Antarctic and Southern Ocean Influences on Late Pliocene Global Cooling

Total Page:16

File Type:pdf, Size:1020Kb

Antarctic and Southern Ocean Influences on Late Pliocene Global Cooling Antarctic and Southern Ocean influences on Late Pliocene global cooling Robert McKaya,1, Tim Naisha, Lionel Cartera, Christina Riesselmanb,2, Robert Dunbarc, Charlotte Sjunneskogd, Diane Wintere, Francesca Sangiorgif, Courtney Warreng, Mark Paganig, Stefan Schoutenh, Veronica Willmotth, Richard Levyi, Robert DeContoj, and Ross D. Powellk aAntarctic Research Centre, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand; bDepartment of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305; cDepartment of Environmental Earth Systems Science, Stanford University, Stanford, CA 94305; dAntarctic Marine Geology Research Facility, Florida State University, Tallahassee, FL 32306; eRhithron Associates, Inc, Missoula, MT 59804; fDepartment of Earth Sciences, Faculty of Geosciences, Laboratory of Palaeobotany and Palynology, Utrecht University, U3584 CD Utrecht, The Netherlands; gDepartment of Geology and Geophysics, Yale University, New Haven, CT 06520; hNIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, 1790 AB Den Burg, Texel, The Netherlands; iGNS Science, Lower Hutt 5040, New Zealand; jDepartment of Geosciences, University of Massachusetts, Amherst, MA 01003; and kDepartment of Geology and Environmental Geosciences, Northern Illinois University, DeKalb, IL 60115 Edited by* James P. Kennett, University of California, Santa Barbara, CA, and approved February 28, 2012 (received for review August 2, 2011) 18 The influence of Antarctica and the Southern Ocean on Late δ O records (21) and glacial deposits at high elevation in the Pliocene global climate reconstructions has remained ambiguous TAM (22). due to a lack of well-dated Antarctic-proximal, paleoenvironmental The development of an ephemeral West Antarctic Ice Sheet records. Here we present ice sheet, sea-surface temperature, and (WAIS) is thought to have occurred around 34 Ma (5) coincident sea ice reconstructions from the ANDRILL AND-1B sediment core with the first ice sheets in East Antarctica, but it was not a per- recovered from beneath the Ross Ice Shelf. We provide evidence manent feature until much later (23). Glacial unconformities for a major expansion of an ice sheet in the Ross Sea that began observed in seismic profiles in the central Ross Sea, correlated at ∼3.3 Ma, followed by a coastal sea surface temperature cooling to dated horizons in Deep Sea Drilling Project Site 270, indicate of ∼2.5 °C, a stepwise expansion of sea ice, and polynya-style deep that periods of an extensive grounded marine ice sheet within the mixing in the Ross Sea between 3.3 and 2.5 Ma. The intensification Ross Sea embayment have occurred since the Early Miocene of Antarctic cooling resulted in strengthened westerly winds and (24). During the warmest intervals of the Pliocene (4.5–3.0 Ma) EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES invigorated ocean circulation. The associated northward migration Earth’s average surface temperature was ∼2–3 °C warmer than of Southern Ocean fronts has been linked with reduced Atlantic present, atmospheric pCO2 was ∼400 ppmv, and equator to pole Meridional Overturning Circulation by restricting surface water temperature gradients were weaker (25–27). During this peak connectivity between the ocean basins, with implications for heat Pliocene warmth, the largely marine-based WAIS and the Green- transport to the high latitudes of the North Atlantic. While our land Ice Sheet were reduced in extent (19, 28, 29) and global sea results do not exclude low-latitude mechanisms as drivers for Plio- level is estimated to have been between 5–40 m above present cene cooling, they indicate an additional role played by southern with most reconstructions converging on 20–25 m (30). Subse- high-latitude cooling during development of the bipolar world. quent cooling, which led to the onset of major Northern Hemi- spheric glaciation by ∼2.7 Ma (31), has been variously attributed ∣ ∣ ∣ glacial history West Antarctic Ice Sheet Late Neogene to declining pCO2 (32), changing orbital geometries (33), tec- paleooceanography ∣ paleoclimate tonic influences (34), increased oceanic stratification and preci- pitation in northern high latitudes (35), and reduced zonal sea- he development of the first continental-scale ice sheet on surface temperature (SST) gradients in the equatorial Pacific TAntarctica occurred at ∼34 Ma, coincident with a ∼1.5‰ Ocean (36). Until now, the role of Antarctica in Late Pliocene increase in benthic foraminiferal δ18O (1, 2), which is interpreted global cooling has been unclear. The Antarctic Drilling Program’s as a 4 °C cooling in deep ocean temperature (3) with 80 m of sea (ANDRILL) AND-1B core contains a series of well-dated sedi- level equivalent ice volume on the Antarctic continent (4, 5). mentary cycles documenting ice sheet advance and retreat that Direct geological evidence of a continental-scale ice sheet calving correlate with the global marine oxygen isotope and southern, at the coastline by the earliest Oligocene came from ice-rafted high-latitude insolation time series (Fig. 1) (19, 28). debris in ocean drill cores from Prydz Bay (6, 7) and marine Here, we describe a major phase of ice sheet expansion and grounding-line deposits in Western Ross Sea drill cores (8). Prox- cooling in coastal Antarctic waters at ∼3.3 Ma following a imal geological drill cores (9) and high-resolution deep-sea δ18O ∼1.2 Myr-long period of warmer-than-present marine conditions (10) records imply the existence a dynamic and highly variable, accompanied by a diminished marine-based ice sheet in the orbitally paced East Antarctic Ice Sheet (EAIS) that drove global Ross Embayment during the Early Pliocene (∼4.5–3.4 Ma). This sea-level changes of ∼40 m (11) up until ∼14 Ma. A ∼1.2‰ in- cooling involved the expansion of the Antarctic ice sheets onto crease in benthic foraminiferal δ18Oat∼14 Ma and cooling of the continental shelf, increased sea ice extent and duration, and Southern Ocean surface waters by up to 7 °C is associated with altered Southern Ocean circulation. Our multiproxy dataset the development of a more permanent EAIS (1, 12, 13). Terres- trial glacial deposits at high elevations in the Transantarctic Author contributions: R.M., T.N., and R.L. designed research; R.M., T.N., L.C., C.R., Mountains (TAM) indicate a transition from wet-based to dry- R. Dunbar, C.S., D.W., F.S., C.W., M.P., S.S., V.W., and R.D.P. performed research; R.M., T.N., based glaciation at this time, and using the preservation of deli- L.C., C.R., R. Dunbar, C.S., D.W., F.S., C.W., M.P., S.S., V.W., R.L., R. DeConto, and R.D.P. cate terrestrial plant fossils, ancient landscapes, and volcanic analyzed data; and R.M., T.N., L.C., and C.R. wrote the paper. ashes, it has been argued that the volume of the EAIS remained The authors declare no conflict of interest. relatively stable since ∼14 Ma (14, 15). While terrestrial glacial *This Direct Submission article had a prearranged editor. and glaciomarine deposits indicate marine incursions into fjords 1To whom correspondence should be addressed. E-mail: [email protected]. coupled with thinning and recession of the low elevation parts of 2Present address: Eastern Geology and Paleoclimate Science Center, US Geological Survey, the EAIS along Western Ross Sea and in Prydz Bay during the Reston, VA 20192. Pliocene (16, 17), widespread deglaciation of the EAIS at this This article contains supporting information online at www.pnas.org/lookup/suppl/ time (18) is unsupported by ice sheet models (19, 20), benthic doi:10.1073/pnas.1112248109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1112248109 PNAS Early Edition ∣ 1of6 Downloaded by guest on October 1, 2021 L 18 Glacial Diatom TEX 86 Bulk sediment O benthic proximity assemblages (%) SST(°C) stable isotopes stack sea ice Modern Ross Sea 15 WAIS and TEXL derived SST N polar open ocean/ 86 Greenland 13 seasonal sea ice C deglaciated subantarctic Astronomical time scale (2004) 2.5 3.5 3 4.5 4 -19 IPDM -31 7.5 10 2.5 other 0 5 -2.5 Cycle number Biostratigraphic datum Depth (mbsf) Lithology Magnetostratigraphy Chaetoceros 2 Ma >2.01 150 16 >2.21 17 18 19 <2.79 200 20 Pleistocene >2.87 100 21 22 250 23 24 25 3 Ma 26 300 27 M2 Mg2 Mg4 Mg6 28 350 Gi2 29 Gi4 30 Pliocene 31 400 4 Ma 32 <3.56 >4.29 450 <4.78 33 -4 12 diatomite diamictite mudstone volcanogenic Fig. 1. Summary stratigraphic log of lithofacies in AND-1B. The glacial proximity curve is based on interpretation of the lithofacies and tracks the relative position of the grounding line [ice-contact (I), ice-proximal (P), ice-distal (D), and marine (M)], providing a proxy for ice-sheet extent (28). Chronostratigraphy is L derived by magnetostratigraphy, constrained by biostratigraphy and tephrochronology (28). Diatom assemblages, TEX86 derived SST (with light purple cali- bration error envelope), and bulk sediment stable isotope data are from interglacial deposits, and record a cooling trend that is coincident with increased variance toward glacial values in the global δ18O benthic stack (42). indicates: (i) a progressive increase in ice sheet extent and varia- Ross Embayment, and that the conditions that led to open water bility, and reduced glacial meltwater, and (ii) a general cooling of deposits at this location also require partial to complete collapse the coastal Antarctic seas based on evidence from sedimentary of the WAIS (19, 28). L facies, diatom assemblages, TEX86 (tetraether index of lipids con- In AND-1B, advances and retreats of the ice sheet grounding sisting of 86 carbon atoms) sea-surface temperature reconstruc- line (Fig. 1) are constrained by glaciomarine cyclic stratigraphy tions, and δ13Candδ15N of bulk sedimentary organic matter. (28, 41). Each cycle begins with a sheared glacial surface of ero- sion (SI Text), overlain by subglacial and ice-proximal glaciomar- Results ine diamictites (poorly sorted deposits of gravel, sand, and mud), AND-1B was drilled beneath the McMurdo Ice Shelf, an exten- mudstones, and sandstones, passing upward into interglacial dia- sion of the Ross Ice Shelf at its northwest margin.
Recommended publications
  • T Antarctic Ce Sheet Itiative
    race Publication 3115, Vol. 1 t Antarctic ce Sheet itiative :_,.me.-1: Science and ;mentation Plan iv-_J_ E -- --__o • E _-- rz " _ • _ _v_-- . "2-. .... E _ ____ __ _k - -- - ...... --rr r_--_.-- .... m-- _ £3._= --- - • ,r- ..... _ k • -- ..... __= ---- = ............ --_ m -- -- ..... Z Im .... r .... _,... ___ "--. 11 1"1 I' I i ¸ NASA Conference Publication 3115, Vol. 1 West Antarctic Ice Sheet Initiative Volume 1: Science and Implementation Plan Edited by Robert A. Bindschadler NASA Goddard Space Flight Center Greenbelt, Maryland Proceedings of a workshop cosponsored by the National Aeronautics and Space Administration, Washington, D.C., and the National Science Foundation, Washington, D.C., and held at Goddard Space Flight Center Greenbelt, Maryland October 16-18, 1990 IXl/_/X National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division 1991 CONTENTS Page Preface v Workshop Participants vi Acknowledgements vii Map viii 1. Executive Summary 1 2. Climatic Importance of Ice Sheets 4 3. Marine Ice Sheet Instability 5 4. The West Antarctic Ice Sheet Initiative 6 4.1 Goal and Objectives 6 4.2 A Multidisciplinary Project 7 4.3 Scientific Focus: A Single Goal 7 4.4 Geographic Focus: West Antarctica 7 4.5 Duration: A Phased Approach 8 5. Science Plan 10 5.1 Glaciology 10 5.1.1 Ice Dynamics 10 5.1.2 Ice Cores 16 5.2 Meteorology 19 5.3 Oceanography 23 5.4 Geology and Geophysics 27 5.4.1 Terrestrial Geology 27 5.4.2 Marine Geology and Geophysics 28 5.4.3 Subglacial Geology and Geophysics 30 6.
    [Show full text]
  • Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework Due Thursday Nov
    Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we’ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and erosional features of glaciers! 3. 3. Earth-Sun orbital parameters, relevance to interglacial periods ! A glacier is a river of ice. Glaciers can range in size from: 100s of m (mountain glaciers) to 100s of km (continental ice sheets) Most glaciers are 1000s to 100,000s of years old! The Snowline is the lowest elevation of a perennial (2 yrs) snow field. Glaciers can only form above the snowline, where snow does not completely melt in the summer. Requirements: Cold temperatures Polar latitudes or high elevations Sufficient snow Flat area for snow to accumulate Permafrost is permanently frozen soil beneath a seasonal active layer that supports plant life Glaciers are made of compressed, recrystallized snow. Snow buildup in the zone of accumulation flows downhill into the zone of wastage. Glacier-Covered Areas Glacier Coverage (km2) No glaciers in Australia! 160,000 glaciers total 47 countries have glaciers 94% of Earth’s ice is in Greenland and Antarctica Mountain Glaciers are Retreating Worldwide The Antarctic Ice Sheet The Greenland Ice Sheet Glaciers flow downhill through ductile (plastic) deformation & by basal sliding. Brittle deformation near the surface makes cracks, or crevasses. Antarctic ice sheet: ductile flow extends into the ocean to form an ice shelf. Wilkins Ice shelf Breakup http://www.youtube.com/watch?v=XUltAHerfpk The Greenland Ice Sheet has fewer and smaller ice shelves. Erosional Features Unique erosional landforms remain after glaciers melt.
    [Show full text]
  • Rapid Cenozoic Glaciation of Antarctica Induced by Declining
    letters to nature 17. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, Early Cretaceous6, yet is thought to have remained mostly ice-free, 1313–1317 (2001). 18. Chen, C.-L. Elements of Optoelectronics and Fiber Optics (Irwin, Chicago, 1996). vegetated, and with mean annual temperatures well above freezing 4,7 19. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and until the Eocene/Oligocene boundary . Evidence for cooling and polarization sensitive photodetectors from single indium phosphide nanowires. Science 293, the sudden growth of an East Antarctic Ice Sheet (EAIS) comes 1455–1457 (2001). from marine records (refs 1–3), in which the gradual cooling from 20. Bagnall, D. M., Ullrich, B., Sakai, H. & Segawa, Y. Micro-cavity lasing of optically excited CdS thin films at room temperature. J. Cryst. Growth. 214/215, 1015–1018 (2000). the presumably ice-free warmth of the Early Tertiary to the cold 21. Bagnell, D. M., Ullrich, B., Qiu, X. G., Segawa, Y. & Sakai, H. Microcavity lasing of optically excited ‘icehouse’ of the Late Cenozoic is punctuated by a sudden .1.0‰ cadmium sulphide thin films at room temperature. Opt. Lett. 24, 1278–1280 (1999). rise in benthic d18O values at ,34 million years (Myr). More direct 22. Huang, Y., Duan, X., Cui, Y. & Lieber, C. M. GaN nanowire nanodevices. Nano Lett. 2, 101–104 (2002). evidence of cooling and glaciation near the Eocene/Oligocene 8 23. Gudiksen, G. S., Lauhon, L. J., Wang, J., Smith, D. & Lieber, C. M. Growth of nanowire superlattice boundary is provided by drilling on the East Antarctic margin , structures for nanoscale photonics and electronics.
    [Show full text]
  • Asynchronous Antarctic and Greenland Ice-Volume Contributions to the Last Interglacial Sea-Level Highstand
    ARTICLE https://doi.org/10.1038/s41467-019-12874-3 OPEN Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand Eelco J. Rohling 1,2,7*, Fiona D. Hibbert 1,7*, Katharine M. Grant1, Eirik V. Galaasen 3, Nil Irvalı 3, Helga F. Kleiven 3, Gianluca Marino1,4, Ulysses Ninnemann3, Andrew P. Roberts1, Yair Rosenthal5, Hartmut Schulz6, Felicity H. Williams 1 & Jimin Yu 1 1234567890():,; The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125–124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m c−1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations. 1 Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia. 2 Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK. 3 Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Allegaten 41, 5007 Bergen, Norway.
    [Show full text]
  • West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology
    QUARTERLY UPDATE August 2009 West Antarctic Ice Sheet Divide Ice Core Climate, Ice Sheet History, Cryobiology 2009/2010 Field Operations Our main objectives for the coming field season are: 1) To ship ice from 680 to ~2,100 m to NICL 2) Recover core to a depth of 2,600 to 2,900 m The U.S. Antarctic Program will be establishing a multi year field camp at Byrd this season to support field operations around Pine Island Bay and elsewhere in West Antarctica. The camp at Byrd will complicate our logistics because the heavy equipment that will prepare the Byrd skiway will be flown to WAIS Divide and driven to Byrd, and a camp at Byrd will make for more competition for flights. But this is a much better plan than supporting those operations out of WAIS Divide, which would have increased the WAIS Divide population to 100 people. Other science activities at WAIS Divide this season include the following: CReSIS ground traverse to Pine Island Bay Flow dynamics of two Amundsen Sea glaciers: Thwaites and Pine Island. PI: Anandakrishnan Ocean-Ice Interaction in the Amundsen Sea sector of West Antarctica. PI: Joughin Space physics magnetometer. PI: Zesta Antarctic Automatic Weather Station Program. PI: Weidner Polar Experiment Network for Geospace Upper atmosphere Investigations. PI: Lessard Artist, paintings of ice and glacial features. PI: McKee IDDO is making several modifications to the drill that should increase the amount of core that can be recovered each time the drill is lowered into the hole, which will increase the amount of ice we can recover this season.
    [Show full text]
  • Mount Harding, Grove Mountains, East Antarctica
    MEASURE 2 - ANNEX Management Plan for Antarctic Specially Protected Area No 168 MOUNT HARDING, GROVE MOUNTAINS, EAST ANTARCTICA 1. Introduction The Grove Mountains (72o20’-73o10’S, 73o50’-75o40’E) are located approximately 400km inland (south) of the Larsemann Hills in Princess Elizabeth Land, East Antarctica, on the eastern bank of the Lambert Rift(Map A). Mount Harding (72°512 -72°572 S, 74°532 -75°122 E) is the largest mount around Grove Mountains region, and located in the core area of the Grove Mountains that presents a ridge-valley physiognomies consisting of nunataks, trending NNE-SSW and is 200m above the surface of blue ice (Map B). The primary reason for designation of the Area as an Antarctic Specially Protected Area is to protect the unique geomorphological features of the area for scientific research on the evolutionary history of East Antarctic Ice Sheet (EAIS), while widening the category in the Antarctic protected areas system. Research on the evolutionary history of EAIS plays an important role in reconstructing the past climatic evolution in global scale. Up to now, a key constraint on the understanding of the EAIS behaviour remains the lack of direct evidence of ice sheet surface levels for constraining ice sheet models during known glacial maxima and minima in the post-14 Ma period. The remains of the fluctuation of ice sheet surface preserved around Mount Harding, will most probably provide the precious direct evidences for reconstructing the EAIS behaviour. There are glacial erosion and wind-erosion physiognomies which are rare in nature and extremely vulnerable, such as the ice-core pyramid, the ventifact, etc.
    [Show full text]
  • GSA TODAY • Southeastern Section Meeting, P
    Vol. 5, No. 1 January 1995 INSIDE • 1995 GeoVentures, p. 4 • Environmental Education, p. 9 GSA TODAY • Southeastern Section Meeting, p. 15 A Publication of the Geological Society of America • North-Central–South-Central Section Meeting, p. 18 Stability or Instability of Antarctic Ice Sheets During Warm Climates of the Pliocene? James P. Kennett Marine Science Institute and Department of Geological Sciences, University of California Santa Barbara, CA 93106 David A. Hodell Department of Geology, University of Florida, Gainesville, FL 32611 ABSTRACT to the south from warmer, less nutrient- rich Subantarctic surface water. Up- During the Pliocene between welling of deep water in the circum- ~5 and 3 Ma, polar ice sheets were Antarctic links the mean chemical restricted to Antarctica, and climate composition of ocean deep water with was at times significantly warmer the atmosphere through gas exchange than now. Debate on whether the (Toggweiler and Sarmiento, 1985). Antarctic ice sheets and climate sys- The evolution of the Antarctic cryo- tem withstood this warmth with sphere-ocean system has profoundly relatively little change (stability influenced global climate, sea-level his- hypothesis) or whether much of the tory, Earth’s heat budget, atmospheric ice sheet disappeared (deglaciation composition and circulation, thermo- hypothesis) is ongoing. Paleoclimatic haline circulation, and the develop- data from high-latitude deep-sea sed- ment of Antarctic biota. iments strongly support the stability Given current concern about possi- hypothesis. Oxygen isotopic data ble global greenhouse warming, under- indicate that average sea-surface standing the history of the Antarctic temperatures in the Southern Ocean ocean-cryosphere system is important could not have increased by more for assessing future response of the Figure 1.
    [Show full text]
  • The Antarctic Contribution to Holocene Global Sea Level Rise
    The Antarctic contribution to Holocene global sea level rise Olafur Ing6lfsson & Christian Hjort The Holocene glacial and climatic development in Antarctica differed considerably from that in the Northern Hemisphere. Initial deglaciation of inner shelf and adjacent land areas in Antarctica dates back to between 10-8 Kya, when most Northern Hemisphere ice sheets had already disappeared or diminished considerably. The continued deglaciation of currently ice-free land in Antarctica occurred gradually between ca. 8-5 Kya. A large southern portion of the marine-based Ross Ice Sheet disintegrated during this late deglaciation phase. Some currently ice-free areas were deglaciated as late as 3 Kya. Between 8-5 Kya, global glacio-eustatically driven sea level rose by 10-17 m, with 4-8 m of this increase occurring after 7 Kya. Since the Northern Hemisphere ice sheets had practically disappeared by 8-7 Kya, we suggest that Antarctic deglaciation caused a considerable part of the global sea level rise between 8-7 Kya, and most of it between 7-5 Kya. The global mid-Holocene sea level high stand, broadly dated to between 84Kya, and the Littorina-Tapes transgressions in Scandinavia and simultaneous transgressions recorded from sites e.g. in Svalbard and Greenland, dated to 7-5 Kya, probably reflect input of meltwater from the Antarctic deglaciation. 0. Ingcilfsson, Gotlienburg Universiw, Earth Sciences Centre. Box 460, SE-405 30 Goteborg, Sweden; C. Hjort, Dept. of Quaternary Geology, Lund University, Sdvegatan 13, SE-223 62 Lund, Sweden. Introduction dated to 20-17 Kya (thousands of years before present) in the western Ross Sea area (Stuiver et al.
    [Show full text]
  • Glacier (And Ice Sheet) Mass Balance
    Glacier (and ice sheet) Mass Balance The long-term average position of the highest (late summer) firn line ! is termed the Equilibrium Line Altitude (ELA) Firn is old snow How an ice sheet works (roughly): Accumulation zone ablation zone ice land ocean • Net accumulation creates surface slope Why is the NH insolation important for global ice• sheetSurface advance slope causes (Milankovitch ice to flow towards theory)? edges • Accumulation (and mass flow) is balanced by ablation and/or calving Why focus on summertime? Ice sheets are very sensitive to Normal summertime temperatures! • Ice sheet has parabolic shape. • line represents melt zone • small warming increases melt zone (horizontal area) a lot because of shape! Slightly warmer Influence of shape Warmer climate freezing line Normal freezing line ground Furthermore temperature has a powerful influence on melting rate Temperature and Ice Mass Balance Summer Temperature main factor determining ice growth e.g., a warming will Expand ablation area, lengthen melt season, increase the melt rate, and increase proportion of precip falling as rain It may also bring more precip to the region Since ablation rate increases rapidly with increasing temperature – Summer melting controls ice sheet fate* – Orbital timescales - Summer insolation must control ice sheet growth *Not true for Antarctica in near term though, where it ʼs too cold to melt much at surface Temperature and Ice Mass Balance Rule of thumb is that 1C warming causes an additional 1m of melt (see slope of ablation curve at right)
    [Show full text]
  • Open-File Report 2007-1047, Extended Abstracts
    U.S. Geological Survey Open-File Report 2007-1047 Antarctica: A Keystone in a Changing World—Online Proceedings for the 10th International Symposium on Antarctic Earth Sciences Santa Barbara, California, U.S.A.—August 26 to September 1, 2007 Edited by Alan Cooper, Carol Raymond, and the 10th ISAES Editorial Team 2007 Extended Abstracts Extended Abstract 001 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea001.pdf Ross Aged Ductile Shearing in the Granitic Rocks of the Wilson Terrane, Deep Freeze Range area, north Victoria Land (Antarctica) by Federico Rossetti, Gianluca Vignaroli, Fabrizio Balsamo, and Thomas Theye Extended Abstract 002 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea002.pdf Postcollisional Magmatism of the Ross Orogeny (Victoria Land, Antarctica): a Granite- Lamprophyre Genetic Link S. Rocchi, G. Di Vincenzo, C. Ghezzo, and I. Nardini Extended Abstract 003 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea003.pdf Age of Boron- and Phosphorus-Rich Paragneisses and Associated Orthogneisses, Larsemann Hills: New Constraints from SHRIMP U-Pb Zircon Geochronology by C. J. Carson, E.S. Grew, S.D. Boger, C.M. Fanning and A.G. Christy Extended Abstract 004 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea004.pdf Terrane Correlation between Antarctica, Mozambique and Sri Lanka: Comparisons of Geochronology, Lithology, Structure And Metamorphism G.H. Grantham, P.H. Macey, B.A. Ingram, M.P. Roberts, R.A. Armstrong, T. Hokada, K. by Shiraishi, A. Bisnath, and V. Manhica Extended Abstract 005 http://pubs.usgs.gov/of/2007/1047/ea/of2007-1047ea005.pdf New Approaches and Progress in the Use of Polar Marine Diatoms in Reconstructing Sea Ice Distribution by A.
    [Show full text]
  • Download (Pdf, 236
    Science in the Snow Appendix 1 SCAR Members Full members (31) (Associate Membership) Full Membership Argentina 3 February 1958 Australia 3 February 1958 Belgium 3 February 1958 Chile 3 February 1958 France 3 February 1958 Japan 3 February 1958 New Zealand 3 February 1958 Norway 3 February 1958 Russia (assumed representation of USSR) 3 February 1958 South Africa 3 February 1958 United Kingdom 3 February 1958 United States of America 3 February 1958 Germany (formerly DDR and BRD individually) 22 May 1978 Poland 22 May 1978 India 1 October 1984 Brazil 1 October 1984 China 23 June 1986 Sweden (24 March 1987) 12 September 1988 Italy (19 May 1987) 12 September 1988 Uruguay (29 July 1987) 12 September 1988 Spain (15 January 1987) 23 July 1990 The Netherlands (20 May 1987) 23 July 1990 Korea, Republic of (18 December 1987) 23 July 1990 Finland (1 July 1988) 23 July 1990 Ecuador (12 September 1988) 15 June 1992 Canada (5 September 1994) 27 July 1998 Peru (14 April 1987) 22 July 2002 Switzerland (16 June 1987) 4 October 2004 Bulgaria (5 March 1995) 17 July 2006 Ukraine (5 September 1994) 17 July 2006 Malaysia (4 October 2004) 14 July 2008 Associate Members (12) Pakistan 15 June 1992 Denmark 17 July 2006 Portugal 17 July 2006 Romania 14 July 2008 261 Appendices Monaco 9 August 2010 Venezuela 23 July 2012 Czech Republic 1 September 2014 Iran 1 September 2014 Austria 29 August 2016 Colombia (rejoined) 29 August 2016 Thailand 29 August 2016 Turkey 29 August 2016 Former Associate Members (2) Colombia 23 July 1990 withdrew 3 July 1995 Estonia 15 June
    [Show full text]
  • S41467-018-05625-3.Pdf
    ARTICLE DOI: 10.1038/s41467-018-05625-3 OPEN Holocene reconfiguration and readvance of the East Antarctic Ice Sheet Sarah L. Greenwood 1, Lauren M. Simkins2,3, Anna Ruth W. Halberstadt 2,4, Lindsay O. Prothro2 & John B. Anderson2 How ice sheets respond to changes in their grounding line is important in understanding ice sheet vulnerability to climate and ocean changes. The interplay between regional grounding 1234567890():,; line change and potentially diverse ice flow behaviour of contributing catchments is relevant to an ice sheet’s stability and resilience to change. At the last glacial maximum, marine-based ice streams in the western Ross Sea were fed by numerous catchments draining the East Antarctic Ice Sheet. Here we present geomorphological and acoustic stratigraphic evidence of ice sheet reorganisation in the South Victoria Land (SVL) sector of the western Ross Sea. The opening of a grounding line embayment unzipped ice sheet sub-sectors, enabled an ice flow direction change and triggered enhanced flow from SVL outlet glaciers. These relatively small catchments behaved independently of regional grounding line retreat, instead driving an ice sheet readvance that delivered a significant volume of ice to the ocean and was sustained for centuries. 1 Department of Geological Sciences, Stockholm University, Stockholm 10691, Sweden. 2 Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA. 3 Department of Environmental Sciences, University of Virginia, Charlottesville, VA 22904, USA. 4 Department
    [Show full text]