Role of SPDEF in Prostate Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Role of SPDEF in Prostate Cancer Role of SPDEF in Prostate Cancer A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Master of Science in the Department of Developmental Biology of the College of Medicine by Chen Gao B.S. Beijing Normal University June 2012 Committee Chair: Tanya V. Kalin, M.D., Ph.D. Abstract SAM Pointed Domain Containing ETS Transcription Factor (SPDEF) is a new member of ETS transcription factor family that is originally discovered in the epithelium of prostate. Like other ETS family members, SPDEF is involved in multiple biological processes including cell fate determination and specification, cell proliferation, epithelial-to-mesenchymal transformation and migration. Although much work has been done to elucidate the role of SPDEF in normal physiological conditions and in cancers, its expression level in cancer is still controversial. Similarly, there is no conclusive message on the role of SPDEF in cancer despite the fact that several in vitro studies have been done. We first overviewed the discovery and properties of SPDEF, followed by a comprehensive review of the role of SPDEF, with a special focus on its role in the development of cancer. In the second chapter, we utilized a xenograft model to manipulate SPDEF level in mouse prostate cancer. After orthotopic injection, we found that overexpression of SPDEF resulted in smaller tumors in mice. We also showed that several target genes related to cell proliferation and migration are down-regulated by SPDEF overexpression. We confirmed down-regulation of these genes in prostate cancer cell lines. In fact, we found that SPDEF overexpression inhibited cell migration, resulting in reduced aggressiveness of tumor cells. In addition, SPDEF overexpression was shown to suppress tumor growth via alteration of cell cycle profile. Collectively, these data indicate that SPDEF suppresses tumor growth via inhibition of cell proliferation and migration. ii iii Acknowledgements I would like to express my gratitude to the following people for their assistance and support to make this thesis possible. My deepest gratitude goes to my advisor, Dr. Tanya Kalin, for her guidance during my graduate study. Her patience, support, and advice helped me overcome many challenges during my research in the lab. I want to thank her for giving me the chance to learn how to conduct research. I would like to express my sincere gratitude to my thesis committee members for their guidance and helpful discussions through my thesis work. I also thank the Molecular and Developmental Biology Graduate Program for offering me the opportunity of graduate training. I’m also grateful to Dr. Vladimir Kalinichenko and my colleagues in Kalin and Kalinichenko labs. I deeply appreciate their scientific input and technical assistance to help me go through my research. I also thank the co-workers in the Division of Neonatology and Pulmonary Biology for their help. Finally, I want to give special thanks to my parents who always love, support and encourage me. iv Table of contents Table of Contents Abstract ............................................................................................................................................. ii Acknowledgements .......................................................................................................................... iv Table of contents ............................................................................................................................... v List of Symbols and Abbreviations .................................................................................................. vi Chapter 1: Literature Review of SPDEF and Its Implication in the Pathogenesis of Cancer ........... 1 Overview of ETS family ........................................................................................................... 1 General Information of SPDEF ................................................................................................. 3 Expression Pattern of SPDEF ................................................................................................... 5 1. SPDEF expression in normal tissues ............................................................................. 5 2. SPDEF expression in cancers ........................................................................................ 6 Regulation of SPDEF ................................................................................................................ 8 SPDEF Targets ........................................................................................................................ 11 1. Target genes in normal development ........................................................................... 11 2. Target genes regulating cell proliferation and apoptosis ............................................. 13 3. Target genes regulating cell migration and metastasis ................................................ 14 Biological Functions of SPDEF .............................................................................................. 16 1. SPDEF and cell differentiation ................................................................................... 16 2. SPDEF and cell proliferation ...................................................................................... 18 3. SPDEF and cell migration ........................................................................................... 19 Summary and Future Perspectives .......................................................................................... 21 References ............................................................................................................................... 24 Chapter 2: The role of SPDEF in prostate cancer ........................................................................... 29 Abstract ................................................................................................................................... 29 Introduction ............................................................................................................................. 29 Results ..................................................................................................................................... 32 Overexpression of SPDEF Reduced Tumor Weight In Mouse Prostate Cancer ............. 32 SPDEF Suppresses Tumor Cell Migration and Invasion ................................................ 33 SPDEF Inhibits Tumor Cell Growth Via Change Of Cell Cycle Profile ......................... 33 Discussion ............................................................................................................................... 34 Materials and Methods ............................................................................................................ 38 Figures..................................................................................................................................... 41 References ............................................................................................................................... 48 v List of Symbols and Abbreviations Agr2 anterior gradient 2 (Xenopus laevis) Akt also termed as protein kinase B AR androgen receptor ATOH1 atonal homolog 1 Cdc25b cell division cycle 25 homolog B CDK cyclin-dependent kinase CIP1 cyclin-dependent kinase inhibitor 1, also termed as p21 CK2 casein kinase 2 EMSA electrophoretic mobility shift assay ERG Ets related gene ETS E26 transformation-specific ETV-1 ETS translocation variant 1 FGF fibroblast growth factor FoxJ1 foxhead box protein J1 FoxM1 foxhead box protein M1 GFI1 growth factor independent protein 1 hPSE human prostate-specific ETS IAP inhibitor of apoptosis KLF4 Krueppel-like factor 4 LC-MS liquid chromatography - mass spectrometry MAPK MAPK mitogen activated protein kinase mammary serine protease inhibitor, also termed as Maspin SerpinB5 MMP-2 matrix metalloproteinase-2 MMP-7 matrix metalloproteinase-7 MMP-9 matrix metalloproteinase-9 mPSE mouse prostate-specific ETS MS mass spectrometry mTOR mammalian target of rapamycin Nkx3-1 NK3 homeobox 1 PDFGRα alpha-type platelet-derived growth factor receptor PEST domain proline, glutamic acid, serine, and threonine-rich domain PI Propidium iodide PI3K phosphoinositide 3-kinase PSA prostate-specific antigen RUNX1 Runt-related transcription factor 1 RUNX2 Runt-related transcription factor 2 Scgb1a1 secretoglobin, family 1A, member 1 (uteroglobin) serine (or cysteine) peptidase inhibitor, clade B Serpinb3a (ovalbumin), member 3a vi Sftpa surfactant protein A Sox17 SRY (sex determining region Y)-box 17 SPDEF SAM pointed domain containing ETS transcription factor Sqstm1 Sequestosome-1 Stmn stathmin TGFβ transforming growth factor beta TMPRSS2 transmembrane protease, serine 2 TRAMP transgenic adenocarcinoma of the mouse prostate thyroid transcription factor 1, also termed as Nkx2-1 TTF-1 (NK2 homeobox 1) uPA urokinase-type plasminogen activator VEGF vascular endothelial growth factor Zeb2 zinc finger E-box-binding homeobox 2 vii Chapter 1: Literature Review of SPDEF and Its Implication in the Pathogenesis of Cancer Overview of ETS family The E26 transformation-specific (ETS) family is one of the largest families of transcription factor proteins with currently 27 and 26 Ets genes found in humans and mice, respectively [1]. The evolutionarily conserved ETS domain is responsible for specific DNA binding and recognition of GGA(A/T) consensus sequence [2].
Recommended publications
  • Predicting FOXM1-Mediated Gene Regulation Through the Analysis of Genome-Wide FOXM1 Binding Sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 Cell Lines
    International Journal of Molecular Sciences Article Predicting FOXM1-Mediated Gene Regulation through the Analysis of Genome-Wide FOXM1 Binding Sites in MCF-7, K562, SK-N-SH, GM12878 and ECC-1 Cell Lines 1, , 2, 1 3,4 Keunsoo Kang * y, Yoonjung Choi y, Hoo Hyun Kim , Kyung Hyun Yoo and Sungryul Yu 5,* 1 Department of Microbiology, College of Science & Technology, Dankook University, Cheonan 31116, Korea; [email protected] 2 Deargen Inc., Daejeon 34051, Korea; [email protected] 3 Laboratory of Biomedical Genomics, Department of Biological Sciences, Sookmyung Women’s University, Seoul 04310, Korea; [email protected] 4 Research Institute of Women’s Health, Sookmyung Women’s University, Seoul 04310, Korea 5 Department of Clinical Laboratory Science, Semyung University, Jecheon 27136, Korea * Correspondence: [email protected] (K.K.); [email protected] (S.Y.); Tel.: +82-41-550-3456 (K.K.); +82-43-649-1418 (S.Y.) These authors contributed equally to the work. y Received: 22 June 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: Forkhead box protein M1 (FOXM1) is a key transcription factor (TF) that regulates a common set of genes related to the cell cycle in various cell types. However, the mechanism by which FOXM1 controls the common gene set in different cellular contexts is unclear. In this study, a comprehensive meta-analysis of genome-wide FOXM1 binding sites in ECC-1, GM12878, K562, MCF-7, and SK-N-SH cell lines was conducted to predict FOXM1-driven gene regulation. Consistent with previous studies, different TF binding motifs were identified at FOXM1 binding sites, while the NFY binding motif was found at 81% of common FOXM1 binding sites in promoters of cell cycle-related genes.
    [Show full text]
  • Activation of AKT/AP1/Foxm1 Signaling Confers Sorafenib Resistance to Liver Cancer Cells
    ONCOLOGY REPORTS 42: 785-796, 2019 Activation of AKT/AP1/FoxM1 signaling confers sorafenib resistance to liver cancer cells DONGJING YAN1*, XIAOJING YAN2*, XUFANG DAI3,4*, LINGXI CHEN2, LIANGBO SUN2, TAO LI2, FENGTIAN HE2, JIQIN LIAN2 and WANGWEI CAI1 1Department of Biochemistry and Molecular Biology, Hainan Medical College, Haikou, Hainan 571199; 2Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing 400038; 3Department of Educational Science College, Chongqing Normal University; 4Chongqing Key Laboratory of Psychological Diagnosis and Educational Technology for Children with Special Needs, Chongqing 400047, P.R. China Received December 5, 2018; Accepted June 6, 2019 DOI: 10.3892/or.2019.7192 Abstract. Sorafenib is the first‑line drug used in the treatment the AKT/AP1/FoxM1 signaling axis is an important determi- of liver cancer; however, drug resistance seriously limits the nant of sorafenib tolerance. clinical response to sorafenib. The present study investigated the molecular mechanisms of sorafenib resistance in liver Introduction cancer cells. The data indicated that forkhead box M1 (FoxM1) was significantly overexpressed in sorafenib‑resistant cells, at Liver cancer, the most common primary liver tumor, is the third the mRNA and protein levels. Knockdown of FoxM1 rendered leading cause of cancer mortality globally (1). Surgical resec- drug‑tolerant cells sensitive to sorafenib. Furthermore, FoxM1 tion, thermal ablation and liver transplantation are the current was upregulated at the transcriptional
    [Show full text]
  • SUPPLEMENTAL FIGURE LEGENDS Supplemental Figure S1. RBPJ
    Xie et al. SUPPLEMENTAL FIGURE LEGENDS Supplemental Figure S1. RBPJ correlates with BTIC marker expression. A-D. The TCGA GBM dataset was downloaded and correlations analyzed by R. RBPJ mRNA levels were highly correlated with (A) Olig2, (B) Sox2, (C) CD133, and (D) Sox4 levels. E. RBPJ is preferentially expressed in proneural glioblastomas. The glioblastoma TCGA dataset was interrogated for RBPJ mRNA expression segregated by transcriptional profile. The proneural tumors were further divided into G-CIMP (glioma CpG-island methylator phenotype) or non-G-CIMP. **, p < 0.01. ****, p < 0.0001. *****, p < 0.00001. Supplemental Figure S2. Targeting RBPJ induces BTIC apoptosis. A. 3691 BTICs were transduced with shCONT, shRBPJ-1, or shRBPJ-2. Lysates were prepared and immunoblotted with the indicated antibodies. shRNA-mediated knockdown of RBPJ was associated with increased cleaved (activated) PARP. B. 3691 BTICs were transduced with shCONT, shRBPJ-1, or shRBPJ-2. Apoptosis measured by Annexin V staining. Data are presented as mean ± SEM (two- way ANOVA; **, p < 0.01; n = 3). Supplemental Figure S3. Targeting RBPJ does not affect non-BTIC proliferation. Non-BTICs (Top, 3691; Bottom, 4121) were transduced with shCONT, shRBPJ-1, or shRBPJ-2. Cell proliferation was measured by CellTiter-Glo. 42 Xie et al. Supplemental Figure S4. RBPJ induces transcriptional profiles in BTICs distinct from Notch activation. A. In parallel experiments, 3691 BTICs were either treated with DAPT (at either 5 μM or 10 μM) vs. vehicle control (DMSO) or transduced with shRBPJ vs. shCONT. RNA-Seq was performed and the results displayed as a heat map with normalization to the relevant control.
    [Show full text]
  • UC San Francisco Electronic Theses and Dissertations
    UCSF UC San Francisco Electronic Theses and Dissertations Title Protease-activated receptor-2 (PAR2) in epithelial biology Permalink https://escholarship.org/uc/item/2b49z9sm Author Barker, Adrian Publication Date 2013 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California ii To my nephews for being the light of my life To my parents for showing me the way To Philip, your love knows no bounds iii ACKNOWLEDGEMENTS Wow, what a journey! First, I’d like to thank my mentor and advisor, Dr. Shaun Coughlin, for giving me the encouragement and wisdom that I needed to succeed in your lab. One thing I will take away from this experience is how powerful collaboration can be. Having encountered labs that have not been willing to collaborate, you are an inspiration and role-model in your willingness to share your resources and knowledge with the scientific community and the academic world is a better place because of it. To my thesis committee members, Dr. Charly Craik & Dr. Zena Werb. Thank you for the conversations and encouragement. You have given me motivation and kind words in pivotal moments in my career and they have helped me tremendously; more than you’ll ever know. To all the members of the Coughlin lab. We’ve been through so much together, and many of you have been around since the first day I stepped foot into the lab. Extra special thanks to: Dr. Hilary Clay, for help with the zebrafish work and for fighting for my project when it felt like no one else cared; Dr.
    [Show full text]
  • Development and Validation of a Protein-Based Risk Score for Cardiovascular Outcomes Among Patients with Stable Coronary Heart Disease
    Supplementary Online Content Ganz P, Heidecker B, Hveem K, et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA. doi: 10.1001/jama.2016.5951 eTable 1. List of 1130 Proteins Measured by Somalogic’s Modified Aptamer-Based Proteomic Assay eTable 2. Coefficients for Weibull Recalibration Model Applied to 9-Protein Model eFigure 1. Median Protein Levels in Derivation and Validation Cohort eTable 3. Coefficients for the Recalibration Model Applied to Refit Framingham eFigure 2. Calibration Plots for the Refit Framingham Model eTable 4. List of 200 Proteins Associated With the Risk of MI, Stroke, Heart Failure, and Death eFigure 3. Hazard Ratios of Lasso Selected Proteins for Primary End Point of MI, Stroke, Heart Failure, and Death eFigure 4. 9-Protein Prognostic Model Hazard Ratios Adjusted for Framingham Variables eFigure 5. 9-Protein Risk Scores by Event Type This supplementary material has been provided by the authors to give readers additional information about their work. Downloaded From: https://jamanetwork.com/ on 10/02/2021 Supplemental Material Table of Contents 1 Study Design and Data Processing ......................................................................................................... 3 2 Table of 1130 Proteins Measured .......................................................................................................... 4 3 Variable Selection and Statistical Modeling ........................................................................................
    [Show full text]
  • Apoptotic Cells Inflammasome Activity During the Uptake of Macrophage
    Downloaded from http://www.jimmunol.org/ by guest on September 29, 2021 is online at: average * The Journal of Immunology , 26 of which you can access for free at: 2012; 188:5682-5693; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication April 2012; doi: 10.4049/jimmunol.1103760 http://www.jimmunol.org/content/188/11/5682 Complement Protein C1q Directs Macrophage Polarization and Limits Inflammasome Activity during the Uptake of Apoptotic Cells Marie E. Benoit, Elizabeth V. Clarke, Pedro Morgado, Deborah A. Fraser and Andrea J. Tenner J Immunol cites 56 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/04/20/jimmunol.110376 0.DC1 This article http://www.jimmunol.org/content/188/11/5682.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 29, 2021. The Journal of Immunology Complement Protein C1q Directs Macrophage Polarization and Limits Inflammasome Activity during the Uptake of Apoptotic Cells Marie E.
    [Show full text]
  • The Roles of FOXM1 in Pancreatic Stem Cells and Carcinogenesis Ming Quan1,3, Peipei Wang2, Jiujie Cui1,3, Yong Gao2 and Keping Xie3*
    Quan et al. Molecular Cancer 2013, 12:159 http://www.molecular-cancer.com/content/12/1/159 REVIEW Open Access The roles of FOXM1 in pancreatic stem cells and carcinogenesis Ming Quan1,3, Peipei Wang2, Jiujie Cui1,3, Yong Gao2 and Keping Xie3* Abstract Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses among all cancers. Over the past several decades, investigators have made great advances in the research of PDAC pathogenesis. Importantly, identification of pancreatic cancer stem cells (PCSCs) in pancreatic cancer cases has increased our understanding of PDAC biology and therapy. PCSCs are responsible for pancreatic tumorigenesis and tumor progression via a number of mechanisms, including extensive proliferation, self-renewal, high tumorigenic ability, high propensity for invasiveness and metastasis, and resistance to conventional treatment. Furthermore, emerging evidence suggests that PCSCs are involved in the malignant transformation of pancreatic intraepithelial neoplasia. The molecular mechanisms that control PCSCs are related to alterations of various signaling pathways, for instance, Hedgehog, Notch, Wnt, B-cell-specific Moloney murine leukemia virus insertion site 1, phosphoinositide 3-kinase/AKT, and Nodal/Activin. Also, authors have reported that the proliferation-specific transcriptional factor Forkhead box protein M1 is involved in PCSC self-renewal and proliferation. In this review, we describe the current knowledge about the signaling pathways related to PCSCs and the early stages of PDAC development, highlighting the pivotal roles of Forkhead box protein M1 in PCSCs and their impacts on the development and progression of pancreatic intraepithelial neoplasia. Keywords: Transcription factors, Oncogenic switch, Progression, Stem cells, Therapeutic targets, Molecular biomarkers Introduction roles of pancreatic CSCs (PCSCs) in pancreatic cancer de- The incidence of pancreatic cancer is increasing annu- velopment and progression is imperative.
    [Show full text]
  • FOXM1 Is a Transcriptional Target of Erα and Has a Critical Role in Breast
    Oncogene (2010) 29, 2983–2995 & 2010 Macmillan Publishers Limited All rights reserved 0950-9232/10 $32.00 www.nature.com/onc ORIGINAL ARTICLE FOXM1 is a transcriptional target of ERa and has a critical role in breast cancer endocrine sensitivity and resistance J Millour1, D Constantinidou1, AV Stavropoulou1, MSC Wilson1, SS Myatt1, JM-M Kwok1, K Sivanandan1, RC Coombes1, RH Medema2, J Hartman3, AE Lykkesfeldt4 and EW-F Lam1 1Department of Surgery and Cancer, Imperial College London, London, UK; 2Department of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands; 3Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden and 4Department of Breast Cancer Research, Institute of Cancer Biology, Danish Cancer Society, Copenhagen, Denmark In this study, we investigated the regulation of FOXM1 Introduction expression by estrogen receptor a (ERa) and its role in hormonal therapy and endocrine resistance. FOXM1 Breast cancer is the second most prevalent cause of protein and mRNA expression was regulated by ER- cancer death in the western hemisphere and displays a ligands, including estrogen, tamoxifen (OHT) and fulves- complex aeitology. The forkhead box (FOX) family trant (ICI182780; ICI) in breast carcinoma cell lines. member FOXM1 was previously reported to be elevated Depletion of ERa by RNA interference (RNAi) in MCF-7 in breast cancer as well as in carcinomas of other origins cells downregulated FOXM1 expression. Reporter gene (Pilarsky et al., 2004). FOXM1 is expressed in prolifer- assays showed that ERa activates FOXM1 transcription ating adult tissues and in response to injury or repair through an estrogen-response element (ERE) located (Korver et al., 1997a, b; Ye et al., 1999; Leung et al., within the proximal promoter region.
    [Show full text]
  • Rna-Sequencing Applications: Gene Expression Quantification and Methylator Phenotype Identification
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 8-2013 RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION Guoshuai Cai Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Bioinformatics Commons, Computational Biology Commons, and the Medicine and Health Sciences Commons Recommended Citation Cai, Guoshuai, "RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION" (2013). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 386. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/386 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. RNA-SEQUENCING APPLICATIONS: GENE EXPRESSION QUANTIFICATION AND METHYLATOR PHENOTYPE IDENTIFICATION
    [Show full text]
  • Human Tryptase Γ‑1/TPSG1 Antibody Antigen Affinity-Purified Polyclonal Goat Igg Catalog Number: AF1667
    Human Tryptase γ‑1/TPSG1 Antibody Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: AF1667 DESCRIPTION Species Reactivity Human Specificity Detects human Tryptase γ-1/TPSG1 in direct ELISAs and Western blots. Source Polyclonal Goat IgG Purification Antigen Affinity-purified Immunogen Mouse myeloma cell line NS0-derived recombinant human Tryptase γ‑1/TPSG1 Arg20-Arg281 Accession # Q9NRR2 Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details. *Small pack size (-SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS. APPLICATIONS Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration Western Blot 0.1 µg/mL Recombinant Human Tryptase γ‑1/TPSG1 (Catalog # 1667-SE) Immunoprecipitation 25 µg/mL Conditioned cell culture medium spiked with Recombinant Human Tryptase γ‑1/TPSG1 (Catalog # 1667-SE), see our available Western blot detection antibodies PREPARATION AND STORAGE Reconstitution Reconstitute at 0.2 mg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. *Small pack size (-SP) is shipped with polar packs. Upon receipt, store it immediately at -20 to -70 °C Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution. 6 months, -20 to -70 °C under sterile conditions after reconstitution.
    [Show full text]
  • Human Kallikrein 5 Quantikine
    Quantikine® ELISA Human Kallikrein 5 Immunoassay Catalog Number DKK500 For the quantitative determination of human Kallikrein 5 (KLK5) concentrations in cell culture supernates, serum, plasma, saliva, and human milk. This package insert must be read in its entirety before using this product. For research use only. Not for use in diagnostic procedures. TABLE OF CONTENTS SECTION PAGE INTRODUCTION .....................................................................................................................................................................1 PRINCIPLE OF THE ASSAY ...................................................................................................................................................2 LIMITATIONS OF THE PROCEDURE .................................................................................................................................2 TECHNICAL HINTS .................................................................................................................................................................2 MATERIALS PROVIDED & STORAGE CONDITIONS ...................................................................................................3 OTHER SUPPLIES REQUIRED .............................................................................................................................................3 PRECAUTIONS .........................................................................................................................................................................4
    [Show full text]
  • The Emerging Role of Mast Cell Proteases in Asthma
    REVIEW ASTHMA The emerging role of mast cell proteases in asthma Gunnar Pejler1,2 Affiliations: 1Dept of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. 2Dept of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden. Correspondence: Gunnar Pejler, Dept of Medical Biochemistry and Microbiology, BMC, Uppsala University, Box 582, 75123 Uppsala, Sweden. E-mail: [email protected] @ERSpublications Mast cells express large amounts of proteases, including tryptase, chymase and carboxypeptidase A3. An extensive review of how these proteases impact on asthma shows that they can have both protective and detrimental functions. http://bit.ly/2Gu1Qp2 Cite this article as: Pejler G. The emerging role of mast cell proteases in asthma. Eur Respir J 2019; 54: 1900685 [https://doi.org/10.1183/13993003.00685-2019]. ABSTRACT It is now well established that mast cells (MCs) play a crucial role in asthma. This is supported by multiple lines of evidence, including both clinical studies and studies on MC-deficient mice. However, there is still only limited knowledge of the exact effector mechanism(s) by which MCs influence asthma pathology. MCs contain large amounts of secretory granules, which are filled with a variety of bioactive compounds including histamine, cytokines, lysosomal hydrolases, serglycin proteoglycans and a number of MC-restricted proteases. When MCs are activated, e.g. in response to IgE receptor cross- linking, the contents of their granules are released to the exterior and can cause a massive inflammatory reaction. The MC-restricted proteases include tryptases, chymases and carboxypeptidase A3, and these are expressed and stored at remarkably high levels.
    [Show full text]