Chapter 5 – Date
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CALENDAR of ARTICLES by EFFECTIVE DATES As of March 27, 2019
CALENDAR OF ARTICLES by EFFECTIVE DATES As of March 27, 2019 Introduction This document organizes MLN Matters® Article by effective date with descriptive information. The calendar represents 12 months (rolling months) of articles that have been posted. It can be used to review upcoming Medicare changes. Since many of the articles are posted and Change Requests (CRs) released months before the effective dates, the calendar can serve as a reminder of pending Medicare changes. Tips on Using the Calendar Review the calendar for upcoming Medicare changes to anticipate where errors may be introduced due to billing changes. Review the calendar for upcoming Medicare changes to assist in anticipating where complex changes may increase the number of calls to Call Centers. This could be due to effective dates of complicated regulation changes that are scheduled. Review the calendar to ensure staff and provider partners (if appropriate) are prepared for the upcoming change (for example, ICD-10). The calendar is updated weekly to reflect the posted MLN articles and CRs. March 2018 CALENDAR OF MEDICARE PROCESSING and BILLING CHANGES Effective Date Article Article Title Providers Affected Description Number 3/16/2018 MM10878 National Coverage Physicians, providers, Informs, effective 3/16/2018, Determination and suppliers billing CMS covers diagnostic (NCD90.2): Next MACs for services laboratory tests using next Generation provided to Medicare generation sequencing when Sequencing (NGS) beneficiaries performed in a CLIA-certified laboratory when -
The Impact of Using Gregorian Calendar Dates in Systems That Adapt Localization: in the Case of Ethiopia
IOSR Journal of Computer Engineering (IOSR-JCE) e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 19, Issue 6, Ver. III (Nov - Dec 2017), PP 01-07 www.iosrjournals.org The impact of using Gregorian calendar dates in systems that adapt localization: In the case of Ethiopia Getnet Mossie Zeleke1, Metages Molla Gubena2 1,2Department of Information Technology, College of Technology, Debre Markos University, Ethiopia Abstract: Ethiopian calendar has 13 months in which 12 months have 30 days equal and the 13th month has 5 or 6 days length. Date is one of the inputs for web or desktop applications. Java Development Kit(JDK) and Joda- Time Date Time package have been used for date manipulation in java based applications developed for local use in Ethiopia. Besides, Gregorian calendar date time pickers have also been used in web applications. This leads the application developers not to fully adapt localization. To fill this gap we developed JavaScript Date Picker and date manipulator java package in Ethiopian calendar basis. The first product consists of Amharic week day and month names which enable users to pick Ethiopian date as an input in web applications. The second product is used to manipulate Ethiopian date in java desktop and web applications. In the package different methods are defined to perform date related activities such as date calculations, extraction of date element in a given date, presentation of date in different date formats like መስከረም 12, 2010 etc. Unlike other date time java packages, dealing with Ethiopian dates using our date package does not require date conversion. -
ON the RECONSTRUCTED MACEDONIAN and EGYPTIAN LUNAR CALENDARS Aus: Zeitschrift Für Papyrologie Und Epigraphik 119 (1997) 157-166
ALEXANDER JONES ON THE RECONSTRUCTED MACEDONIAN AND EGYPTIAN LUNAR CALENDARS aus: Zeitschrift für Papyrologie und Epigraphik 119 (1997) 157-166 © Dr. Rudolf Habelt GmbH, Bonn 2 Name 157 ON THE RECONSTRUCTED MACEDONIAN AND EGYPTIAN LUNAR CALENDARS Documentary sources from Hellenistic Egypt attest to the use of three calendrical systems: the Egyptian civil calendar, which employed years that invariably comprised 365 days (12 months of exactly 30 days plus 5 “epagomenal” days), an Egyptian cult calendar that employed some sort of lunar months, and a Macedonian calendar in which the months were again lunar.1 The regulation of the Egyptian civil calendar is thoroughly understood, to the extent that we can convert all complete dates in this calendar to their exact equivalents in the modern historian’s Julian calendar and vice versa. It has for some time been generally believed that we similarly know the principles of regulation of the two lunar calendars. First R. A. Parker reconstructed a calendrical scheme for the Egyptian lunar calendar that tied its months in a recurring 25-year cycle with the months of the civil calendar.2 Thereafter A. E. Samuel applied the same 25-year lunation cycle to the Macedonian calendar.3 Small modifications have subsequently been proposed to Samuel’s hypothesis concerning the time-lag between the beginnings of the Egyptian and Macedonian lunar months. The present article sets out to show that the documentary foundation for these reconstructed calendars is much less solid than is usually supposed. In the case of the Macedonian calendar, it turns out that the evidence adduced for the reconstructed scheme tells strongly against it. -
Thomson Reuters Spreadsheet Link User Guide
THOMSON REUTERS SPREADSHEET LINK USER GUIDE MN-212 Date of issue: 13 July 2011 Legal Information © Thomson Reuters 2011. All Rights Reserved. Thomson Reuters disclaims any and all liability arising from the use of this document and does not guarantee that any information contained herein is accurate or complete. This document contains information proprietary to Thomson Reuters and may not be reproduced, transmitted, or distributed in whole or part without the express written permission of Thomson Reuters. Contents Contents About this Document ...................................................................................................................................... 1 Intended Readership ................................................................................................................................. 1 In this Document........................................................................................................................................ 1 Feedback ................................................................................................................................................... 1 Chapter 1 Thomson Reuters Spreadsheet Link .......................................................................................... 2 Chapter 2 Template Library ........................................................................................................................ 3 View Templates (Template Library) .............................................................................................................................................. -
The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars
Heavenly Mathematics: The Mathematics of the Chinese, Indian, Islamic and Gregorian Calendars Helmer Aslaksen Department of Mathematics National University of Singapore [email protected] www.math.nus.edu.sg/aslaksen/ www.chinesecalendar.net 1 Public Holidays There are 11 public holidays in Singapore. Three of them are secular. 1. New Year’s Day 2. Labour Day 3. National Day The remaining eight cultural, racial or reli- gious holidays consist of two Chinese, two Muslim, two Indian and two Christian. 2 Cultural, Racial or Religious Holidays 1. Chinese New Year and day after 2. Good Friday 3. Vesak Day 4. Deepavali 5. Christmas Day 6. Hari Raya Puasa 7. Hari Raya Haji Listed in order, except for the Muslim hol- idays, which can occur anytime during the year. Christmas Day falls on a fixed date, but all the others move. 3 A Quick Course in Astronomy The Earth revolves counterclockwise around the Sun in an elliptical orbit. The Earth ro- tates counterclockwise around an axis that is tilted 23.5 degrees. March equinox June December solstice solstice September equinox E E N S N S W W June equi Dec June equi Dec sol sol sol sol Beijing Singapore In the northern hemisphere, the day will be longest at the June solstice and shortest at the December solstice. At the two equinoxes day and night will be equally long. The equi- noxes and solstices are called the seasonal markers. 4 The Year The tropical year (or solar year) is the time from one March equinox to the next. The mean value is 365.2422 days. -
Islamic Calendar from Wikipedia, the Free Encyclopedia
Islamic calendar From Wikipedia, the free encyclopedia -at اﻟﺘﻘﻮﻳﻢ اﻟﻬﺠﺮي :The Islamic, Muslim, or Hijri calendar (Arabic taqwīm al-hijrī) is a lunar calendar consisting of 12 months in a year of 354 or 355 days. It is used (often alongside the Gregorian calendar) to date events in many Muslim countries. It is also used by Muslims to determine the proper days of Islamic holidays and rituals, such as the annual period of fasting and the proper time for the pilgrimage to Mecca. The Islamic calendar employs the Hijri era whose epoch was Islamic Calendar stamp issued at King retrospectively established as the Islamic New Year of AD 622. During Khaled airport (10 Rajab 1428 / 24 July that year, Muhammad and his followers migrated from Mecca to 2007) Yathrib (now Medina) and established the first Muslim community (ummah), an event commemorated as the Hijra. In the West, dates in this era are usually denoted AH (Latin: Anno Hegirae, "in the year of the Hijra") in parallel with the Christian (AD) and Jewish eras (AM). In Muslim countries, it is also sometimes denoted as H[1] from its Arabic form ( [In English, years prior to the Hijra are reckoned as BH ("Before the Hijra").[2 .(ﻫـ abbreviated , َﺳﻨﺔ ﻫِ ْﺠﺮﻳّﺔ The current Islamic year is 1438 AH. In the Gregorian calendar, 1438 AH runs from approximately 3 October 2016 to 21 September 2017.[3] Contents 1 Months 1.1 Length of months 2 Days of the week 3 History 3.1 Pre-Islamic calendar 3.2 Prohibiting Nasī’ 4 Year numbering 5 Astronomical considerations 6 Theological considerations 7 Astronomical -
Ethiopian Calendar from Wikipedia, the Free Encyclopedia
Ethiopian calendar From Wikipedia, the free encyclopedia The Ethiopian calendar (Amharic: የኢትዮጵያ ዘመን አቆጣጠር?; yä'Ityoṗṗya zämän aḳoṭaṭär) is the principal calendar used in Ethiopia and also serves as the liturgical year for Christians in Eritrea and Ethiopia belonging to the Orthodox Tewahedo Churches, Eastern Catholic Churches and Coptic Orthodox Church of Alexandria. It is a solar calendar which in turn derives from the Egyptian Calendar, but like the Julian Calendar, it adds a leap day every four years without exception, and begins the year on August 29th or August 30th in the Julian Calendar. A gap of 7–8 years between the Ethiopian and Gregorian Calendars results from an alternate calculation in determining the date of the Annunciation. Like the Coptic calendar, the Ethiopic calendar has 12 months of 30 days plus 5 or 6 epagomenal days, which comprise a thirteenth month. The Ethiopian months begin on the same days as those of the Coptic calendar, but their names are in Ge'ez. The 6th epagomenal day is added every 4 years, without exception, on August 29 of the Julian calendar, 6 months before the corresponding Julian leap day. Thus the first day of the Ethiopian year, 1 Mäskäräm, for years between 1900 and 2099 (inclusive), is usually September 11 (Gregorian). It, however, falls on September 12 in years before the Gregorian leap year. In the Gregorian Calendar Year 2015; the Ethiopian Calendar Year 2008 began on the 12th September (rather than the 11th of September) on account of this additional epagomenal day occurring every 4 years. Contents 1 New Year's Day 2 Eras 2.1 Era of Martyrs 2.2 Anno Mundi according to Panodoros 2.3 Anno Mundi according to Anianos 3 Leap year cycle 4 Months 5 References 6 Sources 7 External links New Year's Day Enkutatash is the word for the Ethiopian New Year in Amharic, the official language of Ethiopia, while it is called Ri'se Awde Amet ("Head Anniversary") in Ge'ez, the term preferred by the Ethiopian Orthodox Tewahedo Church. -
Superstition and Risk-Taking: Evidence from “Zodiac Year” Beliefs in China
Superstition and risk-taking: Evidence from “zodiac year” beliefs in China This version: February 28, 2020 Abstract We show that superstitions –beliefs without scientific grounding – have material conse- quences for Chinese individuals’ risk-taking behavior, using evidence from corporate and in- dividual decisions, exploiting widely held beliefs in bad luck during one’s “zodiac year.” We first provide evidence on individual risk-avoidance. We show that insurance purchases are 4.6 percent higher in a customer’s zodiac year, and using survey data we show that zodiac year respondents are 5 percent more likely to favor no-risk investments. Turning to corpo- rate decision-making, we find that R&D and corporate acquisitions decline substantially in a chairman’s zodiac year by 6 and 21 percent respectively. JEL classification: D14, D22, D91, G22, G41 Keywords: Risk aversion, Innovation, Insurance, Household Finance, Superstition, China, Zodiac Year 1 1 Introduction Many cultures have beliefs or practices – superstitions – that are held to affect outcomes in situations involving uncertainty. Despite having no scientific basis and no obvious function (beyond reducing the stresses of uncertainty), superstitions persist and are widespread in modern societies. It is clear that superstitions have at least superficial impact: for example, buildings often have no thirteenth floor, and airplanes have no thirteenth row, presumably because of Western superstitions surrounding the number 13. Whether these beliefs matter for outcomes with real stakes – and hence with implications for models of decision-making in substantively important economic settings – has only more recently been subject to rigorous empirical evaluation. In our paper we study risk-taking of individuals as a function of birth year, and risk-taking by firms as a function of the birth year of their chairmen. -
The 100 Years Anglo-Chinese Calendar, 1St Jan. 1776 to 25Th Jan
: THE 100 YEARS ANGLO-CHINESE CALENDAR, 1st JAN., 1776 to 25th JAN., 187G, CORRESPONDING WITH THE 11th DAY of the 11th MOON of the 40th YEAR of the EEIGN KIEN-LUNG, To the END of the 14th YEAR of the REIGN TUNG-CHI; TOGETIIER WITH AN APPENDIX, CONTAINING SEVERAL INTERESTING TABLES AND EXTRACTS. BY IP. LOUE;EIE,0. SHANGHAI rRINTED AT THE " NORTH-CHINA HERALD " OFFICE, 1872. -A c^ V lo ; ; PREFACE. In presenting the 100 Years Anglo-Chinese Calendar to the public, the compiler claims no originality for his work, inasmuch as, since the year 1832,* Calendars in somewhat similar form have been yearly issued from the press in China ; but, as it is doubtful if a complete series of these exists, and as, in the transaction of business, whether official, legal or commercial, between Foreigners and Chinese, and in the study of Chinese History which is now so intimately connected with foreign nations, a knowledge of the corresponding dates is quite necessary, it is hoped that this compilation will be found useful, and especially so in referring to the date of past events, and in deciding the precise day, according to the Chinese and Chris- tian Calendars, on which they occurred. Commencing with the last quarter of the past century (1st January, 1776), the Calendar embraces the peiiod when the first British Embassy (Lord Macartney's in 1793) arrived in China. For convenience sake the Calendar has been divided into 10 parts, each embracing a period of ten years of the Christian era and ends with the close of the 14th year of the present reign Tung-chi, —the 25th January, 1876. -
Sothic Cycle - Wikipedia
12/2/2018 Sothic cycle - Wikipedia Sothic cycle The Sothic cycle or Canicular period is a period of 1,461 Egyptian civil years of 365 days each or 1,460 Julian years averaging 365¼ days each. During a Sothic cycle, the 365-day year loses enough time that the start of its year once again coincides with the heliacal rising of the star Sirius (Ancient Egyptian: Spdt or Sopdet, "Triangle"; Greek: Σῶθις, Sō̂this) on 19 July in the Julian calendar.[1][a] It is an important aspect of Egyptology, particularly with regard to reconstructions of the Egyptian calendar and its history. Astronomical records of this displacement may have been responsible for the later establishment of the more accurate Julian and Alexandrian calendars. Sirius (bottom) and Orion (right). The Winter Triangle is formed Contents from the three brightest stars in the northern winter sky: Sirius, Mechanics Betelgeuse (top right), and Discovery Procyon (top left). Chronological interpretation Observational mechanics and precession Problems and criticisms Notes References External links Mechanics The ancient Egyptian civil year, its holidays, and religious records reflect its apparent establishment at a point when the return of the bright star Sirius to the night sky was considered to herald the annual flooding of the Nile.[2] However, because the civil calendar was exactly 365 days long and did not incorporate leap years until 22 BC, its months "wandered" backwards through the solar year at the rate of about one day in every four years. This almost exactly corresponded to its displacement against the Sothic year as well. (The Sothic year is about a minute longer than a solar year.)[2] The sidereal year of 365.25636 days is only valid for stars on the ecliptic (the apparent path of the Sun across the sky), whereas Sirius's displacement ~40˚ below the ecliptic, its proper motion, and the wobbling of the celestial equator cause the period between its heliacal risings to be almost exactly 365.25 days long instead. -
The Calculation of Doomsday Based on Anno Domini
SCIENTIFIC CULTURE, Vol. 1, No. 2, (2015), pp. 22-32 Copyright © 2015 SC Open Access. Printed in Greece. All Rights Reserved. The calculation of doomsday based on Anno Domini Sepp Rothwangl Waldwirtschaft Hubertushof Scheibsgraben 49, A-8661 Wartberg, Astria (CALENdeRsign.com;[email protected]) Received: 10/01/2015 Accepted: 15/02/2015 ABSTRACT Anno Domini, or the year Christ’s birth, was an invention made some 1400 years ago by Dionysius Exiguus, who adjusted a new Easter Computus in order to avert end time fever with the pretext to solve a dispute upon the correct date of Easter. Right at the beginning of Christianity, early Christians expected in the near future the return of Christ, which was associated with the end of the world, together with the Seventh Day of the Lord. Such a scenario ocurred already in the cosmic year Anno Mundi (AM) 6,000 based upon a teleological concept by interpreting the Bible. AM produced a calendrical end time with its year 6000 due to equating the Six Days of Genesis with the verse of the Bible saying one Day of the Lord was the same as 1000 years of mankind. To combat the end of the world fever caused by this time concept at the beginning of the 6th century Dionysius Exiguus created a new temporal hinge point for counting the years: Anno Domini. Obviously this chronology is not in harmony with ancient historical works, as even former Pope Benedict XVI recognized, but is an end time prophecy by interpreting the Gospel, the Apocalypse, the scientific cosmology of antiquity, and astronomical values. -
The Calendars of India
The Calendars of India By Vinod K. Mishra, Ph.D. 1 Preface. 4 1. Introduction 5 2. Basic Astronomy behind the Calendars 8 2.1 Different Kinds of Days 8 2.2 Different Kinds of Months 9 2.2.1 Synodic Month 9 2.2.2 Sidereal Month 11 2.2.3 Anomalistic Month 12 2.2.4 Draconic Month 13 2.2.5 Tropical Month 15 2.2.6 Other Lunar Periodicities 15 2.3 Different Kinds of Years 16 2.3.1 Lunar Year 17 2.3.2 Tropical Year 18 2.3.3 Siderial Year 19 2.3.4 Anomalistic Year 19 2.4 Precession of Equinoxes 19 2.5 Nutation 21 2.6 Planetary Motions 22 3. Types of Calendars 22 3.1 Lunar Calendar: Structure 23 3.2 Lunar Calendar: Example 24 3.3 Solar Calendar: Structure 26 3.4 Solar Calendar: Examples 27 3.4.1 Julian Calendar 27 3.4.2 Gregorian Calendar 28 3.4.3 Pre-Islamic Egyptian Calendar 30 3.4.4 Iranian Calendar 31 3.5 Lunisolar calendars: Structure 32 3.5.1 Method of Cycles 32 3.5.2 Improvements over Metonic Cycle 34 3.5.3 A Mathematical Model for Intercalation 34 3.5.3 Intercalation in India 35 3.6 Lunisolar Calendars: Examples 36 3.6.1 Chinese Lunisolar Year 36 3.6.2 Pre-Christian Greek Lunisolar Year 37 3.6.3 Jewish Lunisolar Year 38 3.7 Non-Astronomical Calendars 38 4. Indian Calendars 42 4.1 Traditional (Siderial Solar) 42 4.2 National Reformed (Tropical Solar) 49 4.3 The Nānakshāhī Calendar (Tropical Solar) 51 4.5 Traditional Lunisolar Year 52 4.5 Traditional Lunisolar Year (vaisnava) 58 5.