Acanthocephala

Total Page:16

File Type:pdf, Size:1020Kb

Acanthocephala AccessScience from McGraw-Hill Education Page 1 of 10 www.accessscience.com Acanthocephala Contributed by: Donald V. Moore Publication year: 2014 A distinct phylum (or class, according to some classifications) of helminths, the adults of which are parasitic in the alimentary canal of vertebrates. They are commonly known as the spiny-headed worms. The phylum comprises the orders Archiacanthocephala, Palaeacanthocephala, and Eoacanthocephala. Over 500 species have been described from all classes of vertebrates, although more species occur in fish than in birds and mammals and only a relatively few species are found in amphibians and reptiles. The geographical distribution of acanthocephalans is worldwide, but genera and species do not have a uniform distribution because some species are confined to limited geographic areas. Host specificity is well established in some species, whereas others exhibit a wide range of host tolerance. The same species never occurs normally, as an adult, in cold-blooded and warm-blooded definitive hosts. More species occur in fish than any other vertebrate; however, Acanthocephala have not been reported from elasmobranch fish. The fact that larval development occurs in arthropods gives support to the postulation that the ancestors of Acanthocephala were parasites of primitive arthropods during or before the Cambrian Period and became parasites of vertebrates as this group arose and utilized arthropods for food. See also: ARCHIACANTHOCEPHALA ; EOACANTHOCEPHALA ; PALAEACANTHOCEPHALA . Morphology Adults of various species show great diversity in size, ranging in length from 0.04 in. (1 mm) in some species found in fish to over 16 in. (400 mm) in some mammalian species ( Fig. 1 ). Most of the larger species are from mammals; however, some mammalian forms are relatively small ( Corynosoma ) even though they parasitize seals and whales. When observed undisturbed in the intestine, the elongate body is distinctly flattened, but on removal to water or saline and after preservation the body becomes cylindrical. Living worms are translucent or milky white, although they may take on a distinctive color from the intestinal contents. The body of both sexes has three divisions: the proboscis armed with hooks, spines, or both; an unspined neck; and the posterior trunk. Proboscis The proboscis is the primary organ for attachment of Acanthocephala to the intestinal wall of the host. In some species, the proboscis is parallel with the main axis of the body, but frequently it is inclined ventrally. The proboscis may be globular, or elongate and cylindrical, in shape and is invariably armed with sharp pointed hooks, spines, or both (Fig. 1). These structures vary in shape and number and are usually arranged radially or in spiral rows. Electron microscopy studies have revealed that proboscis hooks consist of a central core of AccessScience from McGraw-Hill Education Page 2 of 10 www.accessscience.com ImageFig. 1 Variousof 1 acanthocephalan examples, adult forms drawn to same scale. ( a ) Moniliformis dubius , 4–12 in. (10–30 cm) long. ( b ) Proboscis of same. ( c ) Macracanthorhynchus hirudinaceus , 10–24 in. (25–60 cm) long. ( d ) Proboscis of same. ( e ) Oncicola canis , 0.5–0.8 in. (1–2 cm) long. ( f ) Proboscis of same. ( After A. C. Chandler and C. P. Read , Introduction to Parasitology , 10th ed ., Wiley , 1961 ) ImageFig. 2 Diagrams of 2 showing mechanics of proboscis attachment of Neoechinorhynchus emydis in intestinal wall of a turtle. ( a ) Proboscis fully introverted. ( b ) Most basal hooks in contact with host tissue. ( c–e ) Progr essive stages in extroversion of the proboscis. ( After H. J. Van Cleave, Experimental Parasitology, vol. 1, 1952 ) cytoplasm covered by hard nonliving material. In species with an elongate proboscis, the hooks seem to be in longitudinal rows with a quincuncial arrangement. In most species, the proboscis is capable of introversion into a saclike structure, the proboscis receptacle. When in this position, the tips of the hooks are all directed anteriorly and are on the inside of the introverted proboscis. As the proboscis is everted and extended, these hooks engage the mucosa of the host’s intestine, with the tips turning posteriorly as they reach their functional position on the exterior of the proboscis. The recurved points of the hooks anchor the worm firmly to the intestinal wall ( Fig. 2 ). The proboscis receptacle and neck can be retracted into the body cavity, but without inversion. Within the anterior end of the trunk are found the proboscis receptacle; musculature for retracting the proboscis, receptacle, and neck; and the lemnisci ( Fig. 3 ). The proboscis receptacle is attached to the inner surface of the AccessScience from McGraw-Hill Education Page 3 of 10 www.accessscience.com ImageFig. 3 Anteriorof 3 end of Moniliformis dubius. proboscis. Muscles known as inverters of the proboscis are attached to the anterior tip of this structure and pass through the proboscis and receptacle, emerging from the posterior of the receptacle, and continue some distance posteriorly, where they attach to the trunk wall. Usually one inverter is attached dorsally and one ventrally. Contraction of the inverter fibers introverts the proboscis into the receptacle, while further contraction of these fibers pulls the receptacle deep into the body cavity. Body wall Electron microscopy studies show that the body wall is covered by a thin mucopolysaccharide known as the epicuticle secreted onto the surface of the worm. Beneath the epicuticle is the thin cuticle with an outer membrane and a homogeneous layer perforated by numerous pores of canals, which pass through the striped layer beneath. Many of the canals are filled with an electron-dense material. Below the striped layer is the felt layer composed of many fibrous strands extending in various directions. Mitochondria and numerous vesicles are present in the felt layer. Some vesicles seem to be connected to the canals of the striped layer. The radial layer beneath the felt layer contains fewer fibrous strands, large thin-walled lacunar channels with mitochondria arranged around the channels. Lipids and glycogen are present in the radial layer. Circular and longitudinal muscle layers are found beneath the radial layer separated by plasma membranes. Some investigators consider all body-wall layers beneath the stripped layer as hypodermis. Giant nuclei The wall of the trunk has an external cuticula beneath which lies the thick syncytial hypodermis, or subcuticula. The hypodermis contains a relatively small number of giant nuclei, which may be round, oval, ameboid, or elongate with a number of lateral branches ( Fig. 4 ). Lacunae Within the hypodermis is a series of intercommunicating spaces, the lacunar system. Usually the lacunar system is composed of two longitudinal vessels either dorsal and ventral or ventral and lateral. In some species, only the AccessScience from McGraw-Hill Education Page 4 of 10 www.accessscience.com ImageFig. 4 Crossof 4 sections showing body plans of acanthocephalans. ( a ) Palaeacanthocephalan. ( b ) Archiacanthocephalan. ( After L. H. Hyman, The Invertebrates, vol. 3, McGraw-Hill, 1951 ) ImageFig. 5 Lacunarof 5 system of Moniliformis , dorsal view, showing regular circular branches. ( After L. H. Hyman, The Invertebrates, vol. 3, McGraw-Hill, 1951 ) dorsal vessel is present. The longitudinal vessels are connected by a series of smaller vessels, the lacunae, which ramify throughout the body. In species exhibiting pseudosegmentation ( Moniliformis ), the regularly spaced lateral lacunae and the body musculature divide the wall into transverse folds ( Fig. 5 ). These folds have no effect on the arrangement of internal organs. Pseudocoele The body cavity, or pseudocoele, contains all the internal organs, the most conspicuous of which are the reproductive organs enclosed in axial connective-tissue ligament sacs. These ligament sacs are hollow tubes that extend most of the length of the cavity of the trunk. They are single in both males and females of the Palaeacanthocephala, but are divided into dorsal and ventral sacs that communicate anteriorly in females of the other orders. There is no vestige of a digestive system in any stage of the life cycle. AccessScience from McGraw-Hill Education Page 5 of 10 www.accessscience.com Reproductive system The reproductive organs of the male consist of a pair of testes and specialized cells, the cement glands. In most species, there is a saclike structure behind the cement glands, Saefftigen’s pouch, through which run the sperm ducts and the ducts from the cement glands ( Fig. 6 a ). The products of the testes and cement glands are discharged through a penis, which is surrounded by a posteriorly located bell-shaped copulatory bursa, which is usually introverted into the posterior extremity of the trunk. At copulation, the bursa is extended and applied to the posterior extremity of the female, where it is held firmly in place by the secretions of the cement glands. This material hardens, forming a copulatory cap on the female, which is an internal cast of the bursa of the male, and remains attached to the posterior extremity of the female for some time following copulation. Female Acanthocephala are unique in that the ovary exists as a distinct organ only in the very early stages of development and later breaks up to form free-floating egg balls. The eggs are fertilized as they are released from the egg balls and are retained within the ligament sacs until embryonation is complete. The genital orifice is posterior. A vagina provided with a strong sphincter extends anteriorly from the orifice and a saccular uterus is anterior to the vagina. The anterior end of the uterus is surrounded by a series of guard cells, the selective apparatus. From this extends a funnel-like structure, the uterine bell, the broad anterior end of which opens into the body cavity or one of the ligament sacs holding the developing eggs (Fig. 6 b ). During embryonation in the body cavity, the eggs acquire a series of membranes and a hard outer shell.
Recommended publications
  • Review of Acanthocephala (Hemiptera: Heteroptera: Coreidae) of America North of Mexico with a Key to Species
    Zootaxa 2835: 30–40 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) Review of Acanthocephala (Hemiptera: Heteroptera: Coreidae) of America north of Mexico with a key to species J. E. McPHERSON1, RICHARD J. PACKAUSKAS2, ROBERT W. SITES3, STEVEN J. TAYLOR4, C. SCOTT BUNDY5, JEFFREY D. BRADSHAW6 & PAULA LEVIN MITCHELL7 1Department of Zoology, Southern Illinois University, Carbondale, Illinois 62901, USA. E-mail: [email protected] 2Department of Biological Sciences, Fort Hays State University, Hays, Kansas 67601, USA. E-mail: [email protected] 3Enns Entomology Museum, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA. E-mail: [email protected] 4Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Illinois 61820, USA. E-mail: [email protected] 5Department of Entomology, Plant Pathology, & Weed Science, New Mexico State University, Las Cruces, New Mexico 88003, USA. E-mail: [email protected] 6Department of Entomology, University of Nebraska-Lincoln, Panhandle Research & Extension Center, Scottsbluff, Nebraska 69361, USA. E-mail: [email protected] 7Department of Biology, Winthrop University, Rock Hill, South Carolina 29733, USA. E-mail: [email protected] Abstract A review of Acanthocephala of America north of Mexico is presented with an updated key to species. A. confraterna is considered a junior synonym of A. terminalis, thus reducing the number of known species in this region from five to four. New state and country records are presented. Key words: Coreidae, Coreinae, Acanthocephalini, Acanthocephala, North America, review, synonymy, key, distribution Introduction The genus Acanthocephala Laporte currently is represented in America north of Mexico by five species: Acan- thocephala (Acanthocephala) declivis (Say), A.
    [Show full text]
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records
    125 Helminth Parasites (Trematoda, Cestoda, Nematoda, Acanthocephala) of Herpetofauna from Southeastern Oklahoma: New Host and Geographic Records Chris T. McAllister Science and Mathematics Division, Eastern Oklahoma State College, Idabel, OK 74745 Charles R. Bursey Department of Biology, Pennsylvania State University-Shenango, Sharon, PA 16146 Matthew B. Connior Life Sciences, Northwest Arkansas Community College, Bentonville, AR 72712 Abstract: Between May 2013 and September 2015, two amphibian and eight reptilian species/ subspecies were collected from Atoka (n = 1) and McCurtain (n = 31) counties, Oklahoma, and examined for helminth parasites. Twelve helminths, including a monogenean, six digeneans, a cestode, three nematodes and two acanthocephalans was found to be infecting these hosts. We document nine new host and three new distributional records for these helminths. Although we provide new records, additional surveys are needed for some of the 257 species of amphibians and reptiles of the state, particularly those in the western and panhandle regions who remain to be examined for helminths. ©2015 Oklahoma Academy of Science Introduction Methods In the last two decades, several papers from Between May 2013 and September 2015, our laboratories have appeared in the literature 11 Sequoyah slimy salamander (Plethodon that has helped increase our knowledge of sequoyah), nine Blanchard’s cricket frog the helminth parasites of Oklahoma’s diverse (Acris blanchardii), two eastern cooter herpetofauna (McAllister and Bursey 2004, (Pseudemys concinna concinna), two common 2007, 2012; McAllister et al. 1995, 2002, snapping turtle (Chelydra serpentina), two 2005, 2010, 2011, 2013, 2014a, b, c; Bonett Mississippi mud turtle (Kinosternon subrubrum et al. 2011). However, there still remains a hippocrepis), two western cottonmouth lack of information on helminths of some of (Agkistrodon piscivorus leucostoma), one the 257 species of amphibians and reptiles southern black racer (Coluber constrictor of the state (Sievert and Sievert 2011).
    [Show full text]
  • Appendix: Bioinspired Parasite Details
    A p p e n d i x : B i o i n s p i r e d P a r a s i t e Details Internal Parasites: Endoparasites Biological endoparasites live inside a hosts’ body. In farms, biological parasites infect, hurt, and even kill animals, hurting a farming business. This book is look- ing for inspiration from biology to prevent or treat business “disease.” In business, there are many opportunities for inoculation and treatment. Brain Jackers—Acanthocephala— Thorny-Headed Worms Thorny-headed worms are rare in humans, and also cause disease in birds, amphibians, and reptiles. They are called thorny-headed because they use a bio- logical lancet to pierce and hold onto the stomach walls of the host (Wikipedia, 2013). Their lifecycle includes invertebrates, fish, lizards, birds, and mammals. In one stage of their lifecycle, they “brain jack” a small crustacean eaten by ducks. Just as inner-city drivers are subject to “car-jacking,” this parasite actually redi- rects the crustacean’s dominant behavior from staying away from light to actively seeking it—where ducks may be more likely to eat them, and where the parasite reproduces (Wikipedia, 2013). Alaskan Inuit have a zest for raw fish and that contributes to their increased incidence of Acanthocephala infection compared with other groups of people (Roberts & Janovy, 2009, p. 506). Prevention and Treatment for Acanthocephala Endoscopic and X-ray examinations detect Acanthocephala because their eggs are not passed through feces (Mehlhorn, 2008, p. 25). Controlling the spread of rodents, as well as protecting and cooking food prevents infection.
    [Show full text]
  • Smaller Protostome Phyla: Rotifera, Gastrotricha, Nematomorpha & Acanthocephala Bio 1413: General Zoology Lab (Ziser, 2008) [Exercise 10B] Lab Activities: 1
    Smaller Protostome Phyla: Rotifera, Gastrotricha, Nematomorpha & Acanthocephala Bio 1413: General Zoology Lab (Ziser, 2008) [Exercise 10B] Lab Activities: 1. Rotifers (p167) slide: Rotifers, wm • Examine prepared slide of a rotifer and be able to identify the following structures: corona, foot, mastax, digestive tract, reproductive tract • Attempt to locate and to identify living rotifers from the water samples provided • Recognize and identify rotifers on illustrations and be able to identify to Phylum 2. Gastrotrichs (p167) slide: Gastrotrichs, wm • Observe living specimens (if available) and note their appearance and movement • examine prepared slides of a gastrotrich and identify: mouth, pharynx, adhesive gland, scales 3. Nematomorpha (p168) preserved: horsehair worms • examine living and/or preserved horsehair worms as available and be able to recognize them and distinguish them from other “wormlike” phyla 4. Acanthocephala (p168) • examine preserved specimens and slides as available and be able to recognize them and distinguish them from other “wormlike” phyla eg. Macracanthorhynchus preserved: Macracanthorhynchus this animal is parasitic in the intestine of pigs, the larvae develop in beetle grubs which are eaten by pigs to complete its life cycle eg. examine the prepared slide slide: acanthoceophala, wm identify the following: retractable proboscis with hooks, proboscis receptacle, ligament sac Notebook Suggestions: Describe the kinds of movement seen in live rotifers and compare to the movement seen in roundworms; is it similar? Diagram some of the variety of rotifers in samples and illustrations; what characteristics do all share; how do each differ If living gastrotrichs are available, describe how their movement differs from that of rotifers. Can you identify any organs on the gastrotrich Describe the similarities and differences between acanthocephala and nematomorpha make a diagram of the general life cycle of a horsehair worm and an acanthocephalan.
    [Show full text]
  • Chapter 9 in Biology of the Acanthocephala]
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 1985 Epizootiology: [Chapter 9 in Biology of the Acanthocephala] Brent B. Nickol University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Nickol, Brent B., "Epizootiology: [Chapter 9 in Biology of the Acanthocephala]" (1985). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 505. https://digitalcommons.unl.edu/parasitologyfacpubs/505 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Nickol in Biology of the Acanthocephala (ed. by Crompton & Nickol) Copyright 1985, Cambridge University Press. Used by permission. 9 Epizootiology Brent B. Nickol 9.1 Introduction In practice, epizootiology deals with how parasites spread through host populations, how rapidly the spread occurs and whether or not epizootics result. Prevalence, incidence, factors that permit establishment ofinfection, host response to infection, parasite fecundity and methods of transfer are, therefore, aspects of epizootiology. Indeed, most aspects of a parasite could be related in sorne way to epizootiology, but many ofthese topics are best considered in other contexts. General patterns of transmission, adaptations that facilitate transmission, establishment of infection and occurrence of epizootics are discussed in this chapter. When life cycles are unknown, little progress can be made in under­ standing the epizootiological aspects ofany group ofparasites.
    [Show full text]
  • Phylum Onychophora
    Lab exercise 6: Arthropoda General Zoology Laborarory . Matt Nelson phylum onychophora Velvet worms Once considered to represent a transitional form between annelids and arthropods, the Onychophora (velvet worms) are now generally considered to be sister to the Arthropoda, and are included in chordata the clade Panarthropoda. They are no hemichordata longer considered to be closely related to echinodermata the Annelida. Molecular evidence strongly deuterostomia supports the clade Panarthropoda, platyhelminthes indicating that those characteristics which the velvet worms share with segmented rotifera worms (e.g. unjointed limbs and acanthocephala metanephridia) must be plesiomorphies. lophotrochozoa nemertea mollusca Onychophorans share many annelida synapomorphies with arthropods. Like arthropods, velvet worms possess a chitinous bilateria protostomia exoskeleton that necessitates molting. The nemata ecdysozoa also possess a tracheal system similar to that nematomorpha of insects and myriapods. Onychophorans panarthropoda have an open circulatory system with tardigrada hemocoels and a ventral heart. As in arthropoda arthropods, the fluid-filled hemocoel is the onychophora main body cavity. However, unlike the arthropods, the hemocoel of onychophorans is used as a hydrostatic acoela skeleton. Onychophorans feed mostly on small invertebrates such as insects. These prey items are captured using a special “slime” which is secreted from large slime glands inside the body and expelled through two oral papillae on either side of the mouth. This slime is protein based, sticking to the cuticle of insects, but not to the cuticle of the velvet worm itself. Secreted as a liquid, the slime quickly becomes solid when exposed to air. Once a prey item is captured, an onychophoran feeds much like a spider.
    [Show full text]
  • (Acanthocephala). David Joseph Demont Louisiana State University and Agricultural & Mechanical College
    Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1978 The Life Cycle and Ecology of Octospiniferoides Chandleri Bullock 1957 (Acanthocephala). David Joseph Demont Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Demont, David Joseph, "The Life Cycle and Ecology of Octospiniferoides Chandleri Bullock 1957 (Acanthocephala)." (1978). LSU Historical Dissertations and Theses. 3276. https://digitalcommons.lsu.edu/gradschool_disstheses/3276 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)” . If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy.
    [Show full text]
  • First Record of Acanthocephala in Marine Copepods
    OPHELIA46 (3): 217-231 (August1997) FIRST RECORD OF ACANTHOCEPHALA IN MARINE COPEPODS Rony Huysl* & Philippe Bodin2 1 Zoology Department, The Natural History Museum, Cromwell Road, London SW7 5BD, England 2Universite de Bretagne Occidentale, URA CNRS D 1513, 6 avenue Le Gorgeu, 29285 Brest Cedex, France *Author for correspondence ABSTRACT Late cystacanth stages were discovered in the haemocoel of the marine benthic harpacticoid Halectinosoma herdmani (T. & A. Scott, 1896) (Copepoda: Ectinosomatidae) collected off La Rochelle, France. This represents the first record of Acanthocephala infesting marine copepods. On the basis of the hook formula on the proboscis and the spine pattern on the trunk, the para­ sites were identified as juveniles of Acanthogyrus (Acanthosentis) lizae Orecchia, Paggi & RadujkoY­ ic, 1988 (Eoacanthocephala: Gyracanthocephala: Quadrigyridae) which utilizes the golden grey mullet Liza aurata (Risso, 1810) as the definitive host. The literature on acanthocephalans utiliz­ ing copepods as intermediate hosts is reviewed and some morphological details of both the cysta­ canth and host copepod are presented using differential interference contrast and scanning elec­ tron microscopy. Halectinosoma porosum Wells, 1967 from Inhaca Island (Mozambique) is formally transferred to Ectinosoma Boeck, 1865 as E. porosum (Wells, 1967) comb. nov. INTRODUCTION The Acanthocephala is a small but important phylum of endoparasitic hel­ minths. They live as adults in the alimentary tract of both poikilothermic and homeothermic vertebrates and require an arthropod as first intermediate host. The latter is either a crustacean in aquatic species or an insect or isopod (or rarely a myriapod; e.g. Crites 1964, Fahnestock 1985) in terrestrial species. Although relatively few life cycles have been elucidated, they seem to take a similar course in all acanthocephalans studied.
    [Show full text]
  • Rotifers: Excellent Subjects for the Study of Macro- and Microevolutionary Change
    Hydrobiologia (2011) 662:11–18 DOI 10.1007/s10750-010-0515-1 ROTIFERA XII Rotifers: excellent subjects for the study of macro- and microevolutionary change Gregor F. Fussmann Published online: 1 November 2010 Ó Springer Science+Business Media B.V. 2010 Abstract Rotifers, both as individuals and as a nature. These features make them excellent eukaryotic phylogenetic group, are particularly worthwhile sub- model systems for the study of eco-evolutionary jects for the study of evolution. Over the past decade dynamics. molecular and experimental work on rotifers has facilitated major progress in three lines of evolution- Keywords Rotifer phylogeny Á Asexuality Á ary research. First, we continue to reveal the phy- Eco-evolutionary dynamics logentic relationships within the taxon Rotifera and its placement within the tree of life. Second, we have gained a better understanding of how macroevolu- Introduction tionary transitions occur and how evolutionary strat- egies can be maintained over millions of years. In the Rotifers are microscopic invertebrates that occur in case of rotifers, we are challenged to explain the freshwater, brackish water, in moss habitats, and in soil evolution of obligate asexuality (in the bdelloids) as (Wallace et al., 2006). Rotifers are particularly fasci- mode of reproduction and how speciation occurs in nating and suitable objects for the study of evolution the absence of sex. Recent research with bdelloid roti- and, over the past decade, featured prominently in fers has identified novel mechanisms such as horizon- research on both macro- and microevolutionary tal gene transfer and resistance to radiation as factors change. I, here, review the recent developments in potentially affecting macroevolutionary change.
    [Show full text]
  • Acanthocephala) from Sperm Whales (Physeter Macrocephalus) Stranded on Prince Edward Island, Canada
    J. Helminthol. Soc. Wash. 60(2), 1993, pp. 205-210 Bolbosoma capitatum and Bolbosoma sp. (Acanthocephala) from Sperm Whales (Physeter macrocephalus) Stranded on Prince Edward Island, Canada ERIC P. HOBERG,' PIERRE-YVES DAOusx,2 AND SCOTT McBuRNEY2 1 United States Department of Agriculture, Agricultural Research Service, Biosystematic Parasitology Laboratory, BARC East, Building 1180, 10300 Baltimore Avenue, Beltsville, Maryland 20705 and 2 Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, Charlottetown, Prince Edward Island, Canada CIA 4P3 ABSTRACT: Specimens of Bolbosoma capitatum (von Linstow, 1880) and Bolbosoma sp. were recovered from 2 male sperm whales (Physeter macrocephalus L.) that died following a mass stranding on Prince Edward Island, Canada. Some aspects of previous descriptions of B. capitatum have been incomplete, particularly with char- acteristics of the hooks of the proboscis being poorly denned. Females of B. capitatum were found to have 16- 18 longitudinal rows of hooks with either 7-8 or 8-9 hooks in each row. The largest hooks with strongly curved blades were apical to median (overall range 69-122 mm long), whereas the basal hooks were spinelike (68-91 /j.m long). The basal hooks had a unique transverse orientation of the roots, an attribute apparently shared only with B. physeteris Gubanov, 1952, among the 14 species of Bolbosoma from cetaceans and pinnipeds. Although Bolbosoma capitatum had apparently been reported from Physeter macrocephalus in the eastern Atlantic Ocean, none of these records could be substantiated. The current report constitutes a new geographic record (Gulf of St. Lawrence, Canada) and the first account of this parasite in sperm whales from North American waters.
    [Show full text]
  • A Survey of the Acanthocephalan Parasites of Fish Species Otsego County, NY
    A survey of the acanthocephalan parasites of fish species Otsego County, NY L.G. Hendricks1 and F.B. Reyda2 Abstract: The survey documents the diversity of the acanthocephalan parasites in the fish species of Otsego Lake, Cooperstown, New York, and of nearby water bodies of the Biological Field Station (SUNY Oneonta), as well as of Canadarago Lake, Richfield Springs, New York. INTRODUCTION Acanthocephala, or thorny-headed worms, are parasites of vertebrates, and are commonly found in species of birds, mammals and fishes (Schmidt and Roberts, 2005). The body of an acanthocephalan consists of a proboscis and a trunk (see Figure 1). The distinguishing feature of acanthocephalans is the proboscis, which is covered with hooks, and can be retracted. The hooked proboscis is used to anchor the worm to the intestinal wall of the vertebrate host. The hooks themselves can damage the host intestine, and can affect overall fish health (Schmidt and Roberts, 2005). In some cases, hooks can actually penetrate through the intestinal wall, leading to perforations, which can be fatal (Schmidt and Roberts, 2005). It is unclear how often this happens in nature. Most of the acanthocephalan trunk consists of reproductive organs. The sexes are separate, and mating takes place in the vertebrate host intestine. Acanthocephalans are considered pseudocoelomates, i.e., their mesoderm does not line their entire body cavity. Acanthocephala lack a digestive tract. Instead, they absorb nutrients directly from the lumen of the host intestine (Schmidt and Roberts, 2005). Absorption occurs across the tegument of the parasite. The life cycle of acanthocephalans typically consists of two hosts.
    [Show full text]