The Changing Seasons: Drought, Fire, Plague, and a Penguin

Total Page:16

File Type:pdf, Size:1020Kb

The Changing Seasons: Drought, Fire, Plague, and a Penguin The Changing Seasons: Drought, Fire, Plague,and a Penguin Droughtsand fires occasion summer wandering in a greatmany species, as the birdingannals of June--July2002 attest. Buthow did this Humboldt Penguincome to becaught in fishingnets off Prince of Wales Island, Alaska on 18 July2002? Photographcourtesy of GuyDemn7ert. MatthewF. Sharp entirepopulations perhaps, by thedrought and widespread fires in north- VIREO,Academy of NaturalSciences ern Mexico,the northernportion of theBaja California Peninsula, south- 1900 BenjaminFranklin Parkway ern California, the arid Southwest, the Great Basin, and the Central Philadelphia,Pennsylvania 19103 Rockies.Few regional editors commented in detailon the displacement (email:[email protected]) per se,but mostregional reports in the vicinityof the deoughtand fires containnumerous early dates for migrants,records of wanderersat odd ummerissupposed torepresent alull, a time when birds are at their altitudes,and birds out of habitatand range. most sedentary.With many having completedtheir northward To backup a bit to theseasons beginnings: the cold and wet conditions "springe'migration, they raise young beforemoving south again in in late May and Junein the northernRockies and northwesternboreal "autumn."The scenariois, of course,misleading in thecontext of a great forestsare believedto havedelayed arrival of manymigrant breeding many spedes.The accompanyingphotograph of a HumboldtPenguin species(Dinsmore 2002) and ultimately to haveled to verypoor repro- caught18 July 2002 by fishermennear Noyes Island off of Princeof Wales ductivesuccess for a widevariety of northern-nestingspecies. As Michael Island,Alaska provides a neededreminder that completelyunexpected Harrisonput it, Albertaexperienced "all four seasonsin Juneand July, birdsturn up evenduring supposedlystatic seasons such as summer. sometimesin oneday." Snowfall in both Juneand Julyin the mountains Whetherthis bird wanderednorthward from the southernhemisphere of that provincecertainly must have made things difficult for montane under the influenceof seawatercurrents, strayed from a coastalzoo, breedingspecies there. In thecentral portion of thecontinent, dimate was aquarium,or themepark, or escapedfrom a foreignfishing vessel on morevariable, with intra-regionaldifferences in bothheat and precipita- whichit waskept as a"pet," we'll never know. Whatever its source, the bird tion. Torrential rains came in northeastern North Dakota and northwest- turnedup at a timewhen the extreme,even the absurdseemed to be the ern Minnesota,where flooding was a problem,while South Dakota and normin theworld of birdsand birding. much of the northernGreat Plains were under drought conditions, as weremost of the southernGreat Plains, especially Nebraska. The Great Climatic Patterns Lakes,Middlewestern Prairie, and Central Southernregions received This summerseason was againmarked by superlativeclimatic condi- more rain than areasto the westor east,though some areas in all three tions-chiefly extremeheat and continueddeought--through much of regionssuffered below-normal water levels. South-central Texas experi- the continent.This undoubtedlyled to the displacementof manybirds, enced severe floods. 402 NORTH AMERICAN BIRDS ChangingSeasons U.S. Drough MonRor • •bnor•l• D• D•ht •mp•ct . D•Drou•eder• A=Agicu•u•e D2Drou•ere WF == F Water ire dan•er(Hydrological) •ildfir•) • • Droug•eme •Delinea•sdominant imp•c• • • Dreu•ienal (Ne •pe = All 3 impa•) Figure1. TheU.S. Drought Monitor Map for the periodending 30 July2002. TheU.S. Drought Monitor is a partnershipbetween the NationalDrought Lo•' co•d• ma• •ar•. See accompanying te•ummary for fetecast g•tem•n•. MitigationCenter, United States Department of Agriculture,and National •p:#dmuuhl.unl.edu Idm Oceanicand Atmospheric Administration. Map courtesyof NDMC-UNL. With the exceptionof Florida,where heavy rain brought much-needed Valley.It istempting to seethese unusual records as effects of droughtand waterback to dry weftands,the entireEast Coast suffered under drought fires,as in pastdry seasons(e.g., summer1996). or near-drought.A coldlate spring,with substantialsnow as late as 18 Interestingly,the two regionsreporting the most moderateweather May in New England,led to nestfailure in somedosely monitored early conditions,Texas and the Pacific Northwest, also found the seasonto be nesterssuch as Peregrines and Bald Eagles, as well as cavity nesters such as full of excitingstrays and vagrants. Mlodinow called the season"a mag- EasternBluebird in theNortheast. The wet, cool early June did help ame- nificent one for birding," and Lockwood,Shackelford, and Sekula lioratethe effects of anexceptionally hot and dry July in NewEngland and describedit as"one of themost exciting in recentyears: Totally unrelated theHudson-Delaware region. To the south, it washot anddry, with many to drought or fire, vagrant-of-the-seasonhonors go to the Juan areas experiencingsevere drought, especiallyin Georgia,Virginia, FernfindezPetrel 80 km off of Brookings,Oregon 7 June(only the second Maryland,and North Carolina--thePiedmont in particular.However, report for North Americanwaters), a well-documentedmale Siberian unlikedrought-stricken areas in the West,adverse effects on the repro- Blue Robin in a gardenin Dawson,Yukon 9 June(first for the North ductivesuccess of breedingbirds were not describedhere, and regional Americanmainland), an apparentjuvenile Belcher's Gull at Natural editorscalled the nestingseason "largely successful" (Hudson-Delaware) BridgesState Park, SantaCruz County,California 6 July(potentially a or "relativelysuccessful" (Southern Ariantic Coast), though these are state and continental second),and a White-collared Swift at Rondeau impressionsbased on anecdotalevidence rather than comparisonsof ProvincialPark, Ontario 10 June(a first for Canada). If therewere a cat- standardizedlong-term data sets. An exceptionwas the MiddleAftantic egoryfor raresthybrid, the awardwould surelygo to the apparent Coastregion, where weak patterns of unseasonaloccurrences, as in the Sutton'sWarbler at Sandyston,New Jersey in earlyJune. Who sayssum- summerof 1999,led Iliff to speculatethat failedbreeding birds from the meris boring? higherelevations might have been displaced eastward by dry conditions. Birds'variable responses to dry conditionsacross the continent,in a Drought summerthat was arguably the driest since the 1930s,made for interesting The seasoh'sdry conditionsmade headlines in newspapersacross the regionalcommentary and inter-regionalcomparisons. Whereas birds in nation.According to theNational Drought Monitor, "more than one-third the arid regionsof the Westare adaptedto the extremesof thoseclimes (about 36 percent)of the contiguousUnited Stateswas in severeto (includingfrequent fires in someareas)--and may have a greatertenden- extremedrought, based on thePalmer Drought Index, at the end of June cyto wanderwhen conditions prohibit successful nesting-•eastern birds 2002.This is comparableto the sizeand durationof the droughtthat inhabita comparativelymore homogenousenvironment, one in which peakedacross the U.S. during the summer of 1988,but onlythe Dust Bowl wanderingmight offer lessadvantage in terms of finding necessary of the 1930sand the Droughtof the 1950sstand out asmore significant resources.This seasonwas distinguished by above-averagenumbers of [...] droughtssince the beginning of thetwentieth century." Perhaps more high-intensityfires in the Southwestand MountainWest especiall• Of tellingly,tree-ring data show no periodsof droughtmore extensiveor course,when read closely, regional reports from almostall regionsin all prolongedthan the 1930dust bowl period in thepast 300 years(Cook et yearsinclude details of birdsin unusuallocations, at unexpecteddeva- al. 1996). So the currentconditions are severeeven when consideredfrom tions,or out of season;but thissummer, the Southern Padtic Coast report the longerperspective of threecenturies. The NationalDrought Monitor seemedparticularly loaded, with a numberof mountain- or foothill- Map (Fig.1) showsthe areas in theUnited States hit thehardest bythe end breedingspecies making unusualappearances in California'sCentral of the reportingperiod. Drought conditions were also extreme in the VOLUME 56 (2002), NUMBER 4 403 northernBaja California Peninsula, northern Mexico, the Bahamas,and displacedbreeders. Unseasonable waterfowl reports from Quebec (tndud- the Canadian Prairies. ing prairie-nestingspecies such as Redhead, Ruddy Duck, and Northern Droughts'effects on birds vary widely, but in termsof reproductivesuc- Shoveler),Virginia, California (especiallyBlue-winged Teal), and all cess,the effectsof droughtare generallynegative. Well-known effects throughthe prairiestates were also attributed to droughtin the usual ,ncludedelayed, reduced, or abandonedbreeding attempts, nest failure, breedingareas, but widespreadreports, for instance,of Ross'sGeese tn the htghrates of nestlingmortality, and unusual patterns of dispersal.Teasing Lower48 probablyindicated injured birds, more numerous in summer out broad-scalepatterns of drought-inducedavian dispersal from the now that the specieshas become a regularwinter visitor across so much regmnalreports is a tenuoustask, but severalwidespread movements of of the continent. consptcuousspecies do seemdrought-related. The most dramaticand Wilson'sPhalaropes were also apparently dispersed by drought,and obv,ouseffects of droughtare on waterbirds,whose breeding biology is this contributedto an impressionof greaterabundance in areaswhere
Recommended publications
  • GSA TODAY • Southeastern Section Meeting, P
    Vol. 5, No. 1 January 1995 INSIDE • 1995 GeoVentures, p. 4 • Environmental Education, p. 9 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • North-Central–South-Central Section Meeting, p. 18 Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene? James P. Kennett Marine Science Institute and Department of Geological Sciences, University of California Santa Barbara, CA 93106 David A. Hodell Department of Geology, University of Florida, Gainesville, FL 32611 ABSTRACT to the south from warmer, less nutrient- rich Subantarctic surface water. Up- During the Pliocene between welling of deep water in the circum- ~5 and 3 Ma, polar ice sheets were Antarctic links the mean chemical restricted to Antarctica, and climate composition of ocean deep water with was at times significantly warmer the atmosphere through gas exchange than now. Debate on whether the (Toggweiler and Sarmiento, 1985). Antarctic ice sheets and climate sys- The evolution of the Antarctic cryo- tem withstood this warmth with sphere-ocean system has profoundly relatively little change (stability influenced global climate, sea-level his- hypothesis) or whether much of the tory, Earth’s heat budget, atmospheric ice sheet disappeared (deglaciation composition and circulation, thermo- hypothesis) is ongoing. Paleoclimatic haline circulation, and the develop- data from high-latitude deep-sea sed- ment of Antarctic biota. iments strongly support the stability Given current concern about possi- hypothesis. Oxygen isotopic data ble global greenhouse warming, under- indicate that average sea-surface standing the history of the Antarctic temperatures in the Southern Ocean ocean-cryosphere system is important could not have increased by more for assessing future response of the Figure 1.
    [Show full text]
  • Subantarctic and Polar Fronts of the Antarctic Circumpolar Current and Southern 1 Ocean Heat and Freshwater Content Variability: a View from Argo*
    MARCH 2016 G I G L I O A N D J O H N S O N 749 Subantarctic and Polar Fronts of the Antarctic Circumpolar Current and Southern 1 Ocean Heat and Freshwater Content Variability: A View from Argo*, DONATA GIGLIO Joint Institute for the Study of the Atmosphere and Ocean, University of Washington, Seattle, Washington GREGORY C. JOHNSON NOAA/Pacific Marine Environmental Laboratory, Seattle, Washington (Manuscript received 17 July 2015, in final form 6 November 2015) ABSTRACT Argo profiling floats initiated a revolution in observational physical oceanography by providing nu- merous, high-quality, global, year-round, in situ (0–2000 dbar) temperature and salinity observations. This study uses Argo’s unprecedented sampling of the Southern Ocean during 2006–13 to describe the position of the Antarctic Circumpolar Current’s Subantarctic and Polar Fronts, comparing and contrasting two different methods for locating fronts using the same dataset. The first method locates three fronts along dynamic height contours, each corresponding to a local maximum in vertically integrated shear. The second approach locates the fronts using specific features in the potential temperature field, following Orsi et al. Results from the analysis of Argo data are compared to those from Orsi et al. and other more recent studies. Argo spatial resolution is not adequate to resolve annual and interannual movements of the fronts on a circumpolar scale since they are on the order of 18 latitude (Kim and Orsi), which is smaller than the resolution of the gridded product analyzed. Argo’s four-dimensional coverage of the Southern Ocean equatorward of ;608S is used to quantify variations in heat and freshwater content there with respect to the time-mean front locations.
    [Show full text]
  • Impacts of Climate Change on Antarctic Ecosystems
    IP 56 ! ! ! ! "#$%&'!()$*+ ",-.!/01! -23!45'6 ! 37$8$%)$&!9:+ ";<- ! <7=#=%'>+ 2%#>=8? ! ! Impacts of Climate Change on Antarctic Ecosystems ! ! ! ! ! / IP 56 ! ! Impacts of Climate Change on Antarctic Ecosystems Information paper submitted by ASOC to the XXXI ATCM, Kiev, 2-14 June 2008 ATCM item 13 and CEP item 9a Summary <@$7!)?$!A'8)!BC!:$'781!)?$!D$8)$7%!"%)'7E)=E!3$%=%8F>'!?'8!G'7*$&!*H7$!)?'%!IHF7!)=*$8!I'8)$7!)?'%!)?$!'@$7'#$! 7')$!HI!2'7)?J8!H@$7'>>!G'7*=%#1!*'K=%#!=)!H%$!HI!)?$!7$#=H%8!)?')!=8!$LA$7=$%E=%#!)?$!*H8)!7'A=&!G'7*=%#!H%!)?$! A>'%$)M!">)?HF#?!G'7*=%#!=8!%$=)?$7!$@=&$%)!%H7!F%=IH7*!'E7H88!)?$!"%)'7E)=E1!8F98)'%)='>!$@=&$%E$!=%&=E')$8!*'NH7! 7$#=H%'>!E?'%#$8!=%!)$77$8)7='>!'%&!*'7=%$!$EH8:8)$*8!=%!'7$'8!)?')!?'@$!$LA$7=$%E$&!G'7*=%#M!;FEE$88IF>! =%@'8=H%8!HI!%H%O=%&=#$%HF8!8A$E=$8!)H!8F9O"%)'7E)=E!=8>'%&8!?'@$!9$$%!=&$%)=I=$&!'8!'!>=K$>:!EH%8$PF$%E$!HI!)?$! EH%)=%F=%#!)7$%&!HI!=%E7$'8=%#!?F*'%!'E)=@=)=$8!'%&!=%E7$'8=%#!)$*A$7')F7$8M! ->=*')$!E?'%#$!=8!%H!>H%#$7!'%!=88F$!>=*=)$&!)H!)?$!&$@$>HA$&!'%&!*H7$!AHAF>')$&!A'7)8!HI!)?$!GH7>&M!,?$! -H%8F>)')=@$!3'7)=$8!)H!)?$!"%)'7E)=E!,7$'):!?'@$!EH**=))$&!)?$*8$>@$8!)H!A7H@=&$!EH*A7$?$%8=@$!A7H)$E)=H%!)H!)?$! "%)'7E)=E!$%@=7H%*$%)!'%&!=)8!&$A$%&$%)!$EH8:8)$*8!F%&$7!)?$!2%@=7H%*$%)'>!37H)HEH>M!,?$7$IH7$1!'%&!9'8$&!H%! )?$!A7$E'F)=H%'7:!A7=%E=A>$1!-H%8F>)')=@$!3'7)=$8!8?HF>&!7$EH#%=Q$!)?$!'&@$78$!=*A'E)8!HI!E>=*')$!E?'%#$!H%! "%)'7E)=E'!'%&!)?$!;HF)?$7%!<E$'%!'%&!)'K$!A7H'E)=@$!'E)=H%!G=)?=%!)?$!I7'*$GH7K!HI!)?$!,7$'):!;:8)$*!)H! EH%)7=9F)$!)HG'7&8!E>=*')$!E?'%#$!*=)=#')=H%!'%&!'&'A)')=H%!$IIH7)8M!! 1.
    [Show full text]
  • New Zealand Subantarctic Islands Research Strategy
    New Zealand Subantarctic Islands Research Strategy SOUTHLAND CONSERVANCY New Zealand Subantarctic Islands Research Strategy Carol West MAY 2005 Cover photo: Recording and conservation treatment of Butterfield Point fingerpost, Enderby Island, Auckland Islands Published by Department of Conservation PO Box 743 Invercargill, New Zealand. CONTENTS Foreword 5 1.0 Introduction 6 1.1 Setting 6 1.2 Legal status 8 1.3 Management 8 2.0 Purpose of this research strategy 11 2.1 Links to other strategies 12 2.2 Monitoring 12 2.3 Bibliographic database 13 3.0 Research evaluation and conditions 14 3.1 Research of benefit to management of the Subantarctic islands 14 3.2 Framework for evaluation of research proposals 15 3.2.1 Research criteria 15 3.2.2 Risk Assessment 15 3.2.3 Additional points to consider 16 3.2.4 Process for proposal evaluation 16 3.3 Obligations of researchers 17 4.0 Research themes 18 4.1 Theme 1 – Natural ecosystems 18 4.1.1 Key research topics 19 4.1.1.1 Ecosystem dynamics 19 4.1.1.2 Population ecology 20 4.1.1.3 Disease 20 4.1.1.4 Systematics 21 4.1.1.5 Biogeography 21 4.1.1.6 Physiology 21 4.1.1.7 Pedology 21 4.2 Theme 2 – Effects of introduced biota 22 4.2.1 Key research topics 22 4.2.1.1 Effects of introduced animals 22 4.2.1.2 Effects of introduced plants 23 4.2.1.3 Exotic biota as agents of disease transmission 23 4.2.1.4 Eradication of introduced biota 23 4.3 Theme 3 – Human impacts and social interaction 23 4.3.1 Key research topics 24 4.3.1.1 History and archaeology 24 4.3.1.2 Human interactions with wildlife 25 4.3.1.3
    [Show full text]
  • Climate and Deep Water Formation Regions
    Cenozoic High Latitude Paleoceanography: New Perspectives from the Arctic and Subantarctic Pacific by Lindsey M. Waddell A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Oceanography: Marine Geology and Geochemistry) in The University of Michigan 2009 Doctoral Committee: Assistant Professor Ingrid L. Hendy, Chair Professor Mary Anne Carroll Professor Lynn M. Walter Associate Professor Christopher J. Poulsen Table of Contents List of Figures................................................................................................................... iii List of Tables ......................................................................................................................v List of Appendices............................................................................................................ vi Abstract............................................................................................................................ vii Chapter 1. Introduction....................................................................................................................1 2. Ventilation of the Abyssal Southern Ocean During the Late Neogene: A New Perspective from the Subantarctic Pacific ......................................................21 3. Global Overturning Circulation During the Late Neogene: New Insights from Hiatuses in the Subantarctic Pacific ...........................................55 4. Salinity of the Eocene Arctic Ocean from Oxygen Isotope
    [Show full text]
  • The Intergovernmental Panel on Climate Change: a Synthesis of the Fourth Assessment Report Harvey Stern* Bureau of Meteorology, Melbourne, Vic., Australia
    The Intergovernmental Panel on Climate Change: A Synthesis of the Fourth Assessment Report Harvey Stern* Bureau of Meteorology, Melbourne, Vic., Australia 1. Introduction The World Meteorological Organisation (WMO) and the United Nations Environment Programme (UNEP) established the Intergovernmental Panel on Climate Change (IPCC). The IPCC’s primary goal was to assess scientific, technical and socio-economic information relevant for the understanding of climate change, its potential impact and options for adaptation and mitigation. The purpose of the current paper is to provide a synthesis of the IPCC’s Fourth Assessment Report, which was released early in 2007. Much of the material presented is drawn directly from the summaries for policy makers prepared by the IPCC’s three Working Groups, namely: I. The Physical Science Basis (released February 2007); II. Impacts, Adaptation and Vulnerability (released April 2007); and, Fig A.1 The Rising Cost of Protection III. Mitigation (released May 2007). ___________________________________________ *Corresponding author address: Box 1636, Melbourne, Vic., 3001, Australia; email: [email protected] Dr Harvey Stern is a meteorologist with the Australian Bureau of Meteorology, holds a Ph. D. from the University of Melbourne (Earth Sciences), and currently heads the Climate Services Centre of the Bureau's Victorian Regional Office. Dr Stern's research into climate change includes evaluating costs associated with climate change and managing associated risks (Stern, 1992, 2005, 2006) – Fig A.1, and analysis of climate trends (Stern, 1980, 2000; Stern et al, 2004, 2005) – Fig A.2. His work has received praise in the Fig A.2 Trend in Melbourne’s annual extreme Victorian State Parliament (Hansard, Legislative minimum temperature (strong upward trend) Council, pp 1940-1941, 16 Nov., 2005).
    [Show full text]
  • Rapid Acidification of Mode and Intermediate Waters in the Southwestern Atlantic Ocean Lesley A
    Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean Lesley A. Salt, S. M. A. C. Heuven, M. E. Claus, E. M. Jones, H. J. W. Baar To cite this version: Lesley A. Salt, S. M. A. C. Heuven, M. E. Claus, E. M. Jones, H. J. W. Baar. Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean. Biogeosciences, European Geosciences Union, 2015, 12 (5), pp.1387-1401. 10.5194/bg-12-1387-2015. hal-01251672 HAL Id: hal-01251672 https://hal.archives-ouvertes.fr/hal-01251672 Submitted on 6 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Biogeosciences, 12, 1387–1401, 2015 www.biogeosciences.net/12/1387/2015/ doi:10.5194/bg-12-1387-2015 © Author(s) 2015. CC Attribution 3.0 License. Rapid acidification of mode and intermediate waters in the southwestern Atlantic Ocean L. A. Salt1,*, S. M. A. C. van Heuven2,**, M. E. Claus3, E. M. Jones4, and H. J. W. de Baar1,3 1Royal Netherlands Institute for Sea Research, Landsdiep 4,
    [Show full text]
  • Enhanced Marine Sulphur Emissions Offset Global Warming and Impact Rainfall Received: 22 January 2015 1 1,2 Accepted: 13 July 2015 B
    www.nature.com/scientificreports OPEN Enhanced marine sulphur emissions offset global warming and impact rainfall Received: 22 January 2015 1 1,2 Accepted: 13 July 2015 B. S. Grandey & C. Wang Published: 21 August 2015 Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate. DMS is a product of dimethylsulfoniopropionate produced by many species of phytoplankton1. Much of the DMS emitted to the atmosphere is oxidised to sulphur dioxide then to sulphuric acid to form sulphate aerosol.
    [Show full text]
  • Geodetic Mass Balance of the South Shetland Islands Ice Caps, Antarctica, from Differencing Tandem-X Dems
    remote sensing Article Geodetic Mass Balance of the South Shetland Islands Ice Caps, Antarctica, from Differencing TanDEM-X DEMs Kaian Shahateet 1,* , Thorsten Seehaus 2 , Francisco Navarro 1 , Christian Sommer 2 and Matthias Braun 2 1 Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain; [email protected] 2 Institut für Geographie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany; [email protected] (T.S.); [email protected] (C.S.); [email protected] (M.B.) * Correspondence: [email protected] Abstract: Although the glaciers in the Antarctic periphery currently modestly contribute to sea level rise, their contribution is projected to increase substantially until the end of the 21st century. The South Shetland Islands (SSI), located to the north of the Antarctic Peninsula, are lacking a geodetic mass balance calculation for the entire archipelago. We estimated its geodetic mass balance over a 3–4-year period within 2013–2017. Our estimation is based on remotely sensed multispectral and interferometric SAR data covering 96% of the glacierized areas of the islands considered in our study and 73% of the total glacierized area of the SSI archipelago (Elephant, Clarence, and Smith Islands were excluded due to data limitations). Our results show a close to balance, slightly negative average −1 specific mass balance for the whole area of −0.106 ± 0.007 m w.e. a , representing a mass change of −238 ± 12 Mt a−1. These results are consistent with a wider scale geodetic mass balance estimation Citation: Shahateet, K.; Seehaus, T.; and with glaciological mass balance measurements at SSI locations for the same study period.
    [Show full text]
  • Downloaded 09/25/21 10:31 AM UTC 15 JANUARY 1999 SEMILETOV 287
    286 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 56 Aquatic Sources and Sinks of CO2 and CH4 in the Polar Regions I. P. SEMILETOV Paci®c Oceanological Institute, Vladivostok, Russia (Manuscript received 2 September 1997, in ®nal form 15 June 1998) ABSTRACT The highest concentration and greatest seasonal amplitudes of atmospheric CO 2 and CH4 occur at 608±708N, outside the 308±608N band where the main sources of anthropogenic CO2 and CH4 are located, indicating that the northern environment is a source of these gases. Based on the author's onshore and offshore arctic experimental results and literature data, an attempt was made to identify the main northern sources and sinks for atmospheric CH4 and CO2. The CH4 ef¯ux from limnic environments in the north plays a signi®cant role in the CH 4 regional budget, whereas the role of the adjacent arctic adjacent seas in regional CH 4 emission is small. This agrees with the aircraft data, which show a 10%±15% increase of CH4 over land when aircraft ¯y southward from the Arctic Basin. Offshore permafrost might add some CH4 into the atmosphere, although the preliminary data are not suf®cient to estimate the effect. Evolution of the northern lakes might be considered as an important component of the climatic system. All-season data obtained in the delta system of the Lena River and typical northern lakes show that the freshwaters are supersaturated by CO2 with a drastic increase in the CO2 value during wintertime. The arctic and antarctic CO2 data presented here may be used to develop understanding of the processes controlling CO2 ¯ux in the polar seas.
    [Show full text]
  • Antarctic and Southern Ocean Influences on Late Pliocene Global Cooling
    Antarctic and Southern Ocean influences on Late Pliocene global cooling Robert McKaya,1, Tim Naisha, Lionel Cartera, Christina Riesselmanb,2, Robert Dunbarc, Charlotte Sjunneskogd, Diane Wintere, Francesca Sangiorgif, Courtney Warreng, Mark Paganig, Stefan Schoutenh, Veronica Willmotth, Richard Levyi, Robert DeContoj, and Ross D. Powellk aAntarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand; bDepartment of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305; cDepartment of Environmental Earth Systems Science, Stanford University, Stanford, CA 94305; dAntarctic Marine Geology Research Facility, Florida State University, Tallahassee, FL 32306; eRhithron Associates, Inc, Missoula, MT 59804; fDepartment of Earth Sciences, Faculty of Geosciences, Laboratory of Palaeobotany and Palynology, Utrecht University, U3584 CD Utrecht, The Netherlands; gDepartment of Geology and Geophysics, Yale University, New Haven, CT 06520; hNIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, 1790 AB Den Burg, Texel, The Netherlands; iGNS Science, Lower Hutt 5040, New Zealand; jDepartment of Geosciences, University of Massachusetts, Amherst, MA 01003; and kDepartment of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115 Edited by* James P. Kennett, University of California, Santa Barbara, CA, and approved February 28, 2012 (received for review August 2, 2011) 18 The influence of Antarctica and the Southern Ocean
    [Show full text]
  • Environmental Science Processes & Impacts Accepted Manuscript
    Environmental Science Processes & Impacts Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. rsc.li/process-impacts Page 1 of 24 Environmental Science: Processes & Impacts 1 2 3 Environmental Impact Statement 4 5 6 7 To derive remediation targets and environmental quality guidelines, Species Sensitivity Distribution 8 (SSD) models require toxicity data from a minimum of eight species from at least four taxonomic 9 10 group. Prior to this study there was no toxicity data available for sensitive early life stages of native 11 subantarctic plants exposed to total petroleum hydrocarbons (TPH) from diesel fuel. The TPH 12 concentrations of contaminated soils required to inhibit germination and root and shoot growth in 13 early life stages was high, but due to the climate of subantarctic regions, the hydrocarbon Manuscript 14 15 concentrations at spill sites may persist over time, so these high concentrations remain 16 environmentally relevant.
    [Show full text]