixteen interest to policy makers, scholars, and analysts. Candidates 2003 for publication are considered by an editorial board under the auspices of the Dean of Naval Warfare Studies. President, Naval War College Rear Admiral Rodney P. Rempt, U.S. Navy Published papers are those approved by the Editor of the Press, the Dean of Naval Warfare Studies, and the President Provost, Naval War College Professor James F. Giblin of the Naval War College. Dean of Naval Warfare Studies The views expressed in The Newport Papers are those of the Professor Alberto R. Coll authors and do not necessarily reflect the opinions of the Naval War College or the Department of the Navy. Naval War College Press Editor: Professor Catherine McArdle Kelleher Correspondence concerning The Newport Papers may be Managing Editor: Pelham G.
    [Show full text]
  • The Nuclear Fuel Cycle
    THE COLLECTION > From the uranium mine> toI wNTasRtOeD dUisCpToIsOaN l 1 > The atom 2 > Radioactivity 3 > Radiation and man 4 > Energy 5 > Nuclear energy: fusion and fission 6 > How a nuclear reactor works 7 > The nuclear fuel cycle 7 > The nuclear fuel cycle FROM RESEARCH 8 > Microelectronics 9 > The laser: a concentrate of light TO INDUSTRY 10 > Medical imaging 11 > Nuclear astrophysics 12 > Hydrogen 7 >>TThhee nnuucclleeaarr ffuueell ccyyccllee UPSTREAM THE REACTOR: PREPARING THE FUEL IN THE REACTOR: FUEL CONSUMPTION DOWNSTREAM THE REACTOR: REPROCESSING NUCLEAR WASTE NUCLEAR WASTE © Commissariat à l’’Énergie Atomique et aux Energies Alternatives, 2005 Communication Division Bâtiment Siège - 91191 Gif-sur-Yvette cedex www.cea.fr ISSN 1637-5408. From the uranium mine to waste disposal 7 > The nuclear fuel cycle From the uranium mine to waste disposal 7 > The nuclear fuel cycle 2 > CONTENTS > INTRODUCTION 3 Uranium ore is extracted from open-pit mines – such as the McClear mines in Canada seen here – or underground workings. a m e g o C © “The nuclear fuel cycle includes an erray UPSTREAM THE REACTOR: of industrial operations, from uranium PREPARING THE FUEL 4 e mining to the disposal of radioactive l Extracting uranium from the ore 5 waste.” c Concentrating and refining uranium 6 y Enriching uranium 6 c Enrichment methods 8 l introduction uel is a material that can be burnt to pro - IN THE REACTOR: FUEL CONSUMPTION 9 Fvide heat. The most familiar fuels are wood, e Preparing fuel assemblies 10 coal, natural gas and oil. By analogy, the ura - e g a nium used in nuclear power plants is called Per unit or mass (e.g.
    [Show full text]
  • Fission-Produced 99Mo Without a Nuclear Reactor
    BRIEF COMMUNICATIONS Fission-Produced 99Mo Without a Nuclear Reactor Amanda J. Youker, Sergey D. Chemerisov, Peter Tkac, Michael Kalensky, Thad A. Heltemes, David A. Rotsch, George F. Vandegrift, John F. Krebs, Vakho Makarashvili, and Dominique C. Stepinski Argonne National Laboratory, Nuclear Engineering Division, Argonne, Illinois halted in the past due to inclement weather, natural phenomena, 99Mo, the parent of the widely used medical isotope 99mTc, is cur- flight delays, and terrorist threats (6). rently produced by irradiation of enriched uranium in nuclear reac- The predominant global 99Mo production route is irradiation of tors. The supply of this isotope is encumbered by the aging of these highly enriched uranium (HEU, $20% 235U) solid targets in nuclear reactors and concerns about international transportation and nu- reactors fueled by uranium (2). Other potential 99Mo production Methods: clear proliferation. We report results for the production paths include (n,g)98Mo and (g,n)100Mo; however, both routes re- of 99Mo from the accelerator-driven subcritical fission of an aqueous quire enriched molybdenum material and produce low-specific- solution containing low enriched uranium. The predominately fast 99 neutrons generated by impinging high-energy electrons onto a tan- activity Mo, which cannot be loaded directly on a commercial 99m talum convertor are moderated to thermal energies to increase fission Tc generator. The U.S. National Nuclear Security Administra- processes. The separation, recovery, and purification of 99Mo were tion implements the long-standing U.S. policy to minimize and demonstrated using a recycled uranyl sulfate solution. Conclusion: eliminate HEU in civilian applications by working to convert re- The 99Mo yield and purity were found to be unaffected by reuse of the search reactors and medical isotope production facilities to low previously irradiated and processed uranyl sulfate solution.
    [Show full text]
  • US Atomic Energy Commission Press Release
    UNITED STATES ATOMIC ENERGY COMMISSION REPORT ON THE SL-l INCIDENT, JANUARY 3, 1961 THE GENERAL MANAGER'S BOARD OF INVESTIGATION Curtis A. Nelson, Chairman Clifford K. Beck Peter A. Morris Donald I. Walker Forrest Western U. S. ATOMIC ENERGY COMMISSION Idaho Operations Office Idaho Falls, Idaho INFORMATION FOR PRESS AND RADIO FOR RELEASE 61-24 (SL-1) (In Newspapers dated Sunday, Telephone JA 2-6640, Extension 217 June 11, 1961) NOTICE TO EDITORS: Attached is the narrative section of the Board of Investigation's report presenting findings on the SL-1 (Stationary Low Power Reactor No. 1) accident which occurred last January 3 at the Atomic Energy Commission's National Reactor Testing Station near Idaho Falls. 6961 x x x 1. SUMMARY A. Nature of Report This report by the Board of Investigation is in response to the request of the General Manager of the Atomic Energy Commission to report on the SL-1 reactor incident. At the time of this writing (May 1961), there still remains substantial doubt concerning the initiating event causing the explosion within the reactor pressure vessel. The Board, therefore, feels constrained to restrict its observations concerning cause and responsibility to observable or demonstrable situations and events. With this reservation, we present our findings at this time. This report summarizes the current information before the Board pertaining to the circumstances surrounding the explosion on January 3, 1961, within the reactor vessel of the SL-1 (ALPR) reactor plant. Prior to the incident, there appear to have been a continuing deterioration of the burnable poison strips within the core and a worsening of the scram performance of the control rod system, neither of which circumstances necessarily was directly related to the incident.
    [Show full text]