Warping Peirce Quincuncial Panoramas

Total Page:16

File Type:pdf, Size:1020Kb

Warping Peirce Quincuncial Panoramas Warping Peirce Quincuncial Panoramas Chamberlain Fong [ [email protected] ] 11/12/2010 Abstract The Peirce quincuncial projection is a mapping of the surface of a sphere to a square. It is a conformal mapping except for four points on the equator. These points of non-conformality cause significant artifacts in photographic applications. In this paper, we propose an algorithm and a user-interface to mitigate these artifacts. We then promote the Peirce quincuncial projection as a viable alternative to the stereographic projection in photographic applications. Keywords: Peirce Quincuncial Mapping, Peirce Quincuncial Projection, Panography, Image Warping, Map Projections, Computational Photography, Stereographic Projection, Equirectangular Images Introduction The Peirce quincuncial projection [1][2] is a mapping of the surface of a sphere to a square. It was originally proposed by Charles Sanders Peirce in 1879 for geographic applications. Indeed, Peirce was working for U.S. Coast and Geodetic Survey when he came up with this projection. In the recent years, the photographic community [3] has adopted this projection for aesthetic purposes. The figure below shows Peirce's projection of the world and an example of its use for photographic purposes. Figure 1: Peirce's quincuncial projection of the the world and a photographic example 1 Spherical Panoramas Anyone who has used street view in Google maps should be familiar with these type of photographs. There is a sphere of light that shines upon us all the time. Advances in photography and computer graphics [4][5] has allowed the photographer to capture and view this sphere. These type of photographs are called spherical panoramas . They can be either be viewed interactively using a computer as is the case with Google street view; or using some sort of projection mapping the surface of the sphere to a planar image. There is a large and mature community of photographers who specialize on spherical panoramas. For the rest of this paper, we shall refer to these type of photographers as panographers and their art as panography . There is a theorem in differential geometry that states that the sphere is not a developable surface. This means that it cannot be flattened onto a plane without distortion. Since the times of Ptolemy circa 100 A.D., geographers and cartographers have come up with various projections of the sphere to the plane. This is a significant problem in geography and map-making that there are whole books [6] devoted to this topic. Needless to say, every type of spherical projection has some sort of compromise in which it distorts distance, area, scale, direction, or angles in order to represent the sphere on a plane. The spherical panorama community [7] has adopted several spherical projection techniques to view their photographs. The standard projection used by panographers is called the equirectangular projection. Most spherical panoramas are stored and viewed as equirectangular images. Equirectangular images always have an image dimension ratio of 2:1. This follows from the fact that the sphere has 360 angular degrees in longitude and 180 angular degrees in latitude. An example of an equirectangular image is show below. We have color-coded some important parts for illustration purposes. The equator is colored red. The north and south poles of the sphere are colored purple and yellow, respectively. In panography jargon, the north pole is known as the zenith and the south pole is known as the nadir . Figure 2: An equirectangular panorama 2 Another popular projection among panographers is the stereographic projection. The stereographic projection is conformal, which means that it preserves angles locally within the image. This property makes stereographic panoramas aesthetically pleasing to the eyes. In fact, there is a large online community [8] of panographers who use the stereographic projection to make artful "little planets" that simulate an overhead aerial view. Figure 3 shows an example of the stereographic projection applied to our equirectangular image in figure 2. There are two types of stereographic projections depending on which pole the projection occurs. Figure 3: Stereographic panorama -- nadir type (left) & zenith type (right) The Peirce Quincuncial Projection The Peirce quincuncial projection is closely related to the stereographic projection. It was devised by Peirce after drawing inspiration from Hermann Schwarz's mathematical result on a conformal mapping of the circle onto a polygon with n sides. This result is called the Schwarz-Christoffel transformation and is an important theorem in the field of Complex Analysis. The Peirce quincuncial projection has several features that make it visually interesting. One pole lies exactly in the center of the square, while the other pole is split among the four corners of the the square. The equator lies on an inner square that is formed by connecting the midpoints of each of the edges in the perimeter of the square. This inner square is tilted by 45 degrees when compared to the outer square. One important feature of the Peirce quincuncial projection is that it is a conformal mapping, except for four points. Conformality is important for aesthetic reasons in photographic applications. We will talk more about the non-conformal points in a latter section of this paper. 3 Figure 4: Overview of the Peirce quincuncial projection An overview of the Peirce Quincuncial projection is shown in figure 4. In this overview, we start from a sphere and produce a square projection. The first step splits the sphere into northern and southern hemispheres. The next step does a stereographic projection of the two hemispheres. This is followed by using the Schwarz-Christoffel transformation on these two stereographic discs to produce two squares. These two squares are then reassembled as a bigger square in a quincuncial fashion. The main equation provided by Peirce for his quincuncial projection is: In this equation, every point in the stereographic disc represented by the complex variable w with polar coordinates (p ,θ ) is mapped to complex variable z in the Peirce square with (x,y) coordinates. In practice, it suffices to know that Jacobi elliptic function cn( z,1/ √2) can be used in mapping the circle to a square in the complex plane, and vice versa. Note that the complex Jacobi elliptic function is just a special case of the more general Schwarz-Christoffel transformation. Figure 5 shows a detailed example of the Peirce quincuncial projection steps applied to a real spherical panorama. We start with our equirectangular image split into the northern and southern hemisphere and proceed with intermediate images corresponding to steps in the Peirce quincuncial projection. The projection is called quincuncial because the two small squares are rearranged in a quincuncial shape to form a larger square. 4 Figure 5: Visual example of the Peirce quincuncial projection steps 5 Figure 6: Peirce quincuncial panorama Limitations and Previous Work As the panorama in figure 6 shows, the Peirce quincuncial projection has a serious inherent flaw. It is not conformal on four points. These four points fall on the midpoints in the perimeter of the square. For photographic applications, these non-conformal points cause ugly discontinuities in the image. This flaw has limited the use of the Peirce quincuncial projection in the spherical panorama community. For example, in figure 6, the non-conformal flaw causes the basketball ring to be split in half into left and right parts of the image. It also causes the lower ground to bulge unnaturally. During the authorship of this paper, there were only less than a dozen Peirce quincuncial panoramas showing up in a Google image search. In contrast, there are over 46,000 results for stereographic panoramas. This is true despite the fact that there is a Photoshop plugin called Flexify [9] by Flaming Pear Software for converting equirectangular images to Peirce quincuncial. Moreover, there is free source code available for a full implementation of the Peirce quincuncial projection in the Mathmap scripting plugin of the GIMP photo-editing application, written by flickr.com user Breic. It is likely that panographers who tried the Peirce quincuncial projection for their spherical panoramas found the non-conformal flaws unappealing and abandoned this projection. In this paper, we will present a proposed modification of the Peirce quincuncial projection to mitigate its non-conformal flaw. It is our hope that our modification will make the Peirce quincuncial just as popular as the stereographic projection among panographers. 6 Our proposed modification improves on previous ideas by people who have used the Peirce quincuncial projection for panoramas. For example, flickr.com member Breic [10] allows for the user to move the equator up and down in latitude within his Mathmap script. He also gives the user freedom to spin the spherical panorama along its main axis to move the four non-conformal points together around the equator before applying the projection. Our proposed modification gives the user more freedom by allowing the user to choose any latitude and longitude for each of the four non-conformal points. We will discuss a user-interface and an algorithm for warping the projection in the next section. Warping the Equator The main idea of this paper is to warp the equator of the input spherical panorama so that the non-conformal points fall on "uninteresting" areas of the image. This warping will hide the image discontinuities and make the result more aesthetically pleasing. The resulting image is a warped quincuncial panorama that is no longer conformal, but still generally preserves much of the characteristic look of a overhead aerial image. We developed an interactive program where a user works on an input equirectangular image and moves four control points in the user-interface. These four control points always fall on the equator and will, in fact, redefine the equator after they have been selectively manipulated and moved.
Recommended publications
  • Polar Zenithal Map Projections
    POLAR ZENITHAL MAP Part 1 PROJECTIONS Five basic by Keith Selkirk, School of Education, University of Nottingham projections Map projections used to be studied as part of the geography syllabus, but have disappeared from it in recent years. They provide some excellent practical work in trigonometry and calculus, and deserve to be more widely studied for this alone. In addition, at a time when world-wide travel is becoming increasingly common, it is un- fortunate that few people are aware of the effects of map projections upon the resulting maps, particularly in the polar regions. In the first of these articles we shall study five basic types of projection and in the second we shall look at some of the mathematics which can be developed from them. Polar Zenithal Projections The zenithal and cylindrical projections are limiting cases of the conical projection. This is illustrated in Figure 1. The A football cannot be wrapped in a piece of paper without either semi-vertical angle of a cone is the angle between its axis and a stretching or creasing the paper. This is what we mean when straight line on its surface through its vertex. Figure l(b) and we say that the surface of a sphere is not developable into a (c) shows cones of semi-vertical angles 600 and 300 respectively plane. As a result, any plane map of a sphere must contain dis- resting on a sphere. If the semi-vertical angle is increased to 900, tortion; the way in which this distortion takes place is deter- the cone becomes a disc as in Figure l(a) and this is the zenithal mined by the map projection.
    [Show full text]
  • Map Projections
    Map Projections Chapter 4 Map Projections What is map projection? Why are map projections drawn? What are the different types of projections? Which projection is most suitably used for which area? In this chapter, we will seek the answers of such essential questions. MAP PROJECTION Map projection is the method of transferring the graticule of latitude and longitude on a plane surface. It can also be defined as the transformation of spherical network of parallels and meridians on a plane surface. As you know that, the earth on which we live in is not flat. It is geoid in shape like a sphere. A globe is the best model of the earth. Due to this property of the globe, the shape and sizes of the continents and oceans are accurately shown on it. It also shows the directions and distances very accurately. The globe is divided into various segments by the lines of latitude and longitude. The horizontal lines represent the parallels of latitude and the vertical lines represent the meridians of the longitude. The network of parallels and meridians is called graticule. This network facilitates drawing of maps. Drawing of the graticule on a flat surface is called projection. But a globe has many limitations. It is expensive. It can neither be carried everywhere easily nor can a minor detail be shown on it. Besides, on the globe the meridians are semi-circles and the parallels 35 are circles. When they are transferred on a plane surface, they become intersecting straight lines or curved lines. 2021-22 Practical Work in Geography NEED FOR MAP PROJECTION The need for a map projection mainly arises to have a detailed study of a 36 region, which is not possible to do from a globe.
    [Show full text]
  • Maps and Cartography: Map Projections a Tutorial Created by the GIS Research & Map Collection
    Maps and Cartography: Map Projections A Tutorial Created by the GIS Research & Map Collection Ball State University Libraries A destination for research, learning, and friends What is a map projection? Map makers attempt to transfer the earth—a round, spherical globe—to flat paper. Map projections are the different techniques used by cartographers for presenting a round globe on a flat surface. Angles, areas, directions, shapes, and distances can become distorted when transformed from a curved surface to a plane. Different projections have been designed where the distortion in one property is minimized, while other properties become more distorted. So map projections are chosen based on the purposes of the map. Keywords •azimuthal: projections with the property that all directions (azimuths) from a central point are accurate •conformal: projections where angles and small areas’ shapes are preserved accurately •equal area: projections where area is accurate •equidistant: projections where distance from a standard point or line is preserved; true to scale in all directions •oblique: slanting, not perpendicular or straight •rhumb lines: lines shown on a map as crossing all meridians at the same angle; paths of constant bearing •tangent: touching at a single point in relation to a curve or surface •transverse: at right angles to the earth’s axis Models of Map Projections There are two models for creating different map projections: projections by presentation of a metric property and projections created from different surfaces. • Projections by presentation of a metric property would include equidistant, conformal, gnomonic, equal area, and compromise projections. These projections account for area, shape, direction, bearing, distance, and scale.
    [Show full text]
  • Representations of Celestial Coordinates in FITS
    A&A 395, 1077–1122 (2002) Astronomy DOI: 10.1051/0004-6361:20021327 & c ESO 2002 Astrophysics Representations of celestial coordinates in FITS M. R. Calabretta1 and E. W. Greisen2 1 Australia Telescope National Facility, PO Box 76, Epping, NSW 1710, Australia 2 National Radio Astronomy Observatory, PO Box O, Socorro, NM 87801-0387, USA Received 24 July 2002 / Accepted 9 September 2002 Abstract. In Paper I, Greisen & Calabretta (2002) describe a generalized method for assigning physical coordinates to FITS image pixels. This paper implements this method for all spherical map projections likely to be of interest in astronomy. The new methods encompass existing informal FITS spherical coordinate conventions and translations from them are described. Detailed examples of header interpretation and construction are given. Key words. methods: data analysis – techniques: image processing – astronomical data bases: miscellaneous – astrometry 1. Introduction PIXEL p COORDINATES j This paper is the second in a series which establishes conven- linear transformation: CRPIXja r j tions by which world coordinates may be associated with FITS translation, rotation, PCi_ja mij (Hanisch et al. 2001) image, random groups, and table data. skewness, scale CDELTia si Paper I (Greisen & Calabretta 2002) lays the groundwork by developing general constructs and related FITS header key- PROJECTION PLANE x words and the rules for their usage in recording coordinate in- COORDINATES ( ,y) formation. In Paper III, Greisen et al. (2002) apply these meth- spherical CTYPEia (φ0,θ0) ods to spectral coordinates. Paper IV (Calabretta et al. 2002) projection PVi_ma Table 13 extends the formalism to deal with general distortions of the co- ordinate grid.
    [Show full text]
  • Distortion-Free Wide-Angle Portraits on Camera Phones
    Distortion-Free Wide-Angle Portraits on Camera Phones YICHANG SHIH, WEI-SHENG LAI, and CHIA-KAI LIANG, Google (a) A wide-angle photo with distortions on subjects’ faces. (b) Distortion-free photo by our method. Fig. 1. (a) A group selfie taken by a wide-angle 97° field-of-view phone camera. The perspective projection renders unnatural look to faces on the periphery: they are stretched, twisted, and squished. (b) Our algorithm restores all the distorted face shapes and keeps the background unaffected. Photographers take wide-angle shots to enjoy expanding views, group por- ACM Reference Format: traits that never miss anyone, or composite subjects with spectacular scenery background. In spite of the rapid proliferation of wide-angle cameras on YiChang Shih, Wei-Sheng Lai, and Chia-Kai Liang. 2019. Distortion-Free mobile phones, a wider field-of-view (FOV) introduces a stronger perspec- Wide-Angle Portraits on Camera Phones. ACM Trans. Graph. 38, 4, Article 61 tive distortion. Most notably, faces are stretched, squished, and skewed, to (July 2019), 12 pages. https://doi.org/10.1145/3306346.3322948 look vastly different from real-life. Correcting such distortions requires pro- fessional editing skills, as trivial manipulations can introduce other kinds of distortions. This paper introduces a new algorithm to undistort faces 1 INTRODUCTION without affecting other parts of the photo. Given a portrait as an input,we formulate an optimization problem to create a content-aware warping mesh Empowered with extra peripheral vi- FOV=97° which locally adapts to the stereographic projection on facial regions, and sion to “see”, a wide-angle lens is FOV=76° seamlessly evolves to the perspective projection over the background.
    [Show full text]
  • STEREOGRAPHIC PROJECTION IS CONFORMAL Let S2
    STEREOGRAPHIC PROJECTION IS CONFORMAL Let S2 = {(x,y,z) ∈ R3 : x2 + y2 + z2 =1} be the unit sphere, and let n denote the north pole (0, 0, 1). Identify the complex plane C with the (x, y)-plane in R3. The stereographic projection map, π : S2 − n −→ C, is described as follows: place a light source at the north pole n. For any point p ∈ S2 − n, consider a light ray emanating downward from n to pass through the sphere at p. The ray also meets the plane, and the point where it hits is π(p). That is, π(p)= ℓ(n,p) ∩ R2, where ℓ(n,p)= {(1 − t)n + tp : t ∈ R} is the line through n and p. (See figure 1.) Figure 1. Stereographic projection The formula for stereographic projection is x + iy π(x,y,z)= . 1 − z Indeed, the point (1 − t)n + t(x,y,z) has last coordinate 1 − t + tz. This equals 0 for t = 1/(1 − z), making the other coordinates x/(1 − z) and y/(1 − z), and the formula follows. For the inverse map, take a point q = (x, y, 0) in the plane. Since n and q are orthogonal, any point p = (1 − t)n + tq on the line ℓ(n, q) satisfies |p|2 = (1 − t)2 + t2|q|2. This equals 1 for t =2/(|q|2 + 1) (ignoring t = 0, which gives the north pole), showing that 2 2 − 2x 2y x + y − 1 π 1(x, y)= , , . x2 + y2 +1 x2 + y2 +1 x2 + y2 +1 1 2 STEREOGRAPHIC PROJECTION IS CONFORMAL Stereographic projection is conformal, meaning that it preserves angles between 2 curves.
    [Show full text]
  • Figure 1. Stereographic Projection from North Pole in Lecture 3 We
    MATH 2220: SOME NOTES ON SEC 2.1 Abstract. In the following we review some important concepts in Sec 2.1. Keywords are stereographic projection and graphs of functions of several variables. Without speci¯cation, all numbers and symbols correspond to the textbook (Lax-Terrell 2016). Part 1: Stereographic projection Def (2.20 p77) (Stereographic projection): The unit sphere in three-dimensional space R3 is the set S = f(X; Y; Z) 2 R3 j X2 + Y 2 + Z2 = 1g. Let N = (0; 0; 1) be the \north pole", Stereographic projection is a function S : R2 ! S n fNg which maps any point A = (x; y; 0) on the plane z = 0 to a point B on the sphere. Here B = (X; Y; Z) is the intersection point of the line through B and N with the unit sphere. See the picture below. Figure 1. stereographic projection from north pole In Lecture 3 we have shown: Proposition (2.20 p77) S : R2 ! S n fNg has the formula: 2x 2y x2 + y2 ¡ 1 S(x; y) = (X; Y; Z) = ( ; ; ) x2 + y2 + 1 x2 + y2 + 1 x2 + y2 + 1 It is not hard to show that S has an inverse function F : S n fNg ! R2: X Y F (X; Y; Z) = (x; y) = ( ; ): 1 ¡ Z 1 ¡ Z Next we state two remarkable properties of F : S n fNg ! R2. Theorem 1: Any circle that does not pass through the north pole (0; 0; 1) is mapped by F to a circle on the plane z = 0. Intuition: It is easy to see the circle of latitude is indeed mapped by F to circles on the plane z = 0.
    [Show full text]
  • Arxiv:1204.4952V2 [Math.HO] 17 May 2012
    Sculptures in S3 Saul Schleimer Henry Segerman∗ Mathematics Institute Department of Mathematics and Statistics University of Warwick University of Melbourne Coventry CV4 7AL Parkville VIC 3010 United Kingdom Australia [email protected] [email protected] Abstract We construct a number of sculptures, each based on a geometric design native to the three-dimensional sphere. Using stereographic projection we transfer the design from the three-sphere to ordinary Euclidean space. All of the sculptures are then fabricated by the 3D printing service Shapeways. 1 Introduction The three-sphere, denoted S3, is a three-dimensional analog of the ordinary two-dimensional sphere, S2. In n+ general, the n–dimensional sphere is a subset of Euclidean space, R 1, as follows: n n+1 2 2 2 S = f(x0;x1;:::;xn) 2 R j x0 + x1 + ··· + xn = 1g: Thus S2 can be seen as the usual unit sphere in R3. Visualising objects in dimensions higher than three is non-trivial. However for S3 we can use stereographic projection to reduce the dimension from four to three. n n n Let N = (0;:::;0;1) be the north pole of S . We define stereographic projection r : S − fNg ! R by x0 x1 xn−1 r(x0;x1;:::;xn) = ; ;:::; : 1 − xn 1 − xn 1 − xn See [1, page 27]. Figure 1a displays stereographic projection in dimension one. For any point (x;y) 2 S1 − fNg draw the straight line L through N and (x;y). Then L meets R1 at a single point; this is r(x;y). Notice that the figure is also a two-dimensional cross-section of stereographic projection in any dimension.
    [Show full text]
  • Stereographic Projection in the Plane Consider the Unit Circle S1 Defined by X2 + Z2 = 1 in the (X, Z)-Plane
    College of the Holy Cross, Spring 2013 Math 392 (Hyperbolic Geometry) Stereographic Projection Stereographic Projection in the Plane Consider the unit circle S1 defined by x2 + z2 = 1 in the (x, z)-plane. The point N = (0, 1) is the north pole and its antipode S = (0, −1) is the south pole. Each non-horizontal line through N intersects the circle in exactly one point (x, z) 6= N, and intersects the x-axis in exactly one point, u. We may therefore view the circle S1 as the number line with a single point added “at infinity”. N = (0, 1) (x, z) u 1 Definition 1. The mapping πN : S \{N} → R defined by πN (x, z) = u is called −1 1 stereographic projection (away from N). The inverse map πN : R → S \{N} is called the rational parameterization of the circle. Theorem 2. For all (x, z) with z < 1 on the circle, and for all real u, we have x 2u u2 − 1 π (x, z) = , π−1(u) = , . N 1 − z N u2 + 1 u2 + 1 Proof. By similar triangles (dashed lines in the figure), u/1 = (u − x)/z. Rear- ranging to solve for u, we have uz = u − x, or x = u(1 − z), or u = x/(1 − z). For the inverse map, since x2 + z2 = 1, or x2 = 1 − z2 = (1 − z)(1 + z), substitution gives u2(1 − z)2 = (1 − z)(1 + z). As long as z < 1 (i.e., (x, z) 6= N), we have u2(1 − z) = 1 + z, or u2 − 1 = z(u2 + 1).
    [Show full text]
  • SIMPLE GNOMONIC PROTECTOR for X-RAY LAUEGRAMS S,Tuurr
    SIMPLE GNOMONIC PROTECTOR FOR X-RAY LAUEGRAMS S,tuurr, G. Gonoox, The Acad,emyoJ N atural Sciencesof Philadelbhi'a. ABsrRAcr The indexing of Lauegrams requires transposition of the Laue spots (wbich are at tan20) to tan d (stereographic trace of plane pole in F-Laue, and gnomonic piane-pole in B-Laue) or to cot d (gnomonic plane-pole of F-Laue). The geometry involved is simple: to the line through the Laue spot and the center of the Lauegram draw the unit circle (5 cm. radius for D:5 cm. in camera), tangent to the line at the center of the Lauegram. From the Laue spot draw a line through the center of the circle. Erect perpendiculars to this line, tangent to each side of the unit circle. It is easily proven that the intersecticns o{ these tangents with that of the tangent through the Laue spot and the center of Lauegram are the points required 0, and 90o-0. A simple transporteur may be constructed by swivelling a carpenter's square to a straight-edge, such that the center of rotation is 5 cm. below the straight edge used to connect Laue spot and center of Lauegram; and the vertical arm moves tangent to it at the required distance. Such a device was described by Clark and Gross in 1937 for plotting 90o-0.However, the vertical arm can be adjusted to any distance from the center of rotation, giving reductions to 4, 3, 2.5 or 2 cm. as desired. A shorter vertical arm, on the opposite side of the center is used for plotting d.
    [Show full text]
  • Map Projection
    Map projection An intro for multivariable calculus Introduction In multivariable calculus, we study higher dimensional calculus, i.e. derivatives and integrals applied to functions mapping Rm to Rn. Viewed in this context, the study of map projection is quite natural since we are mapping the surface of a globe to planar rectangle. The globe is naturally parameterized in terms of two variables, latitude ' and longitude θ. Thus, we could think of a map projection as a function T : R2 ! R2 or T ('; θ) = (x('; θ); y('; θ)). Example map projections The earth, as we well know, is approximately spherical; it is best represented as a globe. For convenience both physical and conceptual, however, we frequently represent the spherical earth with a flat map. Such a representation must involve distortion. The process is illustrated in figure 1. Figure 1: Projecting the globe The projection shown in figure1 is called Mercator's projection. Mercator created his projection in 1569. Although it was not universally adopted immediately, it represented a major breakthrough in navigation because paths of constant compass bearing are represented as straight lines. Ultimately, this property follows from the fact that Mercator's projection is a cylindrical, conformal projection. A major goal of this document is to understand these facts. We won't really fully understand a map projection until we know and understand the formula defin- ing the projection. The formula for Mercator's projection is T ('; θ) = (θ; ln(jsec(') + tan(')j)). Of course, there are a huge number of map projections. Two more cylindrical projections are shown in figure2.
    [Show full text]
  • Mapping the Sphere
    Mapping the sphere It is not possible to map a portion of the sphere into the plane without introducing some distortion. There is a lot of evidence for this. For one thing you can do a simple experiment. Cut a grapefruit in half and eat one of the halves. Now try to flatten the remaining peel without the peel tearing. If that is not convincing enough, there are mathematical proofs. One of the nicest uses the formulas for the sum of the angles of a triangle on the sphere and in the plane. The fact that these are different shows that it is not possible to find a map from the sphere to the plane which sends great circles to lines and preserves the angles between them. The question then arises as to what is possible. That is the subject of these pages. We will present a variety of maps and discuss the advantages and disadvantages of each. The easiest such maps are the central projections. Two are presented, the gnomonic projection and the stereographic projection. Although many people think so, the most important map in navigation, the Mercator projection, is not a central pro- jection, and it will be discussed next. Finally we will talk briefly about a map from the sphere to the plane which preserves area, a fact which was observed already by Archimedes and used by him to discover the area of a sphere. All of these maps are currently used in mapping the earth. The reader should consult an atlas, such as those published by Rand Macnally, or the London Times.
    [Show full text]