Spectroscopic Atlas for Amateur Astronomers 1

Total Page:16

File Type:pdf, Size:1020Kb

Spectroscopic Atlas for Amateur Astronomers 1 Spectroscopic Atlas for Amateur Astronomers 1 Spectroscopic Atlas for Amateur Astronomers A Guide to the Stellar Spectral Classes Richard Walker Version 3.0 03/2012 Spectroscopic Atlas for Amateur Astronomers 2 Table of Contents 1 Introduction ....................................................................................................................... 7 2 Selection, Preparation and Presentation of the Spectra ........................................... 9 3 Terms, Definitions and Abbreviations........................................................................ 12 4 The Fraunhofer Lines .................................................................................................... 14 5 Overview and Characteristics of Stellar Spectral Classes ..................................... 15 6 Appearance of Elements and Molecules in the Spectra......................................... 20 7 Spectral Class O ............................................................................................................ 21 8 Wolf Rayet Stars ............................................................................................................ 28 9 Spectral Class B............................................................................................................. 32 10 LBV Stars......................................................................................................................... 39 11 Be Stars ........................................................................................................................... 43 12 Be Shell Stars ................................................................................................................. 46 13 Herbig Ae/Be and T Tauri Protostars ......................................................................... 48 14 Spectral Class A............................................................................................................. 53 15 Spectral Class F ............................................................................................................. 60 16 Spectral Class G ............................................................................................................ 65 17 Spectral Class K............................................................................................................. 70 18 Spectral Class M............................................................................................................ 78 19 Spectral Sequence on the AGB ................................................................................... 81 20 M(e) Stars on the AGB .................................................................................................. 83 21 Spectral Class S on the AGB ....................................................................................... 85 22 Carbon Stars on the AGB ............................................................................................. 91 23 Spectra of Extragalactic Objects ................................................................................ 97 24 Spectra of Emission Nebulae ....................................................................................100 25 Reflexion Spectra of Solar System Bodies..............................................................116 26 Telluric Molecular Absorption ...................................................................................121 27 The Night Sky Spectrum.............................................................................................123 28 Terrestrial Lightsources .............................................................................................125 29 Spectral Classes and – Values of Important Stars ......................................135 30 Required Ionisation Energies for the Individual Elements ...................................138 31 Bright Planetary Nebulae sorted by Excitation Classes........................................139 32 Terminology of the Spectroscopic Wavelenght Domains ....................................140 33 Appendix .......................................................................................................................141 34 Bibliography and Internet ..........................................................................................147 Spectroscopic Atlas for Amateur Astronomers 3 Change log of the atlas versions Version 1.3: Corrections of some labeling-/typing errors and temperature of the O-class stars, some English language corrections. Version 1.4: Corrections of some labeling and typing errors. sect. 1: correction of citation error regarding Spectroweb. Version 1.5: Sect. 7.4, (8) WR133, expansion velocity of the stellar wind, EW value replaced by FWHM value. sect. 8.3 (9.3): chart of the theoretical B-class continuum, correction of the wrongly labeled Ca II line (thanks to Robin Leadbeater!). Version 2.0: New: Sect. 12: Be Shell stars and some adjustments to sect. 11. New: Sect. 18 – 21: Spectral sequence of the Mira Variables on the AGB with the classes M(e), S- and carbon stars C. General revision of the title structure, the table of contents and the sect. 31 “Bibliography and Internet”. Version 3.0: Sect. 3.5: Additional Abbreviations, Sect. 3.7: New: Formula for metallicity. Sect. 7: General revision and expansion to the early O Class. Sec. 10: P Cygni, higher resolved profile sections (900L grating) in the green and blue range of the spectrum. Sect. 13: New: Herbig Ae/Be and T Tauri Protostars Sect. 21: Correction of the wrongly labelled BD Camelopardalis: new HD 22649 Sect. 24: General revision of the section, new: determination of the excitation classes of emission nebulae and table 85: SNR M1/ NGC 1952. Sect. 25: Reflexion spectra: former Tables 85 and 86 ==> new Tables 90 and 91 New: Comet C/2009 P1 Garradd, Table 94 Sect. 27: New: Nigth Sky Spectrum Table 96 Sect. 28: Table 106, Calibration spectrum of the glow starter OSRAM ST 111 Sect. 31: List of bright Planetary Nebulae sorted by excitation classes. All Parameter tables of the individual spectral classes: Correction of the wrong (german) abbreviation “Mrd” by bn (thanks to Dave Dowhos!). Spectroscopic Atlas for Amateur Astronomers 4 Directory of Tables Wavelength Gra- Table Page Topic Objects domain ting 01 16 Overview on the spectral classes Spectral strips of 3950 – 6690 200L various stars 02 17 Overview on the spectral classes Intensity profiles of 3950 – 6690 200L various stars 1 25 Spectral features of the Alnitak ζ Ori 3920 – 6710 200L late O-class Mintaka δ Ori 2 26 Detailed spectrum of a late Alnitak ζ Ori 3950 – 4750 900L O-class star 5740 – 6700 3 27 Spectral features of the early to Θ1 Ori C 3800 – 6700 200L middle O-class 68 Cygni 5 31 Wolf-Rayet WR stars, final stage of WR 133 3850 – 7250 200L the O- and early B-Class WR 140 10 34 Development of spectral features Alnilam ε Ori 3900 – 6700 200L within the B-class Gienah Corvi γ CrV 11 36 Effect of the luminosity on spectra Regulus α Leo 3920 – 4750 900L of the late B-class Rigel β Ori φ Sagittarii 12 38 Detailed spectrum of an early Spica α Vir 3800 – 6750 200L B-class star 3900 – 4750 900L 4800 – 5100 5700 – 6050 6450 – 6600 13 41 LBV star, early B-class P Cygni, 34 Cyg 3900 – 6950 200L P Cygni profiles, 6000 – 6800 900L 13A 42 Detailed spectrum LBV star, early P Cygni 34 Cyg 3850 – 4650 900L B-class, P Cygni profiles 4700 – 6050 14 44 Be- star, early B-class Dschubba δ Sco 3650 – 7000 200L 4820 – 4940 900L 6500 – 6700 6670 – 6690 14A 45 Be-star, early B-Class Tsih γ Cassiopeiae 3970 – 6750 200L 15 47 Be Shell Star, comparison to an ζ Tauri 3800 – 6800 200L “ordinary” Be Star Dschubba δ Sco 17 51 Herbig Ae/Be Proto star R Monocerotis 3900 – 7200 200L NGC 2261 18 52 T Tauri Protostar T Tauri 3900 – 7000 200L 20 55 Development of spectral features Castor α Gem 3900 – 6800 200L within the A-class Altair α Aql 21 56 Detailed spectrum of an early Sirius A α CMa 3900 – 6700 200L A-class star 3900 – 4700 900L 4780 – 5400 22 58 Effects of the luminosity on spectra Vega α Lyr 3900 – 4700 900L of the early A-class Ruchbah δ Cas Deneb α Cyg Spectroscopic Atlas for Amateur Astronomers 5 Wavelength Gra- Table Page Topic Objects domain ting 23 59 Metallicity: Vega vs. Sirius Vega α Lyr 3920 – 4700 900L Sirius A α CMa 30 62 Development of spectral features Adhafera ζ Leo 3830 – 6700 200L within the F-class Procyon α CMi 31 64 Effects of the luminosity on spectra Porrima γ Vir 3920 – 4750 900L of the early F-class Caph β Cas Mirfak α Per 40 67 Development of spectral Muphrid η Boo 3800 – 6600 200L features within the G-class Vindemiatrix ε Vir 41 68 Detailed spectrum of an early G- Sun 3800 – 7200 200L class star 3900 – 4800 900L 42 69 Detailed spectrum of an early G- Sun 4700 – 5700 900L class star 5650 – 6700 50 73 Development of spectral features Arcturus α Boo 3900 – 6800 200L within the K-class Alterf λ Leo 51 74 Detailed spectrum of an early Pollux α Gem 3900 – 6800 200L K-class star 3800 – 4800 900L 52 76 Effects of the luminosity on spectra Alsciaukat α Lyncis 4000 – 4900 900L of the late K-class 61 Cygni B 53 77 Detailed spectrum of a later Aldebaran α Tau 5150 – 5900 900L K-class star 5850 – 6700 60 80 Development of spectral features Antares α Sco 3900 – 7200 200L within the M-class Ras Algethi α Her 63 84 Mira Variable M(e), comparison to Mira o Ceti 3900 – 7200 200L a late classified M-Star Ras Algethi α Her 65 87 Extreme S-Class star, comparison R Cygni 4100 – 7300 200L to a Mira Variable M(e) Mira o Ceti 66 89 Development of spectral features Omikron1 Orionis
Recommended publications
  • Spectroscopy of the Candidate Luminous Blue Variable at the Center
    A&A manuscript no. ASTRONOMY (will be inserted by hand later) AND Your thesaurus codes are: 06 (08.03.4; 08.05.1; 08.05.3; 08.09.2; 08.13.2; 08.22.3) ASTROPHYSICS Spectroscopy of the candidate luminous blue variable at the center of the ring nebula G79.29+0.46 R.H.M. Voors1,2⋆, T.R. Geballe3, L.B.F.M. Waters4,5, F. Najarro6, and H.J.G.L.M. Lamers1,2 1 Astronomical Institute, University of Utrecht, Princetonplein 5, 3508 TA Utrecht, The Netherlands 2 SRON Laboratory for Space Research, Sorbonnelaan 2, NL-3584 CA Utrecht, The Netherlands 3 Gemini Observatory, 670 N. A’ohoku Place, Hilo, Hawaii 96720, USA 4 Astronomical Institute ’Anton Pannekoek’, University of Amsterdam, Kruislaan 403, NL-1098 SJ Amsterdam, The Nether- lands 5 SRON Laboratory for Space Research, P.O. Box 800, NL-9700 AV Groningen, The Netherlands 6 CSIC Instituto de Estructura de la Materia, Dpto. Fisica Molecular, C/Serrano 121, E-28006 Madrid, Spain Received date: 23 March 2000; accepted date Abstract. We report optical and near-infrared spectra of Luminous Blue Variable (LBV) stage (Conti 1984), these the central star of the radio source G79.29+0.46, a can- stars lose a large amount of mass in a short time interval didate luminous blue variable. The spectra contain nu- (e.g. Chiosi & Maeder 1986). The identifying characteris- merous narrow (FWHM < 100 kms−1) emission lines of tics of an LBV in addition to its blue colors are (1) a mass −5 −1 which the low-lying hydrogen lines are the strongest, and loss rate of (∼ 10 M⊙ yr ), (2) a low wind velocity of resemble spectra of other LBVc’s and B[e] supergiants.
    [Show full text]
  • The Dunhuang Chinese Sky: a Comprehensive Study of the Oldest Known Star Atlas
    25/02/09JAHH/v4 1 THE DUNHUANG CHINESE SKY: A COMPREHENSIVE STUDY OF THE OLDEST KNOWN STAR ATLAS JEAN-MARC BONNET-BIDAUD Commissariat à l’Energie Atomique ,Centre de Saclay, F-91191 Gif-sur-Yvette, France E-mail: [email protected] FRANÇOISE PRADERIE Observatoire de Paris, 61 Avenue de l’Observatoire, F- 75014 Paris, France E-mail: [email protected] and SUSAN WHITFIELD The British Library, 96 Euston Road, London NW1 2DB, UK E-mail: [email protected] Abstract: This paper presents an analysis of the star atlas included in the medieval Chinese manuscript (Or.8210/S.3326), discovered in 1907 by the archaeologist Aurel Stein at the Silk Road town of Dunhuang and now held in the British Library. Although partially studied by a few Chinese scholars, it has never been fully displayed and discussed in the Western world. This set of sky maps (12 hour angle maps in quasi-cylindrical projection and a circumpolar map in azimuthal projection), displaying the full sky visible from the Northern hemisphere, is up to now the oldest complete preserved star atlas from any civilisation. It is also the first known pictorial representation of the quasi-totality of the Chinese constellations. This paper describes the history of the physical object – a roll of thin paper drawn with ink. We analyse the stellar content of each map (1339 stars, 257 asterisms) and the texts associated with the maps. We establish the precision with which the maps are drawn (1.5 to 4° for the brightest stars) and examine the type of projections used.
    [Show full text]
  • BRAS Newsletter August 2013
    www.brastro.org August 2013 Next meeting Aug 12th 7:00PM at the HRPO Dark Site Observing Dates: Primary on Aug. 3rd, Secondary on Aug. 10th Photo credit: Saturn taken on 20” OGS + Orion Starshoot - Ben Toman 1 What's in this issue: PRESIDENT'S MESSAGE....................................................................................................................3 NOTES FROM THE VICE PRESIDENT ............................................................................................4 MESSAGE FROM THE HRPO …....................................................................................................5 MONTHLY OBSERVING NOTES ....................................................................................................6 OUTREACH CHAIRPERSON’S NOTES .........................................................................................13 MEMBERSHIP APPLICATION .......................................................................................................14 2 PRESIDENT'S MESSAGE Hi Everyone, I hope you’ve been having a great Summer so far and had luck beating the heat as much as possible. The weather sure hasn’t been cooperative for observing, though! First I have a pretty cool announcement. Thanks to the efforts of club member Walt Cooney, there are 5 newly named asteroids in the sky. (53256) Sinitiere - Named for former BRAS Treasurer Bob Sinitiere (74439) Brenden - Named for founding member Craig Brenden (85878) Guzik - Named for LSU professor T. Greg Guzik (101722) Pursell - Named for founding member Wally Pursell
    [Show full text]
  • Where Are the Distant Worlds? Star Maps
    W here Are the Distant Worlds? Star Maps Abo ut the Activity Whe re are the distant worlds in the night sky? Use a star map to find constellations and to identify stars with extrasolar planets. (Northern Hemisphere only, naked eye) Topics Covered • How to find Constellations • Where we have found planets around other stars Participants Adults, teens, families with children 8 years and up If a school/youth group, 10 years and older 1 to 4 participants per map Materials Needed Location and Timing • Current month's Star Map for the Use this activity at a star party on a public (included) dark, clear night. Timing depends only • At least one set Planetary on how long you want to observe. Postcards with Key (included) • A small (red) flashlight • (Optional) Print list of Visible Stars with Planets (included) Included in This Packet Page Detailed Activity Description 2 Helpful Hints 4 Background Information 5 Planetary Postcards 7 Key Planetary Postcards 9 Star Maps 20 Visible Stars With Planets 33 © 2008 Astronomical Society of the Pacific www.astrosociety.org Copies for educational purposes are permitted. Additional astronomy activities can be found here: http://nightsky.jpl.nasa.gov Detailed Activity Description Leader’s Role Participants’ Roles (Anticipated) Introduction: To Ask: Who has heard that scientists have found planets around stars other than our own Sun? How many of these stars might you think have been found? Anyone ever see a star that has planets around it? (our own Sun, some may know of other stars) We can’t see the planets around other stars, but we can see the star.
    [Show full text]
  • CGEM Series Telescope! the CGEM Series Is Made of the Highest Quality Materials to Ensure Stability and Durability
    CCGGEEMM SSeerriieess INSTRUCTION MANUAL CGEM 800 ● CGEM 925 ● CGEM 1100 INTRODUCTION.......................................................................................................................................................................................................................4 Warning.......................................................................................................................................................................................................... 4 ASSEMBLY.................................................................................................................................................................................................................................6 Setting up the Tripod...................................................................................................................................................................................... 6 Attaching the Equatorial Mount ..................................................................................................................................................................... 7 Attaching the Accessory Tray ........................................................................................................................................................................ 8 Installing the Counterweight Bar.................................................................................................................................................................... 8 Installing
    [Show full text]
  • Instruction Manual
    IINNSSTTRRUUCCTTIIOONN MMAANNUUAALL INTRODUCTION...........................................................................................................................................................4 WARNING.......................................................................................................................................................................4 ASSEMBLY.....................................................................................................................................................................6 ASSEMBLING THE CPC ...................................................................................................................................................6 Setting up the Tripod.................................................................................................................................................6 Adjusting the Tripod Height......................................................................................................................................7 Attaching the CPC to the Tripod...............................................................................................................................7 Adjusting the Clutches...............................................................................................................................................8 The Star Diagonal .....................................................................................................................................................8 The Eyepiece
    [Show full text]
  • The Denver Observer June 2016
    The Denver JUNE 2016 OBSERVER Mercury transits the Sun on May 9, 2016. The planet, seen at the lower left of the Sun's face, has a diameter of about 3,000 miles, but the Sun's 870,000 mile cross-section dwarfs the planet—even though the Sun is seen here at twice Mercury's distance from us. (Note the planet-sized sunspots above-left of solar center.) Image © Ron Pearson. JUNE SKIES by Zachary Singer The Solar System the Martian surface reveals itself. On observing runs over the last few If you haven’t been observing Mars, the “unusually bright orange weeks, with good seeing, early views did indeed yield so-so results, but object in Libra,” now is a really good time: As June begins, the plan- improved noticeably as the planet neared its highest point in the south. et is just past opposition, and even more recently past its closest ap- I was able to make out the Syrtis Major region easily, even though proach to Earth, when the planet’s disk spanned a full 18.6 arcseconds. moonlight was a factor in the initial sessions. It looms large in a telescope now, and even instruments of moderate One great tool for power bring satisfying images at 100 or 150X. By midmonth, Mars improving your view Sky Calendar will be highest around 11 PM, with the disk slightly smaller, at 17.9”; is a “Moon filter.” 4 New Moon by June 30th, though, the planet will have already crossed the Meridian By bringing the sheer 12 First-Quarter Moon at 10 PM, before the sky brightness of Mars’ mag- 20 Full Moon In the Observer is fully dark, and the disk nitude -2 disk down a 27 Last-Quarter Moon will have shrunk some- notch, the moon filter President’s Message .
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • Frankfurt Pleiades Star Map 2
    FRANKFURT PLEIADES STAR MAP 2 In investigating the Martian connection of the Pleiadian pattern of Frankfurt, one cannot avoid to address the origins at least in the propagation of this motif in the modern era and in all the financial powerhouses of today’s World Financial Oder. This is in part the Pleiades conspiracy as this modern version of the ‘Pleiadian Conspiracy’ started here in Frankfurt with the Rothschild dynasty by Amschel Moses Bauer, 1743. This critique is not meant to placate all those of the said family or those that work in such financial structures or businesses and specifically not those in Frankfurt. However the argument is that those behind the family apparatus are of a cabal that is connected to the allegiance of not the true GOD of the Universe, YHVH but to the false usurper Lucifer. It is Lucifer they worship and venerate as the ‘god of this world’ and is the God of Mammon according to Jesus’ assessment. According to research and especially based on The 13 Bloodlines of the Illuminati by Springmeier, the current financial domination of the world began in Frankfurt with Mayer Amschel. They were of Jewish extract but adhere more toward the Kabbalistic, Zohar, and ancient Babylonian secret mystery religion initiated by Nimrod after the Flood of Noah. The star Taygete corresponds to the Literaturahaus building. T he star Celaena corresponds to the Burgenamt Zentrales building. The star Merope corresponds to the area of the Timmitus und THE PLEIADES Hyperakusis Center. The star Alcyone corresponds to the Oper FINANCIAL DISTRICT The Bearing-Point building is Frankfurt or the Opera House.
    [Show full text]
  • Sky Notes by Neil Bone 2005 August & September
    Sky notes by Neil Bone 2005 August & September below Castor and Pollux. Mercury is soon ing June and July, it is still quite possible that Sun and Moon lost from view again, arriving at superior con- noctilucent clouds (NLC) could be seen into junction beyond the Sun on September 18. early August, particularly by observers at The Sun continues its southerly progress along Venus continues its rather unfavourable more northerly locations. Quite how late into the ecliptic, reaching the autumnal equinox showing as an ‘Evening Star’. Although it August NLC can be seen remains to be deter- position at 22h 23m Universal Time (UT = pulls out to over 40° elongation east of the mined: there have been suggestions that the GMT; BST minus 1 hour) on September 22. Sun during September, Venus is also heading visibility period has become longer in recent At that precise time, the centre of the solar southwards, and as a result its setting-time years. Observational reports will be welcomed disk is positioned at the intersection between after the Sun remains much the same − barely by the Aurora Section. the celestial equator and the ecliptic, the latter an hour − during this interval. Although bright While declining sunspot activity makes great circle on the sky being inclined by 23.5° at magnitude −4, Venus will be quite tricky major aurorae extending to lower latitudes to the former. Calendrical autumn begins at the to catch in the early twilight: viewing cir- less likely, the appearance of coronal holes equinox, but amateur astronomers might more cumstances don’t really improve until the in the latter parts of the cycle does bring the readily follow meteorological timing, wherein closing weeks of 2005.
    [Show full text]
  • Jason A. Dittmann 51 Pegasi B Postdoctoral Fellow
    Jason A. Dittmann 51 Pegasi b Postdoctoral Fellow Contact Massachusetts Institute of Technology MIT Kavli Institute: 37-438f 617-258-5928 (office) 70 Vassar St. 520-820-0928 (cell) Cambridge, MA 02139 [email protected] Education Harvard University, Cambridge, MA PhD, Astronomy and Astrophysics, May 2016 Advisor: David Charbonneau, PhD • University of Arizona, Tucson, AZ BS, Astronomy, Physics, May 2010 Advisor: Laird Close, PhD • Recent 51 Pegasi b Postdoctoral Fellow July 2017 – Present Research Earth and Planetary Science Department, MIT Positions Faculty Contact: Sara Seager Postdoctoral Researcher Feb 2017 – June 2017 Kavli Institute, MIT Supervisor: Sarah Ballard Postdoctoral Researcher July 2016 – Jan 2017 Center for Astrophysics, Harvard University Supervisor: David Charbonneau Research Assistant Sep 2010 – May 2016 Center for Astrophysics, Harvard University Advisors: David Charbonneau Publication 16 first and second authored publications Summary 22 additional co-authored publications 1 first-authored publication in Nature 1 co-authored publication in Nature Selected 51 Pegasi b Postdoctoral Fellowship 2017 – Present Awards and Pierce Fellowship 2010 – 2013 Honors Certificate of Distinction in Teaching 2012 Best Project Award, Physics Ugrd. Research Symp. 2009 Best Undergraduate Research (Steward Observatory) 2009 – 2010 Grants Principal Investigator, Hubble Space Telescope 2017, 10 orbits Awarded “Initial Reconaissance of a Transiting Rocky (maximum award) Planet in a Nearby M-Dwarf’s Habitable Zone” Principal Investigator,
    [Show full text]
  • STERNBILD GIRAFFE (Camelopardalis – Cam)
    STERNBILD GIRAFFE (Camelopardalis – Cam) Die GIRAFFE ist ein Sternbild des nördlichen Himmels. Sie kulminiert im Dezember gegen 24h. Es ist ein unauffälliges Sternbild und besteht aus visuell lichtschwachen Sternen, beinhaltet aber interessante Mehrfachsterne und Deep Sky- Objekte. Für ungeübte Beobachter ein Tip: fast alle Sterne, die zwischen dem POLARSTERN und CAPELLA aufzuspüren sind, gehören zur Giraffe. Im Februar und März 2016 zeigt sich der Komet C/2013 US10 CATALINA in diesem Sternbild. Die Giraffe befindet sich innerhalb der Koordinaten RE 14h 26’ bis 03h 15’ und DE +52° bis +86°; Die Nachbarsternbilder sind im Norden KEPHEUS, im Westen KASSIOPEIA, im Süden PERSEUS, FUHRMANN und LUCHS sowie im Osten der GROßE BÄR, DRACHE und KLEINE BÄR Die Giraffe ist nördlich von 37° geogr. Breite zirkumpolar und südl. von –4° nicht mehr vollständig sichtbar. Die Objekte: 1. die Markierungssterne 2. Doppel- und Mehrfachsterne 3. die Veränderlichen 4. der Offene Sternhaufen NGC 1502 5. die Galaxien NGC2403 und IC 342 1. die Markierungssterne Die Sterne im Giraffen gehören wahrlich nicht zu den sichtbar Hellsten, wenn man bedenkt, dass der Stern BETA mit 4 Magnituden an der Spitze steht. Es sind jedoch mitunter wahre Leuchtkraftriesen dabei, die wegen der immensen Distanz nicht heller erscheinen. Das Gerüst des Giraffen wird von den Sternen 7 Cam – Beta – Alpha – Gamma – CS und CE markiert. Gamma (γ) Camelopardalis, RE 03h 50' 21“ / DE +71° 20' mv= 4,59mag; Spektrum= A2IVn; Distanz= 335LJ; LS= 128fach; Mv= -1,0Mag; MS= 3,7fach; RS= 5,5fach; OT= 9250K; EB= 0,042“/Jhr.; RG= -1,0km/s; Doppelstern; mv Komponente B= 12,4mag; Distanz A-B= 56,2“; PW= 240° (1909) Gamma markiert das Hinterteil der Giraffe; Alpha (α) Camelopardalis, 9 Cam; RE 04h 54' 03“ /DE +66°20' mv= 4,26mag; Spektrum= 09,5Ia, Distanz ca.
    [Show full text]